vn-verdnaturachat/ios/Pods/boost-for-react-native/boost/graph/distributed/fruchterman_reingold.hpp

385 lines
13 KiB
C++
Raw Normal View History

// Copyright (C) 2005-2006 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
#ifndef BOOST_GRAPH_DISTRIBUTED_FRUCHTERMAN_REINGOLD_HPP
#define BOOST_GRAPH_DISTRIBUTED_FRUCHTERMAN_REINGOLD_HPP
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
#include <boost/graph/fruchterman_reingold.hpp>
namespace boost { namespace graph { namespace distributed {
class simple_tiling
{
public:
simple_tiling(int columns, int rows, bool flip = true)
: columns(columns), rows(rows), flip(flip)
{
}
// Convert from a position (x, y) in the tiled display into a
// processor ID number
int operator()(int x, int y) const
{
return flip? (rows - y - 1) * columns + x : y * columns + x;
}
// Convert from a process ID to a position (x, y) in the tiled
// display
std::pair<int, int> operator()(int id)
{
int my_col = id % columns;
int my_row = flip? rows - (id / columns) - 1 : id / columns;
return std::make_pair(my_col, my_row);
}
int columns, rows;
private:
bool flip;
};
// Force pairs function object that does nothing
struct no_force_pairs
{
template<typename Graph, typename ApplyForce>
void operator()(const Graph&, const ApplyForce&)
{
}
};
// Computes force pairs in the distributed case.
template<typename PositionMap, typename DisplacementMap, typename LocalForces,
typename NonLocalForces = no_force_pairs>
class distributed_force_pairs_proxy
{
public:
distributed_force_pairs_proxy(const PositionMap& position,
const DisplacementMap& displacement,
const LocalForces& local_forces,
const NonLocalForces& nonlocal_forces = NonLocalForces())
: position(position), displacement(displacement),
local_forces(local_forces), nonlocal_forces(nonlocal_forces)
{
}
template<typename Graph, typename ApplyForce>
void operator()(const Graph& g, ApplyForce apply_force)
{
// Flush remote displacements
displacement.flush();
// Receive updated positions for all of our neighbors
synchronize(position);
// Reset remote displacements
displacement.reset();
// Compute local repulsive forces
local_forces(g, apply_force);
// Compute neighbor repulsive forces
nonlocal_forces(g, apply_force);
}
protected:
PositionMap position;
DisplacementMap displacement;
LocalForces local_forces;
NonLocalForces nonlocal_forces;
};
template<typename PositionMap, typename DisplacementMap, typename LocalForces>
inline
distributed_force_pairs_proxy<PositionMap, DisplacementMap, LocalForces>
make_distributed_force_pairs(const PositionMap& position,
const DisplacementMap& displacement,
const LocalForces& local_forces)
{
typedef
distributed_force_pairs_proxy<PositionMap, DisplacementMap, LocalForces>
result_type;
return result_type(position, displacement, local_forces);
}
template<typename PositionMap, typename DisplacementMap, typename LocalForces,
typename NonLocalForces>
inline
distributed_force_pairs_proxy<PositionMap, DisplacementMap, LocalForces,
NonLocalForces>
make_distributed_force_pairs(const PositionMap& position,
const DisplacementMap& displacement,
const LocalForces& local_forces,
const NonLocalForces& nonlocal_forces)
{
typedef
distributed_force_pairs_proxy<PositionMap, DisplacementMap, LocalForces,
NonLocalForces>
result_type;
return result_type(position, displacement, local_forces, nonlocal_forces);
}
// Compute nonlocal force pairs based on the shared borders with
// adjacent tiles.
template<typename PositionMap>
class neighboring_tiles_force_pairs
{
public:
typedef typename property_traits<PositionMap>::value_type Point;
typedef typename point_traits<Point>::component_type Dim;
enum bucket_position { left, top, right, bottom, end_position };
neighboring_tiles_force_pairs(PositionMap position, Point origin,
Point extent, simple_tiling tiling)
: position(position), origin(origin), extent(extent), tiling(tiling)
{
}
template<typename Graph, typename ApplyForce>
void operator()(const Graph& g, ApplyForce apply_force)
{
// TBD: Do this some smarter way
if (tiling.columns == 1 && tiling.rows == 1)
return;
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
#ifndef BOOST_NO_STDC_NAMESPACE
using std::sqrt;
#endif // BOOST_NO_STDC_NAMESPACE
// TBD: num_vertices(g) should be the global number of vertices?
Dim two_k = Dim(2) * sqrt(extent[0] * extent[1] / num_vertices(g));
std::vector<vertex_descriptor> my_vertices[4];
std::vector<vertex_descriptor> neighbor_vertices[4];
// Compute cutoff positions
Dim cutoffs[4];
cutoffs[left] = origin[0] + two_k;
cutoffs[top] = origin[1] + two_k;
cutoffs[right] = origin[0] + extent[0] - two_k;
cutoffs[bottom] = origin[1] + extent[1] - two_k;
// Compute neighbors
typename PositionMap::process_group_type pg = position.process_group();
std::pair<int, int> my_tile = tiling(process_id(pg));
int neighbors[4] = { -1, -1, -1, -1 } ;
if (my_tile.first > 0)
neighbors[left] = tiling(my_tile.first - 1, my_tile.second);
if (my_tile.second > 0)
neighbors[top] = tiling(my_tile.first, my_tile.second - 1);
if (my_tile.first < tiling.columns - 1)
neighbors[right] = tiling(my_tile.first + 1, my_tile.second);
if (my_tile.second < tiling.rows - 1)
neighbors[bottom] = tiling(my_tile.first, my_tile.second + 1);
// Sort vertices along the edges into buckets
BGL_FORALL_VERTICES_T(v, g, Graph) {
if (position[v][0] <= cutoffs[left]) my_vertices[left].push_back(v);
if (position[v][1] <= cutoffs[top]) my_vertices[top].push_back(v);
if (position[v][0] >= cutoffs[right]) my_vertices[right].push_back(v);
if (position[v][1] >= cutoffs[bottom]) my_vertices[bottom].push_back(v);
}
// Send vertices to neighbors, and gather our neighbors' vertices
bucket_position pos;
for (pos = left; pos < end_position; pos = bucket_position(pos + 1)) {
if (neighbors[pos] != -1) {
send(pg, neighbors[pos], 0, my_vertices[pos].size());
if (!my_vertices[pos].empty())
send(pg, neighbors[pos], 1,
&my_vertices[pos].front(), my_vertices[pos].size());
}
}
// Pass messages around
synchronize(pg);
// Receive neighboring vertices
for (pos = left; pos < end_position; pos = bucket_position(pos + 1)) {
if (neighbors[pos] != -1) {
std::size_t incoming_vertices;
receive(pg, neighbors[pos], 0, incoming_vertices);
if (incoming_vertices) {
neighbor_vertices[pos].resize(incoming_vertices);
receive(pg, neighbors[pos], 1, &neighbor_vertices[pos].front(),
incoming_vertices);
}
}
}
// For each neighboring vertex, we need to get its current position
for (pos = left; pos < end_position; pos = bucket_position(pos + 1))
for (typename std::vector<vertex_descriptor>::iterator i =
neighbor_vertices[pos].begin();
i != neighbor_vertices[pos].end();
++i)
request(position, *i);
synchronize(position);
// Apply forces in adjacent bins. This is O(n^2) in the worst
// case. Oh well.
for (pos = left; pos < end_position; pos = bucket_position(pos + 1)) {
for (typename std::vector<vertex_descriptor>::iterator i =
my_vertices[pos].begin();
i != my_vertices[pos].end();
++i)
for (typename std::vector<vertex_descriptor>::iterator j =
neighbor_vertices[pos].begin();
j != neighbor_vertices[pos].end();
++j)
apply_force(*i, *j);
}
}
protected:
PositionMap position;
Point origin;
Point extent;
simple_tiling tiling;
};
template<typename PositionMap>
inline neighboring_tiles_force_pairs<PositionMap>
make_neighboring_tiles_force_pairs
(PositionMap position,
typename property_traits<PositionMap>::value_type origin,
typename property_traits<PositionMap>::value_type extent,
simple_tiling tiling)
{
return neighboring_tiles_force_pairs<PositionMap>(position, origin, extent,
tiling);
}
template<typename DisplacementMap, typename Cooling>
class distributed_cooling_proxy
{
public:
typedef typename Cooling::result_type result_type;
distributed_cooling_proxy(const DisplacementMap& displacement,
const Cooling& cooling)
: displacement(displacement), cooling(cooling)
{
}
result_type operator()()
{
// Accumulate displacements computed on each processor
synchronize(displacement.data->process_group);
// Allow the underlying cooling to occur
return cooling();
}
protected:
DisplacementMap displacement;
Cooling cooling;
};
template<typename DisplacementMap, typename Cooling>
inline distributed_cooling_proxy<DisplacementMap, Cooling>
make_distributed_cooling(const DisplacementMap& displacement,
const Cooling& cooling)
{
typedef distributed_cooling_proxy<DisplacementMap, Cooling> result_type;
return result_type(displacement, cooling);
}
template<typename Point>
struct point_accumulating_reducer {
BOOST_STATIC_CONSTANT(bool, non_default_resolver = true);
template<typename K>
Point operator()(const K&) const { return Point(); }
template<typename K>
Point operator()(const K&, const Point& p1, const Point& p2) const
{ return Point(p1[0] + p2[0], p1[1] + p2[1]); }
};
template<typename Graph, typename PositionMap,
typename AttractiveForce, typename RepulsiveForce,
typename ForcePairs, typename Cooling, typename DisplacementMap>
void
fruchterman_reingold_force_directed_layout
(const Graph& g,
PositionMap position,
typename property_traits<PositionMap>::value_type const& origin,
typename property_traits<PositionMap>::value_type const& extent,
AttractiveForce attractive_force,
RepulsiveForce repulsive_force,
ForcePairs force_pairs,
Cooling cool,
DisplacementMap displacement)
{
typedef typename property_traits<PositionMap>::value_type Point;
// Reduction in the displacement map involves summing the forces
displacement.set_reduce(point_accumulating_reducer<Point>());
// We need to track the positions of all of our neighbors
BGL_FORALL_VERTICES_T(u, g, Graph)
BGL_FORALL_ADJ_T(u, v, g, Graph)
request(position, v);
// Invoke the "sequential" Fruchterman-Reingold implementation
boost::fruchterman_reingold_force_directed_layout
(g, position, origin, extent,
attractive_force, repulsive_force,
make_distributed_force_pairs(position, displacement, force_pairs),
make_distributed_cooling(displacement, cool),
displacement);
}
template<typename Graph, typename PositionMap,
typename AttractiveForce, typename RepulsiveForce,
typename ForcePairs, typename Cooling, typename DisplacementMap>
void
fruchterman_reingold_force_directed_layout
(const Graph& g,
PositionMap position,
typename property_traits<PositionMap>::value_type const& origin,
typename property_traits<PositionMap>::value_type const& extent,
AttractiveForce attractive_force,
RepulsiveForce repulsive_force,
ForcePairs force_pairs,
Cooling cool,
DisplacementMap displacement,
simple_tiling tiling)
{
typedef typename property_traits<PositionMap>::value_type Point;
// Reduction in the displacement map involves summing the forces
displacement.set_reduce(point_accumulating_reducer<Point>());
// We need to track the positions of all of our neighbors
BGL_FORALL_VERTICES_T(u, g, Graph)
BGL_FORALL_ADJ_T(u, v, g, Graph)
request(position, v);
// Invoke the "sequential" Fruchterman-Reingold implementation
boost::fruchterman_reingold_force_directed_layout
(g, position, origin, extent,
attractive_force, repulsive_force,
make_distributed_force_pairs
(position, displacement, force_pairs,
make_neighboring_tiles_force_pairs(position, origin, extent, tiling)),
make_distributed_cooling(displacement, cool),
displacement);
}
} } } // end namespace boost::graph::distributed
#endif // BOOST_GRAPH_DISTRIBUTED_FRUCHTERMAN_REINGOLD_HPP