666 lines
30 KiB
C++
666 lines
30 KiB
C++
|
// Copyright 2012 the V8 project authors. All rights reserved.
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following
|
||
|
// disclaimer in the documentation and/or other materials provided
|
||
|
// with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived
|
||
|
// from this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
#include "fast-dtoa.h"
|
||
|
|
||
|
#include "cached-powers.h"
|
||
|
#include "diy-fp.h"
|
||
|
#include "ieee.h"
|
||
|
|
||
|
namespace double_conversion {
|
||
|
|
||
|
// The minimal and maximal target exponent define the range of w's binary
|
||
|
// exponent, where 'w' is the result of multiplying the input by a cached power
|
||
|
// of ten.
|
||
|
//
|
||
|
// A different range might be chosen on a different platform, to optimize digit
|
||
|
// generation, but a smaller range requires more powers of ten to be cached.
|
||
|
static const int kMinimalTargetExponent = -60;
|
||
|
static const int kMaximalTargetExponent = -32;
|
||
|
|
||
|
|
||
|
// Adjusts the last digit of the generated number, and screens out generated
|
||
|
// solutions that may be inaccurate. A solution may be inaccurate if it is
|
||
|
// outside the safe interval, or if we cannot prove that it is closer to the
|
||
|
// input than a neighboring representation of the same length.
|
||
|
//
|
||
|
// Input: * buffer containing the digits of too_high / 10^kappa
|
||
|
// * the buffer's length
|
||
|
// * distance_too_high_w == (too_high - w).f() * unit
|
||
|
// * unsafe_interval == (too_high - too_low).f() * unit
|
||
|
// * rest = (too_high - buffer * 10^kappa).f() * unit
|
||
|
// * ten_kappa = 10^kappa * unit
|
||
|
// * unit = the common multiplier
|
||
|
// Output: returns true if the buffer is guaranteed to contain the closest
|
||
|
// representable number to the input.
|
||
|
// Modifies the generated digits in the buffer to approach (round towards) w.
|
||
|
static bool RoundWeed(Vector<char> buffer,
|
||
|
int length,
|
||
|
uint64_t distance_too_high_w,
|
||
|
uint64_t unsafe_interval,
|
||
|
uint64_t rest,
|
||
|
uint64_t ten_kappa,
|
||
|
uint64_t unit) {
|
||
|
uint64_t small_distance = distance_too_high_w - unit;
|
||
|
uint64_t big_distance = distance_too_high_w + unit;
|
||
|
// Let w_low = too_high - big_distance, and
|
||
|
// w_high = too_high - small_distance.
|
||
|
// Note: w_low < w < w_high
|
||
|
//
|
||
|
// The real w (* unit) must lie somewhere inside the interval
|
||
|
// ]w_low; w_high[ (often written as "(w_low; w_high)")
|
||
|
|
||
|
// Basically the buffer currently contains a number in the unsafe interval
|
||
|
// ]too_low; too_high[ with too_low < w < too_high
|
||
|
//
|
||
|
// too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
|
// ^v 1 unit ^ ^ ^ ^
|
||
|
// boundary_high --------------------- . . . .
|
||
|
// ^v 1 unit . . . .
|
||
|
// - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
|
||
|
// . . ^ . .
|
||
|
// . big_distance . . .
|
||
|
// . . . . rest
|
||
|
// small_distance . . . .
|
||
|
// v . . . .
|
||
|
// w_high - - - - - - - - - - - - - - - - - - . . . .
|
||
|
// ^v 1 unit . . . .
|
||
|
// w ---------------------------------------- . . . .
|
||
|
// ^v 1 unit v . . .
|
||
|
// w_low - - - - - - - - - - - - - - - - - - - - - . . .
|
||
|
// . . v
|
||
|
// buffer --------------------------------------------------+-------+--------
|
||
|
// . .
|
||
|
// safe_interval .
|
||
|
// v .
|
||
|
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
|
||
|
// ^v 1 unit .
|
||
|
// boundary_low ------------------------- unsafe_interval
|
||
|
// ^v 1 unit v
|
||
|
// too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
|
||
|
//
|
||
|
//
|
||
|
// Note that the value of buffer could lie anywhere inside the range too_low
|
||
|
// to too_high.
|
||
|
//
|
||
|
// boundary_low, boundary_high and w are approximations of the real boundaries
|
||
|
// and v (the input number). They are guaranteed to be precise up to one unit.
|
||
|
// In fact the error is guaranteed to be strictly less than one unit.
|
||
|
//
|
||
|
// Anything that lies outside the unsafe interval is guaranteed not to round
|
||
|
// to v when read again.
|
||
|
// Anything that lies inside the safe interval is guaranteed to round to v
|
||
|
// when read again.
|
||
|
// If the number inside the buffer lies inside the unsafe interval but not
|
||
|
// inside the safe interval then we simply do not know and bail out (returning
|
||
|
// false).
|
||
|
//
|
||
|
// Similarly we have to take into account the imprecision of 'w' when finding
|
||
|
// the closest representation of 'w'. If we have two potential
|
||
|
// representations, and one is closer to both w_low and w_high, then we know
|
||
|
// it is closer to the actual value v.
|
||
|
//
|
||
|
// By generating the digits of too_high we got the largest (closest to
|
||
|
// too_high) buffer that is still in the unsafe interval. In the case where
|
||
|
// w_high < buffer < too_high we try to decrement the buffer.
|
||
|
// This way the buffer approaches (rounds towards) w.
|
||
|
// There are 3 conditions that stop the decrementation process:
|
||
|
// 1) the buffer is already below w_high
|
||
|
// 2) decrementing the buffer would make it leave the unsafe interval
|
||
|
// 3) decrementing the buffer would yield a number below w_high and farther
|
||
|
// away than the current number. In other words:
|
||
|
// (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
|
||
|
// Instead of using the buffer directly we use its distance to too_high.
|
||
|
// Conceptually rest ~= too_high - buffer
|
||
|
// We need to do the following tests in this order to avoid over- and
|
||
|
// underflows.
|
||
|
ASSERT(rest <= unsafe_interval);
|
||
|
while (rest < small_distance && // Negated condition 1
|
||
|
unsafe_interval - rest >= ten_kappa && // Negated condition 2
|
||
|
(rest + ten_kappa < small_distance || // buffer{-1} > w_high
|
||
|
small_distance - rest >= rest + ten_kappa - small_distance)) {
|
||
|
buffer[length - 1]--;
|
||
|
rest += ten_kappa;
|
||
|
}
|
||
|
|
||
|
// We have approached w+ as much as possible. We now test if approaching w-
|
||
|
// would require changing the buffer. If yes, then we have two possible
|
||
|
// representations close to w, but we cannot decide which one is closer.
|
||
|
if (rest < big_distance &&
|
||
|
unsafe_interval - rest >= ten_kappa &&
|
||
|
(rest + ten_kappa < big_distance ||
|
||
|
big_distance - rest > rest + ten_kappa - big_distance)) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Weeding test.
|
||
|
// The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
|
||
|
// Since too_low = too_high - unsafe_interval this is equivalent to
|
||
|
// [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
|
||
|
// Conceptually we have: rest ~= too_high - buffer
|
||
|
return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Rounds the buffer upwards if the result is closer to v by possibly adding
|
||
|
// 1 to the buffer. If the precision of the calculation is not sufficient to
|
||
|
// round correctly, return false.
|
||
|
// The rounding might shift the whole buffer in which case the kappa is
|
||
|
// adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
|
||
|
//
|
||
|
// If 2*rest > ten_kappa then the buffer needs to be round up.
|
||
|
// rest can have an error of +/- 1 unit. This function accounts for the
|
||
|
// imprecision and returns false, if the rounding direction cannot be
|
||
|
// unambiguously determined.
|
||
|
//
|
||
|
// Precondition: rest < ten_kappa.
|
||
|
static bool RoundWeedCounted(Vector<char> buffer,
|
||
|
int length,
|
||
|
uint64_t rest,
|
||
|
uint64_t ten_kappa,
|
||
|
uint64_t unit,
|
||
|
int* kappa) {
|
||
|
ASSERT(rest < ten_kappa);
|
||
|
// The following tests are done in a specific order to avoid overflows. They
|
||
|
// will work correctly with any uint64 values of rest < ten_kappa and unit.
|
||
|
//
|
||
|
// If the unit is too big, then we don't know which way to round. For example
|
||
|
// a unit of 50 means that the real number lies within rest +/- 50. If
|
||
|
// 10^kappa == 40 then there is no way to tell which way to round.
|
||
|
if (unit >= ten_kappa) return false;
|
||
|
// Even if unit is just half the size of 10^kappa we are already completely
|
||
|
// lost. (And after the previous test we know that the expression will not
|
||
|
// over/underflow.)
|
||
|
if (ten_kappa - unit <= unit) return false;
|
||
|
// If 2 * (rest + unit) <= 10^kappa we can safely round down.
|
||
|
if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
|
||
|
return true;
|
||
|
}
|
||
|
// If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
|
||
|
if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
|
||
|
// Increment the last digit recursively until we find a non '9' digit.
|
||
|
buffer[length - 1]++;
|
||
|
for (int i = length - 1; i > 0; --i) {
|
||
|
if (buffer[i] != '0' + 10) break;
|
||
|
buffer[i] = '0';
|
||
|
buffer[i - 1]++;
|
||
|
}
|
||
|
// If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
|
||
|
// exception of the first digit all digits are now '0'. Simply switch the
|
||
|
// first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
|
||
|
// the power (the kappa) is increased.
|
||
|
if (buffer[0] == '0' + 10) {
|
||
|
buffer[0] = '1';
|
||
|
(*kappa) += 1;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Returns the biggest power of ten that is less than or equal to the given
|
||
|
// number. We furthermore receive the maximum number of bits 'number' has.
|
||
|
//
|
||
|
// Returns power == 10^(exponent_plus_one-1) such that
|
||
|
// power <= number < power * 10.
|
||
|
// If number_bits == 0 then 0^(0-1) is returned.
|
||
|
// The number of bits must be <= 32.
|
||
|
// Precondition: number < (1 << (number_bits + 1)).
|
||
|
|
||
|
// Inspired by the method for finding an integer log base 10 from here:
|
||
|
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
|
||
|
static unsigned int const kSmallPowersOfTen[] =
|
||
|
{0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
|
||
|
1000000000};
|
||
|
|
||
|
static void BiggestPowerTen(uint32_t number,
|
||
|
int number_bits,
|
||
|
uint32_t* power,
|
||
|
int* exponent_plus_one) {
|
||
|
ASSERT(number < (1u << (number_bits + 1)));
|
||
|
// 1233/4096 is approximately 1/lg(10).
|
||
|
int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12);
|
||
|
// We increment to skip over the first entry in the kPowersOf10 table.
|
||
|
// Note: kPowersOf10[i] == 10^(i-1).
|
||
|
exponent_plus_one_guess++;
|
||
|
// We don't have any guarantees that 2^number_bits <= number.
|
||
|
if (number < kSmallPowersOfTen[exponent_plus_one_guess]) {
|
||
|
exponent_plus_one_guess--;
|
||
|
}
|
||
|
*power = kSmallPowersOfTen[exponent_plus_one_guess];
|
||
|
*exponent_plus_one = exponent_plus_one_guess;
|
||
|
}
|
||
|
|
||
|
// Generates the digits of input number w.
|
||
|
// w is a floating-point number (DiyFp), consisting of a significand and an
|
||
|
// exponent. Its exponent is bounded by kMinimalTargetExponent and
|
||
|
// kMaximalTargetExponent.
|
||
|
// Hence -60 <= w.e() <= -32.
|
||
|
//
|
||
|
// Returns false if it fails, in which case the generated digits in the buffer
|
||
|
// should not be used.
|
||
|
// Preconditions:
|
||
|
// * low, w and high are correct up to 1 ulp (unit in the last place). That
|
||
|
// is, their error must be less than a unit of their last digits.
|
||
|
// * low.e() == w.e() == high.e()
|
||
|
// * low < w < high, and taking into account their error: low~ <= high~
|
||
|
// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
|
||
|
// Postconditions: returns false if procedure fails.
|
||
|
// otherwise:
|
||
|
// * buffer is not null-terminated, but len contains the number of digits.
|
||
|
// * buffer contains the shortest possible decimal digit-sequence
|
||
|
// such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
|
||
|
// correct values of low and high (without their error).
|
||
|
// * if more than one decimal representation gives the minimal number of
|
||
|
// decimal digits then the one closest to W (where W is the correct value
|
||
|
// of w) is chosen.
|
||
|
// Remark: this procedure takes into account the imprecision of its input
|
||
|
// numbers. If the precision is not enough to guarantee all the postconditions
|
||
|
// then false is returned. This usually happens rarely (~0.5%).
|
||
|
//
|
||
|
// Say, for the sake of example, that
|
||
|
// w.e() == -48, and w.f() == 0x1234567890abcdef
|
||
|
// w's value can be computed by w.f() * 2^w.e()
|
||
|
// We can obtain w's integral digits by simply shifting w.f() by -w.e().
|
||
|
// -> w's integral part is 0x1234
|
||
|
// w's fractional part is therefore 0x567890abcdef.
|
||
|
// Printing w's integral part is easy (simply print 0x1234 in decimal).
|
||
|
// In order to print its fraction we repeatedly multiply the fraction by 10 and
|
||
|
// get each digit. Example the first digit after the point would be computed by
|
||
|
// (0x567890abcdef * 10) >> 48. -> 3
|
||
|
// The whole thing becomes slightly more complicated because we want to stop
|
||
|
// once we have enough digits. That is, once the digits inside the buffer
|
||
|
// represent 'w' we can stop. Everything inside the interval low - high
|
||
|
// represents w. However we have to pay attention to low, high and w's
|
||
|
// imprecision.
|
||
|
static bool DigitGen(DiyFp low,
|
||
|
DiyFp w,
|
||
|
DiyFp high,
|
||
|
Vector<char> buffer,
|
||
|
int* length,
|
||
|
int* kappa) {
|
||
|
ASSERT(low.e() == w.e() && w.e() == high.e());
|
||
|
ASSERT(low.f() + 1 <= high.f() - 1);
|
||
|
ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
|
||
|
// low, w and high are imprecise, but by less than one ulp (unit in the last
|
||
|
// place).
|
||
|
// If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
|
||
|
// the new numbers are outside of the interval we want the final
|
||
|
// representation to lie in.
|
||
|
// Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
|
||
|
// numbers that are certain to lie in the interval. We will use this fact
|
||
|
// later on.
|
||
|
// We will now start by generating the digits within the uncertain
|
||
|
// interval. Later we will weed out representations that lie outside the safe
|
||
|
// interval and thus _might_ lie outside the correct interval.
|
||
|
uint64_t unit = 1;
|
||
|
DiyFp too_low = DiyFp(low.f() - unit, low.e());
|
||
|
DiyFp too_high = DiyFp(high.f() + unit, high.e());
|
||
|
// too_low and too_high are guaranteed to lie outside the interval we want the
|
||
|
// generated number in.
|
||
|
DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
|
||
|
// We now cut the input number into two parts: the integral digits and the
|
||
|
// fractionals. We will not write any decimal separator though, but adapt
|
||
|
// kappa instead.
|
||
|
// Reminder: we are currently computing the digits (stored inside the buffer)
|
||
|
// such that: too_low < buffer * 10^kappa < too_high
|
||
|
// We use too_high for the digit_generation and stop as soon as possible.
|
||
|
// If we stop early we effectively round down.
|
||
|
DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
|
||
|
// Division by one is a shift.
|
||
|
uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
|
||
|
// Modulo by one is an and.
|
||
|
uint64_t fractionals = too_high.f() & (one.f() - 1);
|
||
|
uint32_t divisor;
|
||
|
int divisor_exponent_plus_one;
|
||
|
BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
|
||
|
&divisor, &divisor_exponent_plus_one);
|
||
|
*kappa = divisor_exponent_plus_one;
|
||
|
*length = 0;
|
||
|
// Loop invariant: buffer = too_high / 10^kappa (integer division)
|
||
|
// The invariant holds for the first iteration: kappa has been initialized
|
||
|
// with the divisor exponent + 1. And the divisor is the biggest power of ten
|
||
|
// that is smaller than integrals.
|
||
|
while (*kappa > 0) {
|
||
|
int digit = integrals / divisor;
|
||
|
ASSERT(digit <= 9);
|
||
|
buffer[*length] = static_cast<char>('0' + digit);
|
||
|
(*length)++;
|
||
|
integrals %= divisor;
|
||
|
(*kappa)--;
|
||
|
// Note that kappa now equals the exponent of the divisor and that the
|
||
|
// invariant thus holds again.
|
||
|
uint64_t rest =
|
||
|
(static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
|
||
|
// Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
|
||
|
// Reminder: unsafe_interval.e() == one.e()
|
||
|
if (rest < unsafe_interval.f()) {
|
||
|
// Rounding down (by not emitting the remaining digits) yields a number
|
||
|
// that lies within the unsafe interval.
|
||
|
return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
|
||
|
unsafe_interval.f(), rest,
|
||
|
static_cast<uint64_t>(divisor) << -one.e(), unit);
|
||
|
}
|
||
|
divisor /= 10;
|
||
|
}
|
||
|
|
||
|
// The integrals have been generated. We are at the point of the decimal
|
||
|
// separator. In the following loop we simply multiply the remaining digits by
|
||
|
// 10 and divide by one. We just need to pay attention to multiply associated
|
||
|
// data (like the interval or 'unit'), too.
|
||
|
// Note that the multiplication by 10 does not overflow, because w.e >= -60
|
||
|
// and thus one.e >= -60.
|
||
|
ASSERT(one.e() >= -60);
|
||
|
ASSERT(fractionals < one.f());
|
||
|
ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
|
||
|
for (;;) {
|
||
|
fractionals *= 10;
|
||
|
unit *= 10;
|
||
|
unsafe_interval.set_f(unsafe_interval.f() * 10);
|
||
|
// Integer division by one.
|
||
|
int digit = static_cast<int>(fractionals >> -one.e());
|
||
|
ASSERT(digit <= 9);
|
||
|
buffer[*length] = static_cast<char>('0' + digit);
|
||
|
(*length)++;
|
||
|
fractionals &= one.f() - 1; // Modulo by one.
|
||
|
(*kappa)--;
|
||
|
if (fractionals < unsafe_interval.f()) {
|
||
|
return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
|
||
|
unsafe_interval.f(), fractionals, one.f(), unit);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
// Generates (at most) requested_digits digits of input number w.
|
||
|
// w is a floating-point number (DiyFp), consisting of a significand and an
|
||
|
// exponent. Its exponent is bounded by kMinimalTargetExponent and
|
||
|
// kMaximalTargetExponent.
|
||
|
// Hence -60 <= w.e() <= -32.
|
||
|
//
|
||
|
// Returns false if it fails, in which case the generated digits in the buffer
|
||
|
// should not be used.
|
||
|
// Preconditions:
|
||
|
// * w is correct up to 1 ulp (unit in the last place). That
|
||
|
// is, its error must be strictly less than a unit of its last digit.
|
||
|
// * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
|
||
|
//
|
||
|
// Postconditions: returns false if procedure fails.
|
||
|
// otherwise:
|
||
|
// * buffer is not null-terminated, but length contains the number of
|
||
|
// digits.
|
||
|
// * the representation in buffer is the most precise representation of
|
||
|
// requested_digits digits.
|
||
|
// * buffer contains at most requested_digits digits of w. If there are less
|
||
|
// than requested_digits digits then some trailing '0's have been removed.
|
||
|
// * kappa is such that
|
||
|
// w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
|
||
|
//
|
||
|
// Remark: This procedure takes into account the imprecision of its input
|
||
|
// numbers. If the precision is not enough to guarantee all the postconditions
|
||
|
// then false is returned. This usually happens rarely, but the failure-rate
|
||
|
// increases with higher requested_digits.
|
||
|
static bool DigitGenCounted(DiyFp w,
|
||
|
int requested_digits,
|
||
|
Vector<char> buffer,
|
||
|
int* length,
|
||
|
int* kappa) {
|
||
|
ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
|
||
|
ASSERT(kMinimalTargetExponent >= -60);
|
||
|
ASSERT(kMaximalTargetExponent <= -32);
|
||
|
// w is assumed to have an error less than 1 unit. Whenever w is scaled we
|
||
|
// also scale its error.
|
||
|
uint64_t w_error = 1;
|
||
|
// We cut the input number into two parts: the integral digits and the
|
||
|
// fractional digits. We don't emit any decimal separator, but adapt kappa
|
||
|
// instead. Example: instead of writing "1.2" we put "12" into the buffer and
|
||
|
// increase kappa by 1.
|
||
|
DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
|
||
|
// Division by one is a shift.
|
||
|
uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
|
||
|
// Modulo by one is an and.
|
||
|
uint64_t fractionals = w.f() & (one.f() - 1);
|
||
|
uint32_t divisor;
|
||
|
int divisor_exponent_plus_one;
|
||
|
BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
|
||
|
&divisor, &divisor_exponent_plus_one);
|
||
|
*kappa = divisor_exponent_plus_one;
|
||
|
*length = 0;
|
||
|
|
||
|
// Loop invariant: buffer = w / 10^kappa (integer division)
|
||
|
// The invariant holds for the first iteration: kappa has been initialized
|
||
|
// with the divisor exponent + 1. And the divisor is the biggest power of ten
|
||
|
// that is smaller than 'integrals'.
|
||
|
while (*kappa > 0) {
|
||
|
int digit = integrals / divisor;
|
||
|
ASSERT(digit <= 9);
|
||
|
buffer[*length] = static_cast<char>('0' + digit);
|
||
|
(*length)++;
|
||
|
requested_digits--;
|
||
|
integrals %= divisor;
|
||
|
(*kappa)--;
|
||
|
// Note that kappa now equals the exponent of the divisor and that the
|
||
|
// invariant thus holds again.
|
||
|
if (requested_digits == 0) break;
|
||
|
divisor /= 10;
|
||
|
}
|
||
|
|
||
|
if (requested_digits == 0) {
|
||
|
uint64_t rest =
|
||
|
(static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
|
||
|
return RoundWeedCounted(buffer, *length, rest,
|
||
|
static_cast<uint64_t>(divisor) << -one.e(), w_error,
|
||
|
kappa);
|
||
|
}
|
||
|
|
||
|
// The integrals have been generated. We are at the point of the decimal
|
||
|
// separator. In the following loop we simply multiply the remaining digits by
|
||
|
// 10 and divide by one. We just need to pay attention to multiply associated
|
||
|
// data (the 'unit'), too.
|
||
|
// Note that the multiplication by 10 does not overflow, because w.e >= -60
|
||
|
// and thus one.e >= -60.
|
||
|
ASSERT(one.e() >= -60);
|
||
|
ASSERT(fractionals < one.f());
|
||
|
ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
|
||
|
while (requested_digits > 0 && fractionals > w_error) {
|
||
|
fractionals *= 10;
|
||
|
w_error *= 10;
|
||
|
// Integer division by one.
|
||
|
int digit = static_cast<int>(fractionals >> -one.e());
|
||
|
ASSERT(digit <= 9);
|
||
|
buffer[*length] = static_cast<char>('0' + digit);
|
||
|
(*length)++;
|
||
|
requested_digits--;
|
||
|
fractionals &= one.f() - 1; // Modulo by one.
|
||
|
(*kappa)--;
|
||
|
}
|
||
|
if (requested_digits != 0) return false;
|
||
|
return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
|
||
|
kappa);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Provides a decimal representation of v.
|
||
|
// Returns true if it succeeds, otherwise the result cannot be trusted.
|
||
|
// There will be *length digits inside the buffer (not null-terminated).
|
||
|
// If the function returns true then
|
||
|
// v == (double) (buffer * 10^decimal_exponent).
|
||
|
// The digits in the buffer are the shortest representation possible: no
|
||
|
// 0.09999999999999999 instead of 0.1. The shorter representation will even be
|
||
|
// chosen even if the longer one would be closer to v.
|
||
|
// The last digit will be closest to the actual v. That is, even if several
|
||
|
// digits might correctly yield 'v' when read again, the closest will be
|
||
|
// computed.
|
||
|
static bool Grisu3(double v,
|
||
|
FastDtoaMode mode,
|
||
|
Vector<char> buffer,
|
||
|
int* length,
|
||
|
int* decimal_exponent) {
|
||
|
DiyFp w = Double(v).AsNormalizedDiyFp();
|
||
|
// boundary_minus and boundary_plus are the boundaries between v and its
|
||
|
// closest floating-point neighbors. Any number strictly between
|
||
|
// boundary_minus and boundary_plus will round to v when convert to a double.
|
||
|
// Grisu3 will never output representations that lie exactly on a boundary.
|
||
|
DiyFp boundary_minus, boundary_plus;
|
||
|
if (mode == FAST_DTOA_SHORTEST) {
|
||
|
Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
|
||
|
} else {
|
||
|
ASSERT(mode == FAST_DTOA_SHORTEST_SINGLE);
|
||
|
float single_v = static_cast<float>(v);
|
||
|
Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
|
||
|
}
|
||
|
ASSERT(boundary_plus.e() == w.e());
|
||
|
DiyFp ten_mk; // Cached power of ten: 10^-k
|
||
|
int mk; // -k
|
||
|
int ten_mk_minimal_binary_exponent =
|
||
|
kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
||
|
int ten_mk_maximal_binary_exponent =
|
||
|
kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
||
|
PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
|
||
|
ten_mk_minimal_binary_exponent,
|
||
|
ten_mk_maximal_binary_exponent,
|
||
|
&ten_mk, &mk);
|
||
|
ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
|
||
|
DiyFp::kSignificandSize) &&
|
||
|
(kMaximalTargetExponent >= w.e() + ten_mk.e() +
|
||
|
DiyFp::kSignificandSize));
|
||
|
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
|
||
|
// 64 bit significand and ten_mk is thus only precise up to 64 bits.
|
||
|
|
||
|
// The DiyFp::Times procedure rounds its result, and ten_mk is approximated
|
||
|
// too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
|
||
|
// off by a small amount.
|
||
|
// In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
|
||
|
// In other words: let f = scaled_w.f() and e = scaled_w.e(), then
|
||
|
// (f-1) * 2^e < w*10^k < (f+1) * 2^e
|
||
|
DiyFp scaled_w = DiyFp::Times(w, ten_mk);
|
||
|
ASSERT(scaled_w.e() ==
|
||
|
boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
|
||
|
// In theory it would be possible to avoid some recomputations by computing
|
||
|
// the difference between w and boundary_minus/plus (a power of 2) and to
|
||
|
// compute scaled_boundary_minus/plus by subtracting/adding from
|
||
|
// scaled_w. However the code becomes much less readable and the speed
|
||
|
// enhancements are not terriffic.
|
||
|
DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
|
||
|
DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
|
||
|
|
||
|
// DigitGen will generate the digits of scaled_w. Therefore we have
|
||
|
// v == (double) (scaled_w * 10^-mk).
|
||
|
// Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
|
||
|
// integer than it will be updated. For instance if scaled_w == 1.23 then
|
||
|
// the buffer will be filled with "123" und the decimal_exponent will be
|
||
|
// decreased by 2.
|
||
|
int kappa;
|
||
|
bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
|
||
|
buffer, length, &kappa);
|
||
|
*decimal_exponent = -mk + kappa;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
// The "counted" version of grisu3 (see above) only generates requested_digits
|
||
|
// number of digits. This version does not generate the shortest representation,
|
||
|
// and with enough requested digits 0.1 will at some point print as 0.9999999...
|
||
|
// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
|
||
|
// therefore the rounding strategy for halfway cases is irrelevant.
|
||
|
static bool Grisu3Counted(double v,
|
||
|
int requested_digits,
|
||
|
Vector<char> buffer,
|
||
|
int* length,
|
||
|
int* decimal_exponent) {
|
||
|
DiyFp w = Double(v).AsNormalizedDiyFp();
|
||
|
DiyFp ten_mk; // Cached power of ten: 10^-k
|
||
|
int mk; // -k
|
||
|
int ten_mk_minimal_binary_exponent =
|
||
|
kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
||
|
int ten_mk_maximal_binary_exponent =
|
||
|
kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
|
||
|
PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
|
||
|
ten_mk_minimal_binary_exponent,
|
||
|
ten_mk_maximal_binary_exponent,
|
||
|
&ten_mk, &mk);
|
||
|
ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
|
||
|
DiyFp::kSignificandSize) &&
|
||
|
(kMaximalTargetExponent >= w.e() + ten_mk.e() +
|
||
|
DiyFp::kSignificandSize));
|
||
|
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
|
||
|
// 64 bit significand and ten_mk is thus only precise up to 64 bits.
|
||
|
|
||
|
// The DiyFp::Times procedure rounds its result, and ten_mk is approximated
|
||
|
// too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
|
||
|
// off by a small amount.
|
||
|
// In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
|
||
|
// In other words: let f = scaled_w.f() and e = scaled_w.e(), then
|
||
|
// (f-1) * 2^e < w*10^k < (f+1) * 2^e
|
||
|
DiyFp scaled_w = DiyFp::Times(w, ten_mk);
|
||
|
|
||
|
// We now have (double) (scaled_w * 10^-mk).
|
||
|
// DigitGen will generate the first requested_digits digits of scaled_w and
|
||
|
// return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
|
||
|
// will not always be exactly the same since DigitGenCounted only produces a
|
||
|
// limited number of digits.)
|
||
|
int kappa;
|
||
|
bool result = DigitGenCounted(scaled_w, requested_digits,
|
||
|
buffer, length, &kappa);
|
||
|
*decimal_exponent = -mk + kappa;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
bool FastDtoa(double v,
|
||
|
FastDtoaMode mode,
|
||
|
int requested_digits,
|
||
|
Vector<char> buffer,
|
||
|
int* length,
|
||
|
int* decimal_point) {
|
||
|
ASSERT(v > 0);
|
||
|
ASSERT(!Double(v).IsSpecial());
|
||
|
|
||
|
bool result = false;
|
||
|
int decimal_exponent = 0;
|
||
|
switch (mode) {
|
||
|
case FAST_DTOA_SHORTEST:
|
||
|
case FAST_DTOA_SHORTEST_SINGLE:
|
||
|
result = Grisu3(v, mode, buffer, length, &decimal_exponent);
|
||
|
break;
|
||
|
case FAST_DTOA_PRECISION:
|
||
|
result = Grisu3Counted(v, requested_digits,
|
||
|
buffer, length, &decimal_exponent);
|
||
|
break;
|
||
|
default:
|
||
|
UNREACHABLE();
|
||
|
}
|
||
|
if (result) {
|
||
|
*decimal_point = *length + decimal_exponent;
|
||
|
buffer[*length] = '\0';
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
} // namespace double_conversion
|