vn-verdnaturachat/ios/Pods/boost-for-react-native/boost/numeric/odeint/integrate/integrate.hpp

134 lines
5.0 KiB
C++
Raw Normal View History

/*
[auto_generated]
boost/numeric/odeint/integrate/integrate.hpp
[begin_description]
Convenience methods which choose the stepper for the current ODE.
[end_description]
Copyright 2011-2013 Karsten Ahnert
Copyright 2011-2012 Mario Mulansky
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_ODEINT_INTEGRATE_INTEGRATE_HPP_INCLUDED
#define BOOST_NUMERIC_ODEINT_INTEGRATE_INTEGRATE_HPP_INCLUDED
#include <boost/utility/enable_if.hpp>
#include <boost/numeric/odeint/stepper/runge_kutta_dopri5.hpp>
#include <boost/numeric/odeint/stepper/controlled_runge_kutta.hpp>
#include <boost/numeric/odeint/integrate/null_observer.hpp>
#include <boost/numeric/odeint/integrate/integrate_adaptive.hpp>
// for has_value_type trait
#include <boost/numeric/odeint/algebra/detail/extract_value_type.hpp>
namespace boost {
namespace numeric {
namespace odeint {
/*
* ToDo :
*
* determine type of dxdt for units
*
*/
template< class System , class State , class Time , class Observer >
typename boost::enable_if< typename has_value_type<State>::type , size_t >::type
integrate( System system , State &start_state , Time start_time , Time end_time , Time dt , Observer observer )
{
typedef controlled_runge_kutta< runge_kutta_dopri5< State , typename State::value_type , State , Time > > stepper_type;
return integrate_adaptive( stepper_type() , system , start_state , start_time , end_time , dt , observer );
}
template< class Value , class System , class State , class Time , class Observer >
size_t
integrate( System system , State &start_state , Time start_time , Time end_time , Time dt , Observer observer )
{
typedef controlled_runge_kutta< runge_kutta_dopri5< State , Value , State , Time > > stepper_type;
return integrate_adaptive( stepper_type() , system , start_state , start_time , end_time , dt , observer );
}
/*
* the two overloads are needed in order to solve the forwarding problem
*/
template< class System , class State , class Time >
size_t integrate( System system , State &start_state , Time start_time , Time end_time , Time dt )
{
return integrate( system , start_state , start_time , end_time , dt , null_observer() );
}
template< class Value , class System , class State , class Time >
size_t integrate( System system , State &start_state , Time start_time , Time end_time , Time dt )
{
return integrate< Value >( system , start_state , start_time , end_time , dt , null_observer() );
}
/**
* \fn integrate( System system , State &start_state , Time start_time , Time end_time , Time dt , Observer observer )
* \brief Integrates the ODE.
*
* Integrates the ODE given by system from start_time to end_time starting
* with start_state as initial condition and dt as initial time step.
* This function uses a dense output dopri5 stepper and performs an adaptive
* integration with step size control, thus dt changes during the integration.
* This method uses standard error bounds of 1E-6.
* After each step, the observer is called.
*
* \attention A second version of this function template exists which explicitly
* expects the value type as template parameter, i.e. integrate< double >( sys , x , t0 , t1 , dt , obs );
*
* \param system The system function to solve, hence the r.h.s. of the
* ordinary differential equation.
* \param start_state The initial state.
* \param start_time Start time of the integration.
* \param end_time End time of the integration.
* \param dt Initial step size, will be adjusted during the integration.
* \param observer Observer that will be called after each time step.
* \return The number of steps performed.
*/
/**
* \fn integrate( System system , State &start_state , Time start_time , Time end_time , Time dt )
* \brief Integrates the ODE without observer calls.
*
* Integrates the ODE given by system from start_time to end_time starting
* with start_state as initial condition and dt as initial time step.
* This function uses a dense output dopri5 stepper and performs an adaptive
* integration with step size control, thus dt changes during the integration.
* This method uses standard error bounds of 1E-6.
* No observer is called.
*
* \attention A second version of this function template exists which explicitly
* expects the value type as template parameter, i.e. integrate< double >( sys , x , t0 , t1 , dt );
*
* \param system The system function to solve, hence the r.h.s. of the
* ordinary differential equation.
* \param start_state The initial state.
* \param start_time Start time of the integration.
* \param end_time End time of the integration.
* \param dt Initial step size, will be adjusted during the integration.
* \return The number of steps performed.
*/
} // namespace odeint
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_ODEINT_INTEGRATE_INTEGRATE_HPP_INCLUDED