vn-verdnaturachat/ios/Pods/Flipper-Folly/folly/IPAddress.cpp

477 lines
14 KiB
C++
Raw Normal View History

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <folly/IPAddress.h>
#include <limits>
#include <ostream>
#include <string>
#include <vector>
#include <folly/Format.h>
#include <folly/String.h>
#include <folly/detail/IPAddressSource.h>
using std::ostream;
using std::string;
using std::vector;
namespace folly {
// free functions
size_t hash_value(const IPAddress& addr) {
return addr.hash();
}
ostream& operator<<(ostream& os, const IPAddress& addr) {
os << addr.str();
return os;
}
void toAppend(IPAddress addr, string* result) {
result->append(addr.str());
}
void toAppend(IPAddress addr, fbstring* result) {
result->append(addr.str());
}
bool IPAddress::validate(StringPiece ip) noexcept {
return IPAddressV4::validate(ip) || IPAddressV6::validate(ip);
}
// public static
IPAddressV4 IPAddress::createIPv4(const IPAddress& addr) {
if (addr.isV4()) {
return addr.asV4();
} else {
return addr.asV6().createIPv4();
}
}
// public static
IPAddressV6 IPAddress::createIPv6(const IPAddress& addr) {
if (addr.isV6()) {
return addr.asV6();
} else {
return addr.asV4().createIPv6();
}
}
namespace {
vector<string> splitIpSlashCidr(StringPiece ipSlashCidr) {
vector<string> vec;
split("/", ipSlashCidr, vec);
return vec;
}
} // namespace
// public static
CIDRNetwork IPAddress::createNetwork(
StringPiece ipSlashCidr,
int defaultCidr, /* = -1 */
bool applyMask /* = true */) {
auto const ret =
IPAddress::tryCreateNetwork(ipSlashCidr, defaultCidr, applyMask);
if (ret.hasValue()) {
return ret.value();
}
if (ret.error() == CIDRNetworkError::INVALID_DEFAULT_CIDR) {
throw std::range_error("defaultCidr must be <= UINT8_MAX");
}
if (ret.error() == CIDRNetworkError::INVALID_IP_SLASH_CIDR) {
throw IPAddressFormatException(sformat(
"Invalid ipSlashCidr specified. Expected IP/CIDR format, got '{}'",
ipSlashCidr));
}
// Handler the remaining error cases. We re-parse the ip/mask pair
// to make error messages more meaningful
auto const vec = splitIpSlashCidr(ipSlashCidr);
switch (ret.error()) {
case CIDRNetworkError::INVALID_IP:
CHECK_GE(vec.size(), 1);
throw IPAddressFormatException(
sformat("Invalid IP address {}", vec.at(0)));
case CIDRNetworkError::INVALID_CIDR:
CHECK_GE(vec.size(), 2);
throw IPAddressFormatException(
sformat("Mask value '{}' not a valid mask", vec.at(1)));
case CIDRNetworkError::CIDR_MISMATCH: {
auto const subnet = IPAddress::tryFromString(vec.at(0)).value();
auto cidr = static_cast<uint8_t>(
(defaultCidr > -1) ? defaultCidr : (subnet.isV4() ? 32 : 128));
throw IPAddressFormatException(sformat(
"CIDR value '{}' is > network bit count '{}'",
vec.size() == 2 ? vec.at(1) : to<string>(cidr),
subnet.bitCount()));
}
case CIDRNetworkError::INVALID_DEFAULT_CIDR:
case CIDRNetworkError::INVALID_IP_SLASH_CIDR:
default:
// unreachable
break;
}
CHECK(0);
return CIDRNetwork{};
}
// public static
Expected<CIDRNetwork, CIDRNetworkError> IPAddress::tryCreateNetwork(
StringPiece ipSlashCidr,
int defaultCidr,
bool applyMask) {
if (defaultCidr > std::numeric_limits<uint8_t>::max()) {
return makeUnexpected(CIDRNetworkError::INVALID_DEFAULT_CIDR);
}
auto const vec = splitIpSlashCidr(ipSlashCidr);
auto const elemCount = vec.size();
if (elemCount == 0 || // weird invalid string
elemCount > 2) { // invalid string (IP/CIDR/extras)
return makeUnexpected(CIDRNetworkError::INVALID_IP_SLASH_CIDR);
}
auto const subnet = IPAddress::tryFromString(vec.at(0));
if (subnet.hasError()) {
return makeUnexpected(CIDRNetworkError::INVALID_IP);
}
auto cidr = static_cast<uint8_t>(
(defaultCidr > -1) ? defaultCidr : (subnet.value().isV4() ? 32 : 128));
if (elemCount == 2) {
auto const maybeCidr = tryTo<uint8_t>(vec.at(1));
if (maybeCidr.hasError()) {
return makeUnexpected(CIDRNetworkError::INVALID_CIDR);
}
cidr = maybeCidr.value();
}
if (cidr > subnet.value().bitCount()) {
return makeUnexpected(CIDRNetworkError::CIDR_MISMATCH);
}
return std::make_pair(
applyMask ? subnet.value().mask(cidr) : subnet.value(), cidr);
}
// public static
std::string IPAddress::networkToString(const CIDRNetwork& network) {
return sformat("{}/{}", network.first.str(), network.second);
}
// public static
IPAddress IPAddress::fromBinary(ByteRange bytes) {
if (bytes.size() == 4) {
return IPAddress(IPAddressV4::fromBinary(bytes));
} else if (bytes.size() == 16) {
return IPAddress(IPAddressV6::fromBinary(bytes));
} else {
string hexval = detail::Bytes::toHex(bytes.data(), bytes.size());
throw IPAddressFormatException(
sformat("Invalid address with hex value '{}'", hexval));
}
}
Expected<IPAddress, IPAddressFormatError> IPAddress::tryFromBinary(
ByteRange bytes) noexcept {
// Check IPv6 first since it's our main protocol.
if (bytes.size() == 16) {
return IPAddressV6::tryFromBinary(bytes);
} else if (bytes.size() == 4) {
return IPAddressV4::tryFromBinary(bytes);
} else {
return makeUnexpected(IPAddressFormatError::UNSUPPORTED_ADDR_FAMILY);
}
}
// public static
IPAddress IPAddress::fromLong(uint32_t src) {
return IPAddress(IPAddressV4::fromLong(src));
}
IPAddress IPAddress::fromLongHBO(uint32_t src) {
return IPAddress(IPAddressV4::fromLongHBO(src));
}
// default constructor
IPAddress::IPAddress() : addr_(), family_(AF_UNSPEC) {}
// public string constructor
IPAddress::IPAddress(StringPiece str) : addr_(), family_(AF_UNSPEC) {
auto maybeIp = tryFromString(str);
if (maybeIp.hasError()) {
throw IPAddressFormatException(
to<std::string>("Invalid IP address '", str, "'"));
}
*this = maybeIp.value();
}
Expected<IPAddress, IPAddressFormatError> IPAddress::tryFromString(
StringPiece str) noexcept {
// need to check for V4 address second, since IPv4-mapped IPv6 addresses may
// contain a period
if (str.find(':') != string::npos) {
return IPAddressV6::tryFromString(str);
} else if (str.find('.') != string::npos) {
return IPAddressV4::tryFromString(str);
} else {
return makeUnexpected(IPAddressFormatError::UNSUPPORTED_ADDR_FAMILY);
}
}
// public sockaddr constructor
IPAddress::IPAddress(const sockaddr* addr) : addr_(), family_(AF_UNSPEC) {
if (addr == nullptr) {
throw IPAddressFormatException("sockaddr == nullptr");
}
family_ = addr->sa_family;
switch (addr->sa_family) {
case AF_INET: {
auto v4addr = reinterpret_cast<const sockaddr_in*>(addr);
addr_.ipV4Addr = IPAddressV4(v4addr->sin_addr);
break;
}
case AF_INET6: {
auto v6addr = reinterpret_cast<const sockaddr_in6*>(addr);
addr_.ipV6Addr = IPAddressV6(*v6addr);
break;
}
default:
throw InvalidAddressFamilyException(addr->sa_family);
}
}
// public ipv4 constructor
IPAddress::IPAddress(const IPAddressV4 ipV4Addr) noexcept
: addr_(ipV4Addr), family_(AF_INET) {}
// public ipv4 constructor
IPAddress::IPAddress(const in_addr ipV4Addr) noexcept
: addr_(IPAddressV4(ipV4Addr)), family_(AF_INET) {}
// public ipv6 constructor
IPAddress::IPAddress(const IPAddressV6& ipV6Addr) noexcept
: addr_(ipV6Addr), family_(AF_INET6) {}
// public ipv6 constructor
IPAddress::IPAddress(const in6_addr& ipV6Addr) noexcept
: addr_(IPAddressV6(ipV6Addr)), family_(AF_INET6) {}
// Assign from V4 address
IPAddress& IPAddress::operator=(const IPAddressV4& ipv4_addr) noexcept {
addr_ = IPAddressV46(ipv4_addr);
family_ = AF_INET;
return *this;
}
// Assign from V6 address
IPAddress& IPAddress::operator=(const IPAddressV6& ipv6_addr) noexcept {
addr_ = IPAddressV46(ipv6_addr);
family_ = AF_INET6;
return *this;
}
// public
bool IPAddress::inSubnet(StringPiece cidrNetwork) const {
auto subnetInfo = IPAddress::createNetwork(cidrNetwork);
return inSubnet(subnetInfo.first, subnetInfo.second);
}
// public
bool IPAddress::inSubnet(const IPAddress& subnet, uint8_t cidr) const {
if (bitCount() == subnet.bitCount()) {
if (isV4()) {
return asV4().inSubnet(subnet.asV4(), cidr);
} else {
return asV6().inSubnet(subnet.asV6(), cidr);
}
}
// an IPv4 address can never belong in a IPv6 subnet unless the IPv6 is a 6to4
// address and vice-versa
if (isV6()) {
const IPAddressV6& v6addr = asV6();
const IPAddressV4& v4subnet = subnet.asV4();
if (v6addr.is6To4()) {
return v6addr.getIPv4For6To4().inSubnet(v4subnet, cidr);
}
} else if (subnet.isV6()) {
const IPAddressV6& v6subnet = subnet.asV6();
const IPAddressV4& v4addr = asV4();
if (v6subnet.is6To4()) {
return v4addr.inSubnet(v6subnet.getIPv4For6To4(), cidr);
}
}
return false;
}
// public
bool IPAddress::inSubnetWithMask(const IPAddress& subnet, ByteRange mask)
const {
auto mkByteArray4 = [&]() -> ByteArray4 {
ByteArray4 ba{{0}};
std::memcpy(ba.data(), mask.begin(), std::min<size_t>(mask.size(), 4));
return ba;
};
if (bitCount() == subnet.bitCount()) {
if (isV4()) {
return asV4().inSubnetWithMask(subnet.asV4(), mkByteArray4());
} else {
ByteArray16 ba{{0}};
std::memcpy(ba.data(), mask.begin(), std::min<size_t>(mask.size(), 16));
return asV6().inSubnetWithMask(subnet.asV6(), ba);
}
}
// an IPv4 address can never belong in a IPv6 subnet unless the IPv6 is a 6to4
// address and vice-versa
if (isV6()) {
const IPAddressV6& v6addr = asV6();
const IPAddressV4& v4subnet = subnet.asV4();
if (v6addr.is6To4()) {
return v6addr.getIPv4For6To4().inSubnetWithMask(v4subnet, mkByteArray4());
}
} else if (subnet.isV6()) {
const IPAddressV6& v6subnet = subnet.asV6();
const IPAddressV4& v4addr = asV4();
if (v6subnet.is6To4()) {
return v4addr.inSubnetWithMask(v6subnet.getIPv4For6To4(), mkByteArray4());
}
}
return false;
}
uint8_t IPAddress::getNthMSByte(size_t byteIndex) const {
const auto highestIndex = byteCount() - 1;
if (byteIndex > highestIndex) {
throw std::invalid_argument(sformat(
"Byte index must be <= {} for addresses of type: {}",
highestIndex,
detail::familyNameStr(family())));
}
if (isV4()) {
return asV4().bytes()[byteIndex];
}
return asV6().bytes()[byteIndex];
}
// public
bool operator==(const IPAddress& addr1, const IPAddress& addr2) {
if (addr1.empty() || addr2.empty()) {
return addr1.empty() == addr2.empty();
}
if (addr1.family() == addr2.family()) {
if (addr1.isV6()) {
return (addr1.asV6() == addr2.asV6());
} else if (addr1.isV4()) {
return (addr1.asV4() == addr2.asV4());
} else {
CHECK_EQ(addr1.family(), AF_UNSPEC);
// Two default initialized AF_UNSPEC addresses should be considered equal.
// AF_UNSPEC is the only other value for which an IPAddress can be
// created, in the default constructor case.
return true;
}
}
// addr1 is v4 mapped v6 address, addr2 is v4
if (addr1.isIPv4Mapped() && addr2.isV4()) {
if (IPAddress::createIPv4(addr1) == addr2.asV4()) {
return true;
}
}
// addr2 is v4 mapped v6 address, addr1 is v4
if (addr2.isIPv4Mapped() && addr1.isV4()) {
if (IPAddress::createIPv4(addr2) == addr1.asV4()) {
return true;
}
}
// we only compare IPv4 and IPv6 addresses
return false;
}
bool operator<(const IPAddress& addr1, const IPAddress& addr2) {
if (addr1.empty() || addr2.empty()) {
return addr1.empty() < addr2.empty();
}
if (addr1.family() == addr2.family()) {
if (addr1.isV6()) {
return (addr1.asV6() < addr2.asV6());
} else if (addr1.isV4()) {
return (addr1.asV4() < addr2.asV4());
} else {
CHECK_EQ(addr1.family(), AF_UNSPEC);
// Two default initialized AF_UNSPEC addresses can not be less than each
// other. AF_UNSPEC is the only other value for which an IPAddress can be
// created, in the default constructor case.
return false;
}
}
if (addr1.isV6()) {
// means addr2 is v4, convert it to a mapped v6 address and compare
return addr1.asV6() < addr2.asV4().createIPv6();
}
if (addr2.isV6()) {
// means addr2 is v6, convert addr1 to v4 mapped and compare
return addr1.asV4().createIPv6() < addr2.asV6();
}
return false;
}
CIDRNetwork IPAddress::longestCommonPrefix(
const CIDRNetwork& one,
const CIDRNetwork& two) {
if (one.first.family() != two.first.family()) {
throw std::invalid_argument(sformat(
"Can't compute longest common prefix between addresses of different"
"families. Passed: {} and {}",
detail::familyNameStr(one.first.family()),
detail::familyNameStr(two.first.family())));
}
if (one.first.isV4()) {
auto prefix = IPAddressV4::longestCommonPrefix(
{one.first.asV4(), one.second}, {two.first.asV4(), two.second});
return {IPAddress(prefix.first), prefix.second};
} else if (one.first.isV6()) {
auto prefix = IPAddressV6::longestCommonPrefix(
{one.first.asV6(), one.second}, {two.first.asV6(), two.second});
return {IPAddress(prefix.first), prefix.second};
} else {
throw std::invalid_argument("Unknown address family");
}
}
// clang-format off
[[noreturn]] void IPAddress::asV4Throw() const {
auto fam = detail::familyNameStr(family());
throw InvalidAddressFamilyException(
sformat("Can't convert address with family {} to AF_INET address", fam));
}
[[noreturn]] void IPAddress::asV6Throw() const {
auto fam = detail::familyNameStr(family());
throw InvalidAddressFamilyException(
sformat("Can't convert address with family {} to AF_INET6 address", fam));
}
// clang-format on
} // namespace folly