vn-verdnaturachat/ios/Pods/Folly/folly/AtomicHashArray.h

449 lines
14 KiB
C
Raw Normal View History

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* AtomicHashArray is the building block for AtomicHashMap. It provides the
* core lock-free functionality, but is limited by the fact that it cannot
* grow past its initialization size and is a little more awkward (no public
* constructor, for example). If you're confident that you won't run out of
* space, don't mind the awkardness, and really need bare-metal performance,
* feel free to use AHA directly.
*
* Check out AtomicHashMap.h for more thorough documentation on perf and
* general pros and cons relative to other hash maps.
*
* @author Spencer Ahrens <sahrens@fb.com>
* @author Jordan DeLong <delong.j@fb.com>
*/
#pragma once
#define FOLLY_ATOMICHASHARRAY_H_
#include <atomic>
#include <folly/ThreadCachedInt.h>
#include <folly/Utility.h>
#include <folly/hash/Hash.h>
namespace folly {
struct AtomicHashArrayLinearProbeFcn {
inline size_t operator()(size_t idx, size_t /* numProbes */, size_t capacity)
const {
idx += 1; // linear probing
// Avoid modulus because it's slow
return LIKELY(idx < capacity) ? idx : (idx - capacity);
}
};
struct AtomicHashArrayQuadraticProbeFcn {
inline size_t operator()(size_t idx, size_t numProbes, size_t capacity)
const {
idx += numProbes; // quadratic probing
// Avoid modulus because it's slow
return LIKELY(idx < capacity) ? idx : (idx - capacity);
}
};
// Enables specializing checkLegalKey without specializing its class.
namespace detail {
template <typename NotKeyT, typename KeyT>
inline void checkLegalKeyIfKeyTImpl(
NotKeyT /* ignored */,
KeyT /* emptyKey */,
KeyT /* lockedKey */,
KeyT /* erasedKey */) {}
template <typename KeyT>
inline void checkLegalKeyIfKeyTImpl(
KeyT key_in,
KeyT emptyKey,
KeyT lockedKey,
KeyT erasedKey) {
DCHECK_NE(key_in, emptyKey);
DCHECK_NE(key_in, lockedKey);
DCHECK_NE(key_in, erasedKey);
}
} // namespace detail
template <
class KeyT,
class ValueT,
class HashFcn = std::hash<KeyT>,
class EqualFcn = std::equal_to<KeyT>,
class Allocator = std::allocator<char>,
class ProbeFcn = AtomicHashArrayLinearProbeFcn,
class KeyConvertFcn = Identity>
class AtomicHashMap;
template <
class KeyT,
class ValueT,
class HashFcn = std::hash<KeyT>,
class EqualFcn = std::equal_to<KeyT>,
class Allocator = std::allocator<char>,
class ProbeFcn = AtomicHashArrayLinearProbeFcn,
class KeyConvertFcn = Identity>
class AtomicHashArray {
static_assert(
(std::is_convertible<KeyT, int32_t>::value ||
std::is_convertible<KeyT, int64_t>::value ||
std::is_convertible<KeyT, const void*>::value),
"You are trying to use AtomicHashArray with disallowed key "
"types. You must use atomically compare-and-swappable integer "
"keys, or a different container class.");
public:
typedef KeyT key_type;
typedef ValueT mapped_type;
typedef HashFcn hasher;
typedef EqualFcn key_equal;
typedef KeyConvertFcn key_convert;
typedef std::pair<const KeyT, ValueT> value_type;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef value_type* pointer;
typedef const value_type* const_pointer;
const size_t capacity_;
const size_t maxEntries_;
const KeyT kEmptyKey_;
const KeyT kLockedKey_;
const KeyT kErasedKey_;
template <class ContT, class IterVal>
struct aha_iterator;
typedef aha_iterator<const AtomicHashArray, const value_type> const_iterator;
typedef aha_iterator<AtomicHashArray, value_type> iterator;
// You really shouldn't need this if you use the SmartPtr provided by create,
// but if you really want to do something crazy like stick the released
// pointer into a DescriminatedPtr or something, you'll need this to clean up
// after yourself.
static void destroy(AtomicHashArray*);
private:
const size_t kAnchorMask_;
struct Deleter {
void operator()(AtomicHashArray* ptr) {
AtomicHashArray::destroy(ptr);
}
};
public:
typedef std::unique_ptr<AtomicHashArray, Deleter> SmartPtr;
/*
* create --
*
* Creates AtomicHashArray objects. Use instead of constructor/destructor.
*
* We do things this way in order to avoid the perf penalty of a second
* pointer indirection when composing these into AtomicHashMap, which needs
* to store an array of pointers so that it can perform atomic operations on
* them when growing.
*
* Instead of a mess of arguments, we take a max size and a Config struct to
* simulate named ctor parameters. The Config struct has sensible defaults
* for everything, but is overloaded - if you specify a positive capacity,
* that will be used directly instead of computing it based on
* maxLoadFactor.
*
* Create returns an AHA::SmartPtr which is a unique_ptr with a custom
* deleter to make sure everything is cleaned up properly.
*/
struct Config {
KeyT emptyKey;
KeyT lockedKey;
KeyT erasedKey;
double maxLoadFactor;
double growthFactor;
uint32_t entryCountThreadCacheSize;
size_t capacity; // if positive, overrides maxLoadFactor
// Cannot have constexpr ctor because some compilers rightly complain.
Config()
: emptyKey((KeyT)-1),
lockedKey((KeyT)-2),
erasedKey((KeyT)-3),
maxLoadFactor(0.8),
growthFactor(-1),
entryCountThreadCacheSize(1000),
capacity(0) {}
};
// Cannot have pre-instantiated const Config instance because of SIOF.
static SmartPtr create(size_t maxSize, const Config& c = Config());
/*
* find --
*
*
* Returns the iterator to the element if found, otherwise end().
*
* As an optional feature, the type of the key to look up (LookupKeyT) is
* allowed to be different from the type of keys actually stored (KeyT).
*
* This enables use cases where materializing the key is costly and usually
* redudant, e.g., canonicalizing/interning a set of strings and being able
* to look up by StringPiece. To use this feature, LookupHashFcn must take
* a LookupKeyT, and LookupEqualFcn must take KeyT and LookupKeyT as first
* and second parameter, respectively.
*
* See folly/test/ArrayHashArrayTest.cpp for sample usage.
*/
template <
typename LookupKeyT = key_type,
typename LookupHashFcn = hasher,
typename LookupEqualFcn = key_equal>
iterator find(LookupKeyT k) {
return iterator(
this, findInternal<LookupKeyT, LookupHashFcn, LookupEqualFcn>(k).idx);
}
template <
typename LookupKeyT = key_type,
typename LookupHashFcn = hasher,
typename LookupEqualFcn = key_equal>
const_iterator find(LookupKeyT k) const {
return const_cast<AtomicHashArray*>(this)
->find<LookupKeyT, LookupHashFcn, LookupEqualFcn>(k);
}
/*
* insert --
*
* Returns a pair with iterator to the element at r.first and bool success.
* Retrieve the index with ret.first.getIndex().
*
* Fails on key collision (does not overwrite) or if map becomes
* full, at which point no element is inserted, iterator is set to end(),
* and success is set false. On collisions, success is set false, but the
* iterator is set to the existing entry.
*/
std::pair<iterator, bool> insert(const value_type& r) {
return emplace(r.first, r.second);
}
std::pair<iterator, bool> insert(value_type&& r) {
return emplace(r.first, std::move(r.second));
}
/*
* emplace --
*
* Same contract as insert(), but performs in-place construction
* of the value type using the specified arguments.
*
* Also, like find(), this method optionally allows 'key_in' to have a type
* different from that stored in the table; see find(). If and only if no
* equal key is already present, this method converts 'key_in' to a key of
* type KeyT using the provided LookupKeyToKeyFcn.
*/
template <
typename LookupKeyT = key_type,
typename LookupHashFcn = hasher,
typename LookupEqualFcn = key_equal,
typename LookupKeyToKeyFcn = key_convert,
typename... ArgTs>
std::pair<iterator, bool> emplace(LookupKeyT key_in, ArgTs&&... vCtorArgs) {
SimpleRetT ret = insertInternal<
LookupKeyT,
LookupHashFcn,
LookupEqualFcn,
LookupKeyToKeyFcn>(key_in, std::forward<ArgTs>(vCtorArgs)...);
return std::make_pair(iterator(this, ret.idx), ret.success);
}
// returns the number of elements erased - should never exceed 1
size_t erase(KeyT k);
// clears all keys and values in the map and resets all counters. Not thread
// safe.
void clear();
// Exact number of elements in the map - note that readFull() acquires a
// mutex. See folly/ThreadCachedInt.h for more details.
size_t size() const {
return numEntries_.readFull() - numErases_.load(std::memory_order_relaxed);
}
bool empty() const {
return size() == 0;
}
iterator begin() {
iterator it(this, 0);
it.advancePastEmpty();
return it;
}
const_iterator begin() const {
const_iterator it(this, 0);
it.advancePastEmpty();
return it;
}
iterator end() {
return iterator(this, capacity_);
}
const_iterator end() const {
return const_iterator(this, capacity_);
}
// See AtomicHashMap::findAt - access elements directly
// WARNING: The following 2 functions will fail silently for hashtable
// with capacity > 2^32
iterator findAt(uint32_t idx) {
DCHECK_LT(idx, capacity_);
return iterator(this, idx);
}
const_iterator findAt(uint32_t idx) const {
return const_cast<AtomicHashArray*>(this)->findAt(idx);
}
iterator makeIter(size_t idx) {
return iterator(this, idx);
}
const_iterator makeIter(size_t idx) const {
return const_iterator(this, idx);
}
// The max load factor allowed for this map
double maxLoadFactor() const {
return ((double)maxEntries_) / capacity_;
}
void setEntryCountThreadCacheSize(uint32_t newSize) {
numEntries_.setCacheSize(newSize);
numPendingEntries_.setCacheSize(newSize);
}
uint32_t getEntryCountThreadCacheSize() const {
return numEntries_.getCacheSize();
}
/* Private data and helper functions... */
private:
friend class AtomicHashMap<
KeyT,
ValueT,
HashFcn,
EqualFcn,
Allocator,
ProbeFcn>;
struct SimpleRetT {
size_t idx;
bool success;
SimpleRetT(size_t i, bool s) : idx(i), success(s) {}
SimpleRetT() = default;
};
template <
typename LookupKeyT = key_type,
typename LookupHashFcn = hasher,
typename LookupEqualFcn = key_equal,
typename LookupKeyToKeyFcn = Identity,
typename... ArgTs>
SimpleRetT insertInternal(LookupKeyT key, ArgTs&&... vCtorArgs);
template <
typename LookupKeyT = key_type,
typename LookupHashFcn = hasher,
typename LookupEqualFcn = key_equal>
SimpleRetT findInternal(const LookupKeyT key);
template <typename MaybeKeyT>
void checkLegalKeyIfKey(MaybeKeyT key) {
detail::checkLegalKeyIfKeyTImpl(key, kEmptyKey_, kLockedKey_, kErasedKey_);
}
static std::atomic<KeyT>* cellKeyPtr(const value_type& r) {
// We need some illegal casting here in order to actually store
// our value_type as a std::pair<const,>. But a little bit of
// undefined behavior never hurt anyone ...
static_assert(
sizeof(std::atomic<KeyT>) == sizeof(KeyT),
"std::atomic is implemented in an unexpected way for AHM");
return const_cast<std::atomic<KeyT>*>(
reinterpret_cast<std::atomic<KeyT> const*>(&r.first));
}
static KeyT relaxedLoadKey(const value_type& r) {
return cellKeyPtr(r)->load(std::memory_order_relaxed);
}
static KeyT acquireLoadKey(const value_type& r) {
return cellKeyPtr(r)->load(std::memory_order_acquire);
}
// Fun with thread local storage - atomic increment is expensive
// (relatively), so we accumulate in the thread cache and periodically
// flush to the actual variable, and walk through the unflushed counts when
// reading the value, so be careful of calling size() too frequently. This
// increases insertion throughput several times over while keeping the count
// accurate.
ThreadCachedInt<uint64_t> numEntries_; // Successful key inserts
ThreadCachedInt<uint64_t> numPendingEntries_; // Used by insertInternal
std::atomic<int64_t> isFull_; // Used by insertInternal
std::atomic<int64_t> numErases_; // Successful key erases
value_type cells_[0]; // This must be the last field of this class
// Force constructor/destructor private since create/destroy should be
// used externally instead
AtomicHashArray(
size_t capacity,
KeyT emptyKey,
KeyT lockedKey,
KeyT erasedKey,
double maxLoadFactor,
uint32_t cacheSize);
AtomicHashArray(const AtomicHashArray&) = delete;
AtomicHashArray& operator=(const AtomicHashArray&) = delete;
~AtomicHashArray() = default;
inline void unlockCell(value_type* const cell, KeyT newKey) {
cellKeyPtr(*cell)->store(newKey, std::memory_order_release);
}
inline bool tryLockCell(value_type* const cell) {
KeyT expect = kEmptyKey_;
return cellKeyPtr(*cell)->compare_exchange_strong(
expect, kLockedKey_, std::memory_order_acq_rel);
}
template <class LookupKeyT = key_type, class LookupHashFcn = hasher>
inline size_t keyToAnchorIdx(const LookupKeyT k) const {
const size_t hashVal = LookupHashFcn()(k);
const size_t probe = hashVal & kAnchorMask_;
return LIKELY(probe < capacity_) ? probe : hashVal % capacity_;
}
}; // AtomicHashArray
} // namespace folly
#include <folly/AtomicHashArray-inl.h>