2936 lines
92 KiB
C++
2936 lines
92 KiB
C++
|
/*
|
||
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#include <folly/io/async/AsyncSocket.h>
|
||
|
|
||
|
#include <folly/ExceptionWrapper.h>
|
||
|
#include <folly/Format.h>
|
||
|
#include <folly/Portability.h>
|
||
|
#include <folly/SocketAddress.h>
|
||
|
#include <folly/String.h>
|
||
|
#include <folly/io/Cursor.h>
|
||
|
#include <folly/io/IOBuf.h>
|
||
|
#include <folly/io/IOBufQueue.h>
|
||
|
#include <folly/io/SocketOptionMap.h>
|
||
|
#include <folly/portability/Fcntl.h>
|
||
|
#include <folly/portability/Sockets.h>
|
||
|
#include <folly/portability/SysUio.h>
|
||
|
#include <folly/portability/Unistd.h>
|
||
|
|
||
|
#include <boost/preprocessor/control/if.hpp>
|
||
|
#include <sys/types.h>
|
||
|
#include <cerrno>
|
||
|
#include <climits>
|
||
|
#include <sstream>
|
||
|
#include <thread>
|
||
|
|
||
|
#if defined(__linux__)
|
||
|
#include <linux/sockios.h>
|
||
|
#include <sys/ioctl.h>
|
||
|
#endif
|
||
|
|
||
|
#if FOLLY_HAVE_VLA
|
||
|
#define FOLLY_HAVE_VLA_01 1
|
||
|
#else
|
||
|
#define FOLLY_HAVE_VLA_01 0
|
||
|
#endif
|
||
|
|
||
|
using std::string;
|
||
|
using std::unique_ptr;
|
||
|
|
||
|
namespace fsp = folly::portability::sockets;
|
||
|
|
||
|
namespace folly {
|
||
|
|
||
|
static constexpr bool msgErrQueueSupported =
|
||
|
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
|
||
|
true;
|
||
|
#else
|
||
|
false;
|
||
|
#endif // FOLLY_HAVE_MSG_ERRQUEUE
|
||
|
|
||
|
const AsyncSocketException socketClosedLocallyEx(
|
||
|
AsyncSocketException::END_OF_FILE,
|
||
|
"socket closed locally");
|
||
|
const AsyncSocketException socketShutdownForWritesEx(
|
||
|
AsyncSocketException::END_OF_FILE,
|
||
|
"socket shutdown for writes");
|
||
|
|
||
|
// TODO: It might help performance to provide a version of BytesWriteRequest
|
||
|
// that users could derive from, so we can avoid the extra allocation for each
|
||
|
// call to write()/writev().
|
||
|
//
|
||
|
// We would need the version for external users where they provide the iovec
|
||
|
// storage space, and only our internal version would allocate it at the end of
|
||
|
// the WriteRequest.
|
||
|
|
||
|
/* The default WriteRequest implementation, used for write(), writev() and
|
||
|
* writeChain()
|
||
|
*
|
||
|
* A new BytesWriteRequest operation is allocated on the heap for all write
|
||
|
* operations that cannot be completed immediately.
|
||
|
*/
|
||
|
class AsyncSocket::BytesWriteRequest : public AsyncSocket::WriteRequest {
|
||
|
public:
|
||
|
static BytesWriteRequest* newRequest(
|
||
|
AsyncSocket* socket,
|
||
|
WriteCallback* callback,
|
||
|
const iovec* ops,
|
||
|
uint32_t opCount,
|
||
|
uint32_t partialWritten,
|
||
|
uint32_t bytesWritten,
|
||
|
unique_ptr<IOBuf>&& ioBuf,
|
||
|
WriteFlags flags) {
|
||
|
assert(opCount > 0);
|
||
|
// Since we put a variable size iovec array at the end
|
||
|
// of each BytesWriteRequest, we have to manually allocate the memory.
|
||
|
void* buf =
|
||
|
malloc(sizeof(BytesWriteRequest) + (opCount * sizeof(struct iovec)));
|
||
|
if (buf == nullptr) {
|
||
|
throw std::bad_alloc();
|
||
|
}
|
||
|
|
||
|
return new (buf) BytesWriteRequest(
|
||
|
socket,
|
||
|
callback,
|
||
|
ops,
|
||
|
opCount,
|
||
|
partialWritten,
|
||
|
bytesWritten,
|
||
|
std::move(ioBuf),
|
||
|
flags);
|
||
|
}
|
||
|
|
||
|
void destroy() override {
|
||
|
this->~BytesWriteRequest();
|
||
|
free(this);
|
||
|
}
|
||
|
|
||
|
WriteResult performWrite() override {
|
||
|
WriteFlags writeFlags = flags_;
|
||
|
if (getNext() != nullptr) {
|
||
|
writeFlags |= WriteFlags::CORK;
|
||
|
}
|
||
|
|
||
|
socket_->adjustZeroCopyFlags(writeFlags);
|
||
|
|
||
|
auto writeResult = socket_->performWrite(
|
||
|
getOps(), getOpCount(), writeFlags, &opsWritten_, &partialBytes_);
|
||
|
bytesWritten_ = writeResult.writeReturn > 0 ? writeResult.writeReturn : 0;
|
||
|
if (bytesWritten_) {
|
||
|
if (socket_->isZeroCopyRequest(writeFlags)) {
|
||
|
if (isComplete()) {
|
||
|
socket_->addZeroCopyBuf(std::move(ioBuf_));
|
||
|
} else {
|
||
|
socket_->addZeroCopyBuf(ioBuf_.get());
|
||
|
}
|
||
|
} else {
|
||
|
// this happens if at least one of the prev requests were sent
|
||
|
// with zero copy but not the last one
|
||
|
if (isComplete() && socket_->getZeroCopy() &&
|
||
|
socket_->containsZeroCopyBuf(ioBuf_.get())) {
|
||
|
socket_->setZeroCopyBuf(std::move(ioBuf_));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return writeResult;
|
||
|
}
|
||
|
|
||
|
bool isComplete() override {
|
||
|
return opsWritten_ == getOpCount();
|
||
|
}
|
||
|
|
||
|
void consume() override {
|
||
|
// Advance opIndex_ forward by opsWritten_
|
||
|
opIndex_ += opsWritten_;
|
||
|
assert(opIndex_ < opCount_);
|
||
|
|
||
|
if (!socket_->isZeroCopyRequest(flags_)) {
|
||
|
// If we've finished writing any IOBufs, release them
|
||
|
if (ioBuf_) {
|
||
|
for (uint32_t i = opsWritten_; i != 0; --i) {
|
||
|
assert(ioBuf_);
|
||
|
ioBuf_ = ioBuf_->pop();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Move partialBytes_ forward into the current iovec buffer
|
||
|
struct iovec* currentOp = writeOps_ + opIndex_;
|
||
|
assert((partialBytes_ < currentOp->iov_len) || (currentOp->iov_len == 0));
|
||
|
currentOp->iov_base =
|
||
|
reinterpret_cast<uint8_t*>(currentOp->iov_base) + partialBytes_;
|
||
|
currentOp->iov_len -= partialBytes_;
|
||
|
|
||
|
// Increment the totalBytesWritten_ count by bytesWritten_;
|
||
|
assert(bytesWritten_ >= 0);
|
||
|
totalBytesWritten_ += uint32_t(bytesWritten_);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
BytesWriteRequest(
|
||
|
AsyncSocket* socket,
|
||
|
WriteCallback* callback,
|
||
|
const struct iovec* ops,
|
||
|
uint32_t opCount,
|
||
|
uint32_t partialBytes,
|
||
|
uint32_t bytesWritten,
|
||
|
unique_ptr<IOBuf>&& ioBuf,
|
||
|
WriteFlags flags)
|
||
|
: AsyncSocket::WriteRequest(socket, callback),
|
||
|
opCount_(opCount),
|
||
|
opIndex_(0),
|
||
|
flags_(flags),
|
||
|
ioBuf_(std::move(ioBuf)),
|
||
|
opsWritten_(0),
|
||
|
partialBytes_(partialBytes),
|
||
|
bytesWritten_(bytesWritten) {
|
||
|
memcpy(writeOps_, ops, sizeof(*ops) * opCount_);
|
||
|
}
|
||
|
|
||
|
// private destructor, to ensure callers use destroy()
|
||
|
~BytesWriteRequest() override = default;
|
||
|
|
||
|
const struct iovec* getOps() const {
|
||
|
assert(opCount_ > opIndex_);
|
||
|
return writeOps_ + opIndex_;
|
||
|
}
|
||
|
|
||
|
uint32_t getOpCount() const {
|
||
|
assert(opCount_ > opIndex_);
|
||
|
return opCount_ - opIndex_;
|
||
|
}
|
||
|
|
||
|
uint32_t opCount_; ///< number of entries in writeOps_
|
||
|
uint32_t opIndex_; ///< current index into writeOps_
|
||
|
WriteFlags flags_; ///< set for WriteFlags
|
||
|
unique_ptr<IOBuf> ioBuf_; ///< underlying IOBuf, or nullptr if N/A
|
||
|
|
||
|
// for consume(), how much we wrote on the last write
|
||
|
uint32_t opsWritten_; ///< complete ops written
|
||
|
uint32_t partialBytes_; ///< partial bytes of incomplete op written
|
||
|
ssize_t bytesWritten_; ///< bytes written altogether
|
||
|
|
||
|
struct iovec writeOps_[]; ///< write operation(s) list
|
||
|
};
|
||
|
|
||
|
int AsyncSocket::SendMsgParamsCallback::getDefaultFlags(
|
||
|
folly::WriteFlags flags,
|
||
|
bool zeroCopyEnabled) noexcept {
|
||
|
int msg_flags = MSG_DONTWAIT;
|
||
|
|
||
|
#ifdef MSG_NOSIGNAL // Linux-only
|
||
|
msg_flags |= MSG_NOSIGNAL;
|
||
|
#ifdef MSG_MORE
|
||
|
if (isSet(flags, WriteFlags::CORK)) {
|
||
|
// MSG_MORE tells the kernel we have more data to send, so wait for us to
|
||
|
// give it the rest of the data rather than immediately sending a partial
|
||
|
// frame, even when TCP_NODELAY is enabled.
|
||
|
msg_flags |= MSG_MORE;
|
||
|
}
|
||
|
#endif // MSG_MORE
|
||
|
#endif // MSG_NOSIGNAL
|
||
|
if (isSet(flags, WriteFlags::EOR)) {
|
||
|
// marks that this is the last byte of a record (response)
|
||
|
msg_flags |= MSG_EOR;
|
||
|
}
|
||
|
|
||
|
if (zeroCopyEnabled && isSet(flags, WriteFlags::WRITE_MSG_ZEROCOPY)) {
|
||
|
msg_flags |= MSG_ZEROCOPY;
|
||
|
}
|
||
|
|
||
|
return msg_flags;
|
||
|
}
|
||
|
|
||
|
namespace {
|
||
|
AsyncSocket::SendMsgParamsCallback defaultSendMsgParamsCallback;
|
||
|
|
||
|
// Based on flags, signal the transparent handler to disable certain functions
|
||
|
void disableTransparentFunctions(
|
||
|
NetworkSocket fd,
|
||
|
bool noTransparentTls,
|
||
|
bool noTSocks) {
|
||
|
(void)fd;
|
||
|
(void)noTransparentTls;
|
||
|
(void)noTSocks;
|
||
|
#if defined(__linux__)
|
||
|
if (noTransparentTls) {
|
||
|
// Ignore return value, errors are ok
|
||
|
VLOG(5) << "Disabling TTLS for fd " << fd;
|
||
|
netops::setsockopt(fd, SOL_SOCKET, SO_NO_TRANSPARENT_TLS, nullptr, 0);
|
||
|
}
|
||
|
if (noTSocks) {
|
||
|
VLOG(5) << "Disabling TSOCKS for fd " << fd;
|
||
|
// Ignore return value, errors are ok
|
||
|
netops::setsockopt(fd, SOL_SOCKET, SO_NO_TSOCKS, nullptr, 0);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
AsyncSocket::AsyncSocket()
|
||
|
: eventBase_(nullptr),
|
||
|
writeTimeout_(this, nullptr),
|
||
|
ioHandler_(this, nullptr),
|
||
|
immediateReadHandler_(this) {
|
||
|
VLOG(5) << "new AsyncSocket()";
|
||
|
init();
|
||
|
}
|
||
|
|
||
|
AsyncSocket::AsyncSocket(EventBase* evb)
|
||
|
: eventBase_(evb),
|
||
|
writeTimeout_(this, evb),
|
||
|
ioHandler_(this, evb),
|
||
|
immediateReadHandler_(this) {
|
||
|
VLOG(5) << "new AsyncSocket(" << this << ", evb=" << evb << ")";
|
||
|
init();
|
||
|
}
|
||
|
|
||
|
AsyncSocket::AsyncSocket(
|
||
|
EventBase* evb,
|
||
|
const folly::SocketAddress& address,
|
||
|
uint32_t connectTimeout,
|
||
|
bool useZeroCopy)
|
||
|
: AsyncSocket(evb) {
|
||
|
setZeroCopy(useZeroCopy);
|
||
|
connect(nullptr, address, connectTimeout);
|
||
|
}
|
||
|
|
||
|
AsyncSocket::AsyncSocket(
|
||
|
EventBase* evb,
|
||
|
const std::string& ip,
|
||
|
uint16_t port,
|
||
|
uint32_t connectTimeout,
|
||
|
bool useZeroCopy)
|
||
|
: AsyncSocket(evb) {
|
||
|
setZeroCopy(useZeroCopy);
|
||
|
connect(nullptr, ip, port, connectTimeout);
|
||
|
}
|
||
|
|
||
|
AsyncSocket::AsyncSocket(
|
||
|
EventBase* evb,
|
||
|
NetworkSocket fd,
|
||
|
uint32_t zeroCopyBufId)
|
||
|
: zeroCopyBufId_(zeroCopyBufId),
|
||
|
eventBase_(evb),
|
||
|
writeTimeout_(this, evb),
|
||
|
ioHandler_(this, evb, fd),
|
||
|
immediateReadHandler_(this) {
|
||
|
VLOG(5) << "new AsyncSocket(" << this << ", evb=" << evb << ", fd=" << fd
|
||
|
<< ", zeroCopyBufId=" << zeroCopyBufId << ")";
|
||
|
init();
|
||
|
fd_ = fd;
|
||
|
disableTransparentFunctions(fd_, noTransparentTls_, noTSocks_);
|
||
|
setCloseOnExec();
|
||
|
state_ = StateEnum::ESTABLISHED;
|
||
|
}
|
||
|
|
||
|
AsyncSocket::AsyncSocket(AsyncSocket::UniquePtr oldAsyncSocket)
|
||
|
: AsyncSocket(
|
||
|
oldAsyncSocket->getEventBase(),
|
||
|
oldAsyncSocket->detachNetworkSocket(),
|
||
|
oldAsyncSocket->getZeroCopyBufId()) {
|
||
|
preReceivedData_ = std::move(oldAsyncSocket->preReceivedData_);
|
||
|
}
|
||
|
|
||
|
// init() method, since constructor forwarding isn't supported in most
|
||
|
// compilers yet.
|
||
|
void AsyncSocket::init() {
|
||
|
if (eventBase_) {
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
}
|
||
|
shutdownFlags_ = 0;
|
||
|
state_ = StateEnum::UNINIT;
|
||
|
eventFlags_ = EventHandler::NONE;
|
||
|
fd_ = NetworkSocket();
|
||
|
sendTimeout_ = 0;
|
||
|
maxReadsPerEvent_ = 16;
|
||
|
connectCallback_ = nullptr;
|
||
|
errMessageCallback_ = nullptr;
|
||
|
readCallback_ = nullptr;
|
||
|
writeReqHead_ = nullptr;
|
||
|
writeReqTail_ = nullptr;
|
||
|
wShutdownSocketSet_.reset();
|
||
|
appBytesWritten_ = 0;
|
||
|
appBytesReceived_ = 0;
|
||
|
totalAppBytesScheduledForWrite_ = 0;
|
||
|
sendMsgParamCallback_ = &defaultSendMsgParamsCallback;
|
||
|
}
|
||
|
|
||
|
AsyncSocket::~AsyncSocket() {
|
||
|
VLOG(7) << "actual destruction of AsyncSocket(this=" << this
|
||
|
<< ", evb=" << eventBase_ << ", fd=" << fd_ << ", state=" << state_
|
||
|
<< ")";
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::destroy() {
|
||
|
VLOG(5) << "AsyncSocket::destroy(this=" << this << ", evb=" << eventBase_
|
||
|
<< ", fd=" << fd_ << ", state=" << state_;
|
||
|
// When destroy is called, close the socket immediately
|
||
|
closeNow();
|
||
|
|
||
|
// Then call DelayedDestruction::destroy() to take care of
|
||
|
// whether or not we need immediate or delayed destruction
|
||
|
DelayedDestruction::destroy();
|
||
|
}
|
||
|
|
||
|
NetworkSocket AsyncSocket::detachNetworkSocket() {
|
||
|
VLOG(6) << "AsyncSocket::detachFd(this=" << this << ", fd=" << fd_
|
||
|
<< ", evb=" << eventBase_ << ", state=" << state_
|
||
|
<< ", events=" << std::hex << eventFlags_ << ")";
|
||
|
// Extract the fd, and set fd_ to -1 first, so closeNow() won't
|
||
|
// actually close the descriptor.
|
||
|
if (const auto socketSet = wShutdownSocketSet_.lock()) {
|
||
|
socketSet->remove(fd_);
|
||
|
}
|
||
|
auto fd = fd_;
|
||
|
fd_ = NetworkSocket();
|
||
|
// Call closeNow() to invoke all pending callbacks with an error.
|
||
|
closeNow();
|
||
|
// Update the EventHandler to stop using this fd.
|
||
|
// This can only be done after closeNow() unregisters the handler.
|
||
|
ioHandler_.changeHandlerFD(NetworkSocket());
|
||
|
return fd;
|
||
|
}
|
||
|
|
||
|
const folly::SocketAddress& AsyncSocket::anyAddress() {
|
||
|
static const folly::SocketAddress anyAddress =
|
||
|
folly::SocketAddress("0.0.0.0", 0);
|
||
|
return anyAddress;
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::setShutdownSocketSet(
|
||
|
const std::weak_ptr<ShutdownSocketSet>& wNewSS) {
|
||
|
const auto newSS = wNewSS.lock();
|
||
|
const auto shutdownSocketSet = wShutdownSocketSet_.lock();
|
||
|
|
||
|
if (newSS == shutdownSocketSet) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (shutdownSocketSet && fd_ != NetworkSocket()) {
|
||
|
shutdownSocketSet->remove(fd_);
|
||
|
}
|
||
|
|
||
|
if (newSS && fd_ != NetworkSocket()) {
|
||
|
newSS->add(fd_);
|
||
|
}
|
||
|
|
||
|
wShutdownSocketSet_ = wNewSS;
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::setCloseOnExec() {
|
||
|
int rv = netops::set_socket_close_on_exec(fd_);
|
||
|
if (rv != 0) {
|
||
|
auto errnoCopy = errno;
|
||
|
throw AsyncSocketException(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("failed to set close-on-exec flag"),
|
||
|
errnoCopy);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::connect(
|
||
|
ConnectCallback* callback,
|
||
|
const folly::SocketAddress& address,
|
||
|
int timeout,
|
||
|
const SocketOptionMap& options,
|
||
|
const folly::SocketAddress& bindAddr) noexcept {
|
||
|
DestructorGuard dg(this);
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
|
||
|
addr_ = address;
|
||
|
|
||
|
// Make sure we're in the uninitialized state
|
||
|
if (state_ != StateEnum::UNINIT) {
|
||
|
return invalidState(callback);
|
||
|
}
|
||
|
|
||
|
connectTimeout_ = std::chrono::milliseconds(timeout);
|
||
|
connectStartTime_ = std::chrono::steady_clock::now();
|
||
|
// Make connect end time at least >= connectStartTime.
|
||
|
connectEndTime_ = connectStartTime_;
|
||
|
|
||
|
assert(fd_ == NetworkSocket());
|
||
|
state_ = StateEnum::CONNECTING;
|
||
|
connectCallback_ = callback;
|
||
|
|
||
|
sockaddr_storage addrStorage;
|
||
|
auto saddr = reinterpret_cast<sockaddr*>(&addrStorage);
|
||
|
|
||
|
try {
|
||
|
// Create the socket
|
||
|
// Technically the first parameter should actually be a protocol family
|
||
|
// constant (PF_xxx) rather than an address family (AF_xxx), but the
|
||
|
// distinction is mainly just historical. In pretty much all
|
||
|
// implementations the PF_foo and AF_foo constants are identical.
|
||
|
fd_ = netops::socket(address.getFamily(), SOCK_STREAM, 0);
|
||
|
if (fd_ == NetworkSocket()) {
|
||
|
auto errnoCopy = errno;
|
||
|
throw AsyncSocketException(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("failed to create socket"),
|
||
|
errnoCopy);
|
||
|
}
|
||
|
disableTransparentFunctions(fd_, noTransparentTls_, noTSocks_);
|
||
|
if (const auto shutdownSocketSet = wShutdownSocketSet_.lock()) {
|
||
|
shutdownSocketSet->add(fd_);
|
||
|
}
|
||
|
ioHandler_.changeHandlerFD(fd_);
|
||
|
|
||
|
setCloseOnExec();
|
||
|
|
||
|
// Put the socket in non-blocking mode
|
||
|
int rv = netops::set_socket_non_blocking(fd_);
|
||
|
if (rv == -1) {
|
||
|
auto errnoCopy = errno;
|
||
|
throw AsyncSocketException(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("failed to put socket in non-blocking mode"),
|
||
|
errnoCopy);
|
||
|
}
|
||
|
|
||
|
#if !defined(MSG_NOSIGNAL) && defined(F_SETNOSIGPIPE)
|
||
|
// iOS and OS X don't support MSG_NOSIGNAL; set F_SETNOSIGPIPE instead
|
||
|
rv = fcntl(fd_.toFd(), F_SETNOSIGPIPE, 1);
|
||
|
if (rv == -1) {
|
||
|
auto errnoCopy = errno;
|
||
|
throw AsyncSocketException(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
"failed to enable F_SETNOSIGPIPE on socket",
|
||
|
errnoCopy);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// By default, turn on TCP_NODELAY
|
||
|
// If setNoDelay() fails, we continue anyway; this isn't a fatal error.
|
||
|
// setNoDelay() will log an error message if it fails.
|
||
|
// Also set the cached zeroCopyVal_ since it cannot be set earlier if the fd
|
||
|
// is not created
|
||
|
if (address.getFamily() != AF_UNIX) {
|
||
|
(void)setNoDelay(true);
|
||
|
setZeroCopy(zeroCopyVal_);
|
||
|
}
|
||
|
|
||
|
// Apply the additional PRE_BIND options if any.
|
||
|
applyOptions(options, SocketOptionKey::ApplyPos::PRE_BIND);
|
||
|
|
||
|
VLOG(5) << "AsyncSocket::connect(this=" << this << ", evb=" << eventBase_
|
||
|
<< ", fd=" << fd_ << ", host=" << address.describe().c_str();
|
||
|
|
||
|
// bind the socket
|
||
|
if (bindAddr != anyAddress()) {
|
||
|
int one = 1;
|
||
|
if (netops::setsockopt(
|
||
|
fd_, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one))) {
|
||
|
auto errnoCopy = errno;
|
||
|
doClose();
|
||
|
throw AsyncSocketException(
|
||
|
AsyncSocketException::NOT_OPEN,
|
||
|
"failed to setsockopt prior to bind on " + bindAddr.describe(),
|
||
|
errnoCopy);
|
||
|
}
|
||
|
|
||
|
bindAddr.getAddress(&addrStorage);
|
||
|
|
||
|
if (netops::bind(fd_, saddr, bindAddr.getActualSize()) != 0) {
|
||
|
auto errnoCopy = errno;
|
||
|
doClose();
|
||
|
throw AsyncSocketException(
|
||
|
AsyncSocketException::NOT_OPEN,
|
||
|
"failed to bind to async socket: " + bindAddr.describe(),
|
||
|
errnoCopy);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Apply the additional POST_BIND options if any.
|
||
|
applyOptions(options, SocketOptionKey::ApplyPos::POST_BIND);
|
||
|
|
||
|
// Call preConnect hook if any.
|
||
|
if (connectCallback_) {
|
||
|
connectCallback_->preConnect(fd_);
|
||
|
}
|
||
|
|
||
|
// Perform the connect()
|
||
|
address.getAddress(&addrStorage);
|
||
|
|
||
|
if (tfoEnabled_) {
|
||
|
state_ = StateEnum::FAST_OPEN;
|
||
|
tfoAttempted_ = true;
|
||
|
} else {
|
||
|
if (socketConnect(saddr, addr_.getActualSize()) < 0) {
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If we're still here the connect() succeeded immediately.
|
||
|
// Fall through to call the callback outside of this try...catch block
|
||
|
} catch (const AsyncSocketException& ex) {
|
||
|
return failConnect(__func__, ex);
|
||
|
} catch (const std::exception& ex) {
|
||
|
// shouldn't happen, but handle it just in case
|
||
|
VLOG(4) << "AsyncSocket::connect(this=" << this << ", fd=" << fd_
|
||
|
<< "): unexpected " << typeid(ex).name()
|
||
|
<< " exception: " << ex.what();
|
||
|
AsyncSocketException tex(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr(string("unexpected exception: ") + ex.what()));
|
||
|
return failConnect(__func__, tex);
|
||
|
}
|
||
|
|
||
|
// The connection succeeded immediately
|
||
|
// The read callback may not have been set yet, and no writes may be pending
|
||
|
// yet, so we don't have to register for any events at the moment.
|
||
|
VLOG(8) << "AsyncSocket::connect succeeded immediately; this=" << this;
|
||
|
assert(errMessageCallback_ == nullptr);
|
||
|
assert(readCallback_ == nullptr);
|
||
|
assert(writeReqHead_ == nullptr);
|
||
|
if (state_ != StateEnum::FAST_OPEN) {
|
||
|
state_ = StateEnum::ESTABLISHED;
|
||
|
}
|
||
|
invokeConnectSuccess();
|
||
|
}
|
||
|
|
||
|
int AsyncSocket::socketConnect(const struct sockaddr* saddr, socklen_t len) {
|
||
|
int rv = netops::connect(fd_, saddr, len);
|
||
|
if (rv < 0) {
|
||
|
auto errnoCopy = errno;
|
||
|
if (errnoCopy == EINPROGRESS) {
|
||
|
scheduleConnectTimeout();
|
||
|
registerForConnectEvents();
|
||
|
} else {
|
||
|
throw AsyncSocketException(
|
||
|
AsyncSocketException::NOT_OPEN,
|
||
|
"connect failed (immediately)",
|
||
|
errnoCopy);
|
||
|
}
|
||
|
}
|
||
|
return rv;
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::scheduleConnectTimeout() {
|
||
|
// Connection in progress.
|
||
|
auto timeout = connectTimeout_.count();
|
||
|
if (timeout > 0) {
|
||
|
// Start a timer in case the connection takes too long.
|
||
|
if (!writeTimeout_.scheduleTimeout(uint32_t(timeout))) {
|
||
|
throw AsyncSocketException(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("failed to schedule AsyncSocket connect timeout"));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::registerForConnectEvents() {
|
||
|
// Register for write events, so we'll
|
||
|
// be notified when the connection finishes/fails.
|
||
|
// Note that we don't register for a persistent event here.
|
||
|
assert(eventFlags_ == EventHandler::NONE);
|
||
|
eventFlags_ = EventHandler::WRITE;
|
||
|
if (!ioHandler_.registerHandler(eventFlags_)) {
|
||
|
throw AsyncSocketException(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("failed to register AsyncSocket connect handler"));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::connect(
|
||
|
ConnectCallback* callback,
|
||
|
const string& ip,
|
||
|
uint16_t port,
|
||
|
int timeout,
|
||
|
const SocketOptionMap& options) noexcept {
|
||
|
DestructorGuard dg(this);
|
||
|
try {
|
||
|
connectCallback_ = callback;
|
||
|
connect(callback, folly::SocketAddress(ip, port), timeout, options);
|
||
|
} catch (const std::exception& ex) {
|
||
|
AsyncSocketException tex(AsyncSocketException::INTERNAL_ERROR, ex.what());
|
||
|
return failConnect(__func__, tex);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::cancelConnect() {
|
||
|
connectCallback_ = nullptr;
|
||
|
if (state_ == StateEnum::CONNECTING || state_ == StateEnum::FAST_OPEN) {
|
||
|
closeNow();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::setSendTimeout(uint32_t milliseconds) {
|
||
|
sendTimeout_ = milliseconds;
|
||
|
if (eventBase_) {
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
}
|
||
|
|
||
|
// If we are currently pending on write requests, immediately update
|
||
|
// writeTimeout_ with the new value.
|
||
|
if ((eventFlags_ & EventHandler::WRITE) &&
|
||
|
(state_ != StateEnum::CONNECTING && state_ != StateEnum::FAST_OPEN)) {
|
||
|
assert(state_ == StateEnum::ESTABLISHED);
|
||
|
assert((shutdownFlags_ & SHUT_WRITE) == 0);
|
||
|
if (sendTimeout_ > 0) {
|
||
|
if (!writeTimeout_.scheduleTimeout(sendTimeout_)) {
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("failed to reschedule send timeout in setSendTimeout"));
|
||
|
return failWrite(__func__, ex);
|
||
|
}
|
||
|
} else {
|
||
|
writeTimeout_.cancelTimeout();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::setErrMessageCB(ErrMessageCallback* callback) {
|
||
|
VLOG(6) << "AsyncSocket::setErrMessageCB() this=" << this << ", fd=" << fd_
|
||
|
<< ", callback=" << callback << ", state=" << state_;
|
||
|
|
||
|
// In the latest stable kernel 4.14.3 as of 2017-12-04, unix domain
|
||
|
// socket does not support MSG_ERRQUEUE. So recvmsg(MSG_ERRQUEUE)
|
||
|
// will read application data from unix doamin socket as error
|
||
|
// message, which breaks the message flow in application. Feel free
|
||
|
// to remove the next code block if MSG_ERRQUEUE is added for unix
|
||
|
// domain socket in the future.
|
||
|
if (callback != nullptr) {
|
||
|
cacheLocalAddress();
|
||
|
if (localAddr_.getFamily() == AF_UNIX) {
|
||
|
LOG(ERROR) << "Failed to set ErrMessageCallback=" << callback
|
||
|
<< " for Unix Doamin Socket where MSG_ERRQUEUE is unsupported,"
|
||
|
<< " fd=" << fd_;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Short circuit if callback is the same as the existing errMessageCallback_.
|
||
|
if (callback == errMessageCallback_) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!msgErrQueueSupported) {
|
||
|
// Per-socket error message queue is not supported on this platform.
|
||
|
return invalidState(callback);
|
||
|
}
|
||
|
|
||
|
DestructorGuard dg(this);
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
|
||
|
if (callback == nullptr) {
|
||
|
// We should be able to reset the callback regardless of the
|
||
|
// socket state. It's important to have a reliable callback
|
||
|
// cancellation mechanism.
|
||
|
errMessageCallback_ = callback;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
switch ((StateEnum)state_) {
|
||
|
case StateEnum::CONNECTING:
|
||
|
case StateEnum::FAST_OPEN:
|
||
|
case StateEnum::ESTABLISHED: {
|
||
|
errMessageCallback_ = callback;
|
||
|
return;
|
||
|
}
|
||
|
case StateEnum::CLOSED:
|
||
|
case StateEnum::ERROR:
|
||
|
// We should never reach here. SHUT_READ should always be set
|
||
|
// if we are in STATE_CLOSED or STATE_ERROR.
|
||
|
assert(false);
|
||
|
return invalidState(callback);
|
||
|
case StateEnum::UNINIT:
|
||
|
// We do not allow setReadCallback() to be called before we start
|
||
|
// connecting.
|
||
|
return invalidState(callback);
|
||
|
}
|
||
|
|
||
|
// We don't put a default case in the switch statement, so that the compiler
|
||
|
// will warn us to update the switch statement if a new state is added.
|
||
|
return invalidState(callback);
|
||
|
}
|
||
|
|
||
|
AsyncSocket::ErrMessageCallback* AsyncSocket::getErrMessageCallback() const {
|
||
|
return errMessageCallback_;
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::setSendMsgParamCB(SendMsgParamsCallback* callback) {
|
||
|
sendMsgParamCallback_ = callback;
|
||
|
}
|
||
|
|
||
|
AsyncSocket::SendMsgParamsCallback* AsyncSocket::getSendMsgParamsCB() const {
|
||
|
return sendMsgParamCallback_;
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::setReadCB(ReadCallback* callback) {
|
||
|
VLOG(6) << "AsyncSocket::setReadCallback() this=" << this << ", fd=" << fd_
|
||
|
<< ", callback=" << callback << ", state=" << state_;
|
||
|
|
||
|
// Short circuit if callback is the same as the existing readCallback_.
|
||
|
//
|
||
|
// Note that this is needed for proper functioning during some cleanup cases.
|
||
|
// During cleanup we allow setReadCallback(nullptr) to be called even if the
|
||
|
// read callback is already unset and we have been detached from an event
|
||
|
// base. This check prevents us from asserting
|
||
|
// eventBase_->isInEventBaseThread() when eventBase_ is nullptr.
|
||
|
if (callback == readCallback_) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* We are removing a read callback */
|
||
|
if (callback == nullptr && immediateReadHandler_.isLoopCallbackScheduled()) {
|
||
|
immediateReadHandler_.cancelLoopCallback();
|
||
|
}
|
||
|
|
||
|
if (shutdownFlags_ & SHUT_READ) {
|
||
|
// Reads have already been shut down on this socket.
|
||
|
//
|
||
|
// Allow setReadCallback(nullptr) to be called in this case, but don't
|
||
|
// allow a new callback to be set.
|
||
|
//
|
||
|
// For example, setReadCallback(nullptr) can happen after an error if we
|
||
|
// invoke some other error callback before invoking readError(). The other
|
||
|
// error callback that is invoked first may go ahead and clear the read
|
||
|
// callback before we get a chance to invoke readError().
|
||
|
if (callback != nullptr) {
|
||
|
return invalidState(callback);
|
||
|
}
|
||
|
assert((eventFlags_ & EventHandler::READ) == 0);
|
||
|
readCallback_ = nullptr;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
DestructorGuard dg(this);
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
|
||
|
switch ((StateEnum)state_) {
|
||
|
case StateEnum::CONNECTING:
|
||
|
case StateEnum::FAST_OPEN:
|
||
|
// For convenience, we allow the read callback to be set while we are
|
||
|
// still connecting. We just store the callback for now. Once the
|
||
|
// connection completes we'll register for read events.
|
||
|
readCallback_ = callback;
|
||
|
return;
|
||
|
case StateEnum::ESTABLISHED: {
|
||
|
readCallback_ = callback;
|
||
|
uint16_t oldFlags = eventFlags_;
|
||
|
if (readCallback_) {
|
||
|
eventFlags_ |= EventHandler::READ;
|
||
|
} else {
|
||
|
eventFlags_ &= ~EventHandler::READ;
|
||
|
}
|
||
|
|
||
|
// Update our registration if our flags have changed
|
||
|
if (eventFlags_ != oldFlags) {
|
||
|
// We intentionally ignore the return value here.
|
||
|
// updateEventRegistration() will move us into the error state if it
|
||
|
// fails, and we don't need to do anything else here afterwards.
|
||
|
(void)updateEventRegistration();
|
||
|
}
|
||
|
|
||
|
if (readCallback_) {
|
||
|
checkForImmediateRead();
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
case StateEnum::CLOSED:
|
||
|
case StateEnum::ERROR:
|
||
|
// We should never reach here. SHUT_READ should always be set
|
||
|
// if we are in STATE_CLOSED or STATE_ERROR.
|
||
|
assert(false);
|
||
|
return invalidState(callback);
|
||
|
case StateEnum::UNINIT:
|
||
|
// We do not allow setReadCallback() to be called before we start
|
||
|
// connecting.
|
||
|
return invalidState(callback);
|
||
|
}
|
||
|
|
||
|
// We don't put a default case in the switch statement, so that the compiler
|
||
|
// will warn us to update the switch statement if a new state is added.
|
||
|
return invalidState(callback);
|
||
|
}
|
||
|
|
||
|
AsyncSocket::ReadCallback* AsyncSocket::getReadCallback() const {
|
||
|
return readCallback_;
|
||
|
}
|
||
|
|
||
|
bool AsyncSocket::setZeroCopy(bool enable) {
|
||
|
if (msgErrQueueSupported) {
|
||
|
zeroCopyVal_ = enable;
|
||
|
|
||
|
if (fd_ == NetworkSocket()) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
int val = enable ? 1 : 0;
|
||
|
int ret =
|
||
|
netops::setsockopt(fd_, SOL_SOCKET, SO_ZEROCOPY, &val, sizeof(val));
|
||
|
|
||
|
// if enable == false, set zeroCopyEnabled_ = false regardless
|
||
|
// if SO_ZEROCOPY is set or not
|
||
|
if (!enable) {
|
||
|
zeroCopyEnabled_ = enable;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/* if the setsockopt failed, try to see if the socket inherited the flag
|
||
|
* since we cannot set SO_ZEROCOPY on a socket s = accept
|
||
|
*/
|
||
|
if (ret) {
|
||
|
val = 0;
|
||
|
socklen_t optlen = sizeof(val);
|
||
|
ret = netops::getsockopt(fd_, SOL_SOCKET, SO_ZEROCOPY, &val, &optlen);
|
||
|
|
||
|
if (!ret) {
|
||
|
enable = val != 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!ret) {
|
||
|
zeroCopyEnabled_ = enable;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::setZeroCopyEnableFunc(AsyncWriter::ZeroCopyEnableFunc func) {
|
||
|
zeroCopyEnableFunc_ = func;
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::setZeroCopyReenableThreshold(size_t threshold) {
|
||
|
zeroCopyReenableThreshold_ = threshold;
|
||
|
}
|
||
|
|
||
|
bool AsyncSocket::isZeroCopyRequest(WriteFlags flags) {
|
||
|
return (zeroCopyEnabled_ && isSet(flags, WriteFlags::WRITE_MSG_ZEROCOPY));
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::adjustZeroCopyFlags(folly::WriteFlags& flags) {
|
||
|
if (!zeroCopyEnabled_) {
|
||
|
// if the zeroCopyReenableCounter_ is > 0
|
||
|
// we try to dec and if we reach 0
|
||
|
// we set zeroCopyEnabled_ to true
|
||
|
if (zeroCopyReenableCounter_) {
|
||
|
if (0 == --zeroCopyReenableCounter_) {
|
||
|
zeroCopyEnabled_ = true;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
flags = unSet(flags, folly::WriteFlags::WRITE_MSG_ZEROCOPY);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::addZeroCopyBuf(std::unique_ptr<folly::IOBuf>&& buf) {
|
||
|
uint32_t id = getNextZeroCopyBufId();
|
||
|
folly::IOBuf* ptr = buf.get();
|
||
|
|
||
|
idZeroCopyBufPtrMap_[id] = ptr;
|
||
|
auto& p = idZeroCopyBufInfoMap_[ptr];
|
||
|
p.count_++;
|
||
|
CHECK(p.buf_.get() == nullptr);
|
||
|
p.buf_ = std::move(buf);
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::addZeroCopyBuf(folly::IOBuf* ptr) {
|
||
|
uint32_t id = getNextZeroCopyBufId();
|
||
|
idZeroCopyBufPtrMap_[id] = ptr;
|
||
|
|
||
|
idZeroCopyBufInfoMap_[ptr].count_++;
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::releaseZeroCopyBuf(uint32_t id) {
|
||
|
auto iter = idZeroCopyBufPtrMap_.find(id);
|
||
|
CHECK(iter != idZeroCopyBufPtrMap_.end());
|
||
|
auto ptr = iter->second;
|
||
|
auto iter1 = idZeroCopyBufInfoMap_.find(ptr);
|
||
|
CHECK(iter1 != idZeroCopyBufInfoMap_.end());
|
||
|
if (0 == --iter1->second.count_) {
|
||
|
idZeroCopyBufInfoMap_.erase(iter1);
|
||
|
}
|
||
|
|
||
|
idZeroCopyBufPtrMap_.erase(iter);
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::setZeroCopyBuf(std::unique_ptr<folly::IOBuf>&& buf) {
|
||
|
folly::IOBuf* ptr = buf.get();
|
||
|
auto& p = idZeroCopyBufInfoMap_[ptr];
|
||
|
CHECK(p.buf_.get() == nullptr);
|
||
|
|
||
|
p.buf_ = std::move(buf);
|
||
|
}
|
||
|
|
||
|
bool AsyncSocket::containsZeroCopyBuf(folly::IOBuf* ptr) {
|
||
|
return (idZeroCopyBufInfoMap_.find(ptr) != idZeroCopyBufInfoMap_.end());
|
||
|
}
|
||
|
|
||
|
bool AsyncSocket::isZeroCopyMsg(const cmsghdr& cmsg) const {
|
||
|
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
|
||
|
if ((cmsg.cmsg_level == SOL_IP && cmsg.cmsg_type == IP_RECVERR) ||
|
||
|
(cmsg.cmsg_level == SOL_IPV6 && cmsg.cmsg_type == IPV6_RECVERR)) {
|
||
|
auto serr =
|
||
|
reinterpret_cast<const struct sock_extended_err*>(CMSG_DATA(&cmsg));
|
||
|
return (
|
||
|
(serr->ee_errno == 0) && (serr->ee_origin == SO_EE_ORIGIN_ZEROCOPY));
|
||
|
}
|
||
|
#endif
|
||
|
(void)cmsg;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::processZeroCopyMsg(const cmsghdr& cmsg) {
|
||
|
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
|
||
|
auto serr =
|
||
|
reinterpret_cast<const struct sock_extended_err*>(CMSG_DATA(&cmsg));
|
||
|
uint32_t hi = serr->ee_data;
|
||
|
uint32_t lo = serr->ee_info;
|
||
|
// disable zero copy if the buffer was actually copied
|
||
|
if ((serr->ee_code & SO_EE_CODE_ZEROCOPY_COPIED) && zeroCopyEnabled_) {
|
||
|
VLOG(2) << "AsyncSocket::processZeroCopyMsg(): setting "
|
||
|
<< "zeroCopyEnabled_ = false due to SO_EE_CODE_ZEROCOPY_COPIED "
|
||
|
<< "on " << fd_;
|
||
|
zeroCopyEnabled_ = false;
|
||
|
}
|
||
|
|
||
|
for (uint32_t i = lo; i <= hi; i++) {
|
||
|
releaseZeroCopyBuf(i);
|
||
|
}
|
||
|
#else
|
||
|
(void)cmsg;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::write(
|
||
|
WriteCallback* callback,
|
||
|
const void* buf,
|
||
|
size_t bytes,
|
||
|
WriteFlags flags) {
|
||
|
iovec op;
|
||
|
op.iov_base = const_cast<void*>(buf);
|
||
|
op.iov_len = bytes;
|
||
|
writeImpl(callback, &op, 1, unique_ptr<IOBuf>(), bytes, flags);
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::writev(
|
||
|
WriteCallback* callback,
|
||
|
const iovec* vec,
|
||
|
size_t count,
|
||
|
WriteFlags flags) {
|
||
|
size_t totalBytes = 0;
|
||
|
for (size_t i = 0; i < count; ++i) {
|
||
|
totalBytes += vec[i].iov_len;
|
||
|
}
|
||
|
writeImpl(callback, vec, count, unique_ptr<IOBuf>(), totalBytes, flags);
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::writeChain(
|
||
|
WriteCallback* callback,
|
||
|
unique_ptr<IOBuf>&& buf,
|
||
|
WriteFlags flags) {
|
||
|
adjustZeroCopyFlags(flags);
|
||
|
|
||
|
// adjustZeroCopyFlags can set zeroCopyEnabled_ to true
|
||
|
if (zeroCopyEnabled_ && !isSet(flags, WriteFlags::WRITE_MSG_ZEROCOPY) &&
|
||
|
zeroCopyEnableFunc_ && zeroCopyEnableFunc_(buf)) {
|
||
|
flags |= WriteFlags::WRITE_MSG_ZEROCOPY;
|
||
|
}
|
||
|
|
||
|
constexpr size_t kSmallSizeMax = 64;
|
||
|
size_t count = buf->countChainElements();
|
||
|
if (count <= kSmallSizeMax) {
|
||
|
// suppress "warning: variable length array 'vec' is used [-Wvla]"
|
||
|
FOLLY_PUSH_WARNING
|
||
|
FOLLY_GNU_DISABLE_WARNING("-Wvla")
|
||
|
iovec vec[BOOST_PP_IF(FOLLY_HAVE_VLA_01, count, kSmallSizeMax)];
|
||
|
FOLLY_POP_WARNING
|
||
|
|
||
|
writeChainImpl(callback, vec, count, std::move(buf), flags);
|
||
|
} else {
|
||
|
std::unique_ptr<iovec[]> vec(new iovec[count]);
|
||
|
writeChainImpl(callback, vec.get(), count, std::move(buf), flags);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::writeChainImpl(
|
||
|
WriteCallback* callback,
|
||
|
iovec* vec,
|
||
|
size_t count,
|
||
|
unique_ptr<IOBuf>&& buf,
|
||
|
WriteFlags flags) {
|
||
|
auto res = buf->fillIov(vec, count);
|
||
|
writeImpl(
|
||
|
callback, vec, res.numIovecs, std::move(buf), res.totalLength, flags);
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::writeImpl(
|
||
|
WriteCallback* callback,
|
||
|
const iovec* vec,
|
||
|
size_t count,
|
||
|
unique_ptr<IOBuf>&& buf,
|
||
|
size_t totalBytes,
|
||
|
WriteFlags flags) {
|
||
|
VLOG(6) << "AsyncSocket::writev() this=" << this << ", fd=" << fd_
|
||
|
<< ", callback=" << callback << ", count=" << count
|
||
|
<< ", state=" << state_;
|
||
|
DestructorGuard dg(this);
|
||
|
unique_ptr<IOBuf> ioBuf(std::move(buf));
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
|
||
|
totalAppBytesScheduledForWrite_ += totalBytes;
|
||
|
|
||
|
if (shutdownFlags_ & (SHUT_WRITE | SHUT_WRITE_PENDING)) {
|
||
|
// No new writes may be performed after the write side of the socket has
|
||
|
// been shutdown.
|
||
|
//
|
||
|
// We could just call callback->writeError() here to fail just this write.
|
||
|
// However, fail hard and use invalidState() to fail all outstanding
|
||
|
// callbacks and move the socket into the error state. There's most likely
|
||
|
// a bug in the caller's code, so we abort everything rather than trying to
|
||
|
// proceed as best we can.
|
||
|
return invalidState(callback);
|
||
|
}
|
||
|
|
||
|
uint32_t countWritten = 0;
|
||
|
uint32_t partialWritten = 0;
|
||
|
ssize_t bytesWritten = 0;
|
||
|
bool mustRegister = false;
|
||
|
if ((state_ == StateEnum::ESTABLISHED || state_ == StateEnum::FAST_OPEN) &&
|
||
|
!connecting()) {
|
||
|
if (writeReqHead_ == nullptr) {
|
||
|
// If we are established and there are no other writes pending,
|
||
|
// we can attempt to perform the write immediately.
|
||
|
assert(writeReqTail_ == nullptr);
|
||
|
assert((eventFlags_ & EventHandler::WRITE) == 0);
|
||
|
|
||
|
auto writeResult = performWrite(
|
||
|
vec, uint32_t(count), flags, &countWritten, &partialWritten);
|
||
|
bytesWritten = writeResult.writeReturn;
|
||
|
if (bytesWritten < 0) {
|
||
|
auto errnoCopy = errno;
|
||
|
if (writeResult.exception) {
|
||
|
return failWrite(__func__, callback, 0, *writeResult.exception);
|
||
|
}
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("writev failed"),
|
||
|
errnoCopy);
|
||
|
return failWrite(__func__, callback, 0, ex);
|
||
|
} else if (countWritten == count) {
|
||
|
// done, add the whole buffer
|
||
|
if (countWritten && isZeroCopyRequest(flags)) {
|
||
|
addZeroCopyBuf(std::move(ioBuf));
|
||
|
}
|
||
|
// We successfully wrote everything.
|
||
|
// Invoke the callback and return.
|
||
|
if (callback) {
|
||
|
callback->writeSuccess();
|
||
|
}
|
||
|
return;
|
||
|
} else { // continue writing the next writeReq
|
||
|
// add just the ptr
|
||
|
if (bytesWritten && isZeroCopyRequest(flags)) {
|
||
|
addZeroCopyBuf(ioBuf.get());
|
||
|
}
|
||
|
}
|
||
|
if (!connecting()) {
|
||
|
// Writes might put the socket back into connecting state
|
||
|
// if TFO is enabled, and using TFO fails.
|
||
|
// This means that write timeouts would not be active, however
|
||
|
// connect timeouts would affect this stage.
|
||
|
mustRegister = true;
|
||
|
}
|
||
|
}
|
||
|
} else if (!connecting()) {
|
||
|
// Invalid state for writing
|
||
|
return invalidState(callback);
|
||
|
}
|
||
|
|
||
|
// Create a new WriteRequest to add to the queue
|
||
|
WriteRequest* req;
|
||
|
try {
|
||
|
req = BytesWriteRequest::newRequest(
|
||
|
this,
|
||
|
callback,
|
||
|
vec + countWritten,
|
||
|
uint32_t(count - countWritten),
|
||
|
partialWritten,
|
||
|
uint32_t(bytesWritten),
|
||
|
std::move(ioBuf),
|
||
|
flags);
|
||
|
} catch (const std::exception& ex) {
|
||
|
// we mainly expect to catch std::bad_alloc here
|
||
|
AsyncSocketException tex(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr(string("failed to append new WriteRequest: ") + ex.what()));
|
||
|
return failWrite(__func__, callback, size_t(bytesWritten), tex);
|
||
|
}
|
||
|
req->consume();
|
||
|
if (writeReqTail_ == nullptr) {
|
||
|
assert(writeReqHead_ == nullptr);
|
||
|
writeReqHead_ = writeReqTail_ = req;
|
||
|
} else {
|
||
|
writeReqTail_->append(req);
|
||
|
writeReqTail_ = req;
|
||
|
}
|
||
|
|
||
|
if (bufferCallback_) {
|
||
|
bufferCallback_->onEgressBuffered();
|
||
|
}
|
||
|
|
||
|
// Register for write events if are established and not currently
|
||
|
// waiting on write events
|
||
|
if (mustRegister) {
|
||
|
assert(state_ == StateEnum::ESTABLISHED);
|
||
|
assert((eventFlags_ & EventHandler::WRITE) == 0);
|
||
|
if (!updateEventRegistration(EventHandler::WRITE, 0)) {
|
||
|
assert(state_ == StateEnum::ERROR);
|
||
|
return;
|
||
|
}
|
||
|
if (sendTimeout_ > 0) {
|
||
|
// Schedule a timeout to fire if the write takes too long.
|
||
|
if (!writeTimeout_.scheduleTimeout(sendTimeout_)) {
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("failed to schedule send timeout"));
|
||
|
return failWrite(__func__, ex);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::writeRequest(WriteRequest* req) {
|
||
|
if (writeReqTail_ == nullptr) {
|
||
|
assert(writeReqHead_ == nullptr);
|
||
|
writeReqHead_ = writeReqTail_ = req;
|
||
|
req->start();
|
||
|
} else {
|
||
|
writeReqTail_->append(req);
|
||
|
writeReqTail_ = req;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::close() {
|
||
|
VLOG(5) << "AsyncSocket::close(): this=" << this << ", fd_=" << fd_
|
||
|
<< ", state=" << state_ << ", shutdownFlags=" << std::hex
|
||
|
<< (int)shutdownFlags_;
|
||
|
|
||
|
// close() is only different from closeNow() when there are pending writes
|
||
|
// that need to drain before we can close. In all other cases, just call
|
||
|
// closeNow().
|
||
|
//
|
||
|
// Note that writeReqHead_ can be non-nullptr even in STATE_CLOSED or
|
||
|
// STATE_ERROR if close() is invoked while a previous closeNow() or failure
|
||
|
// is still running. (e.g., If there are multiple pending writes, and we
|
||
|
// call writeError() on the first one, it may call close(). In this case we
|
||
|
// will already be in STATE_CLOSED or STATE_ERROR, but the remaining pending
|
||
|
// writes will still be in the queue.)
|
||
|
//
|
||
|
// We only need to drain pending writes if we are still in STATE_CONNECTING
|
||
|
// or STATE_ESTABLISHED
|
||
|
if ((writeReqHead_ == nullptr) ||
|
||
|
!(state_ == StateEnum::CONNECTING || state_ == StateEnum::ESTABLISHED)) {
|
||
|
closeNow();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Declare a DestructorGuard to ensure that the AsyncSocket cannot be
|
||
|
// destroyed until close() returns.
|
||
|
DestructorGuard dg(this);
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
|
||
|
// Since there are write requests pending, we have to set the
|
||
|
// SHUT_WRITE_PENDING flag, and wait to perform the real close until the
|
||
|
// connect finishes and we finish writing these requests.
|
||
|
//
|
||
|
// Set SHUT_READ to indicate that reads are shut down, and set the
|
||
|
// SHUT_WRITE_PENDING flag to mark that we want to shutdown once the
|
||
|
// pending writes complete.
|
||
|
shutdownFlags_ |= (SHUT_READ | SHUT_WRITE_PENDING);
|
||
|
|
||
|
// If a read callback is set, invoke readEOF() immediately to inform it that
|
||
|
// the socket has been closed and no more data can be read.
|
||
|
if (readCallback_) {
|
||
|
// Disable reads if they are enabled
|
||
|
if (!updateEventRegistration(0, EventHandler::READ)) {
|
||
|
// We're now in the error state; callbacks have been cleaned up
|
||
|
assert(state_ == StateEnum::ERROR);
|
||
|
assert(readCallback_ == nullptr);
|
||
|
} else {
|
||
|
ReadCallback* callback = readCallback_;
|
||
|
readCallback_ = nullptr;
|
||
|
callback->readEOF();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::closeNow() {
|
||
|
VLOG(5) << "AsyncSocket::closeNow(): this=" << this << ", fd_=" << fd_
|
||
|
<< ", state=" << state_ << ", shutdownFlags=" << std::hex
|
||
|
<< (int)shutdownFlags_;
|
||
|
DestructorGuard dg(this);
|
||
|
if (eventBase_) {
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
}
|
||
|
|
||
|
switch (state_) {
|
||
|
case StateEnum::ESTABLISHED:
|
||
|
case StateEnum::CONNECTING:
|
||
|
case StateEnum::FAST_OPEN: {
|
||
|
shutdownFlags_ |= (SHUT_READ | SHUT_WRITE);
|
||
|
state_ = StateEnum::CLOSED;
|
||
|
|
||
|
// If the write timeout was set, cancel it.
|
||
|
writeTimeout_.cancelTimeout();
|
||
|
|
||
|
// If we are registered for I/O events, unregister.
|
||
|
if (eventFlags_ != EventHandler::NONE) {
|
||
|
eventFlags_ = EventHandler::NONE;
|
||
|
if (!updateEventRegistration()) {
|
||
|
// We will have been moved into the error state.
|
||
|
assert(state_ == StateEnum::ERROR);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (immediateReadHandler_.isLoopCallbackScheduled()) {
|
||
|
immediateReadHandler_.cancelLoopCallback();
|
||
|
}
|
||
|
|
||
|
if (fd_ != NetworkSocket()) {
|
||
|
ioHandler_.changeHandlerFD(NetworkSocket());
|
||
|
doClose();
|
||
|
}
|
||
|
|
||
|
invokeConnectErr(socketClosedLocallyEx);
|
||
|
|
||
|
failAllWrites(socketClosedLocallyEx);
|
||
|
|
||
|
if (readCallback_) {
|
||
|
ReadCallback* callback = readCallback_;
|
||
|
readCallback_ = nullptr;
|
||
|
callback->readEOF();
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
case StateEnum::CLOSED:
|
||
|
// Do nothing. It's possible that we are being called recursively
|
||
|
// from inside a callback that we invoked inside another call to close()
|
||
|
// that is still running.
|
||
|
return;
|
||
|
case StateEnum::ERROR:
|
||
|
// Do nothing. The error handling code has performed (or is performing)
|
||
|
// cleanup.
|
||
|
return;
|
||
|
case StateEnum::UNINIT:
|
||
|
assert(eventFlags_ == EventHandler::NONE);
|
||
|
assert(connectCallback_ == nullptr);
|
||
|
assert(readCallback_ == nullptr);
|
||
|
assert(writeReqHead_ == nullptr);
|
||
|
shutdownFlags_ |= (SHUT_READ | SHUT_WRITE);
|
||
|
state_ = StateEnum::CLOSED;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
LOG(DFATAL) << "AsyncSocket::closeNow() (this=" << this << ", fd=" << fd_
|
||
|
<< ") called in unknown state " << state_;
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::closeWithReset() {
|
||
|
// Enable SO_LINGER, with the linger timeout set to 0.
|
||
|
// This will trigger a TCP reset when we close the socket.
|
||
|
if (fd_ != NetworkSocket()) {
|
||
|
struct linger optLinger = {1, 0};
|
||
|
if (setSockOpt(SOL_SOCKET, SO_LINGER, &optLinger) != 0) {
|
||
|
VLOG(2) << "AsyncSocket::closeWithReset(): error setting SO_LINGER "
|
||
|
<< "on " << fd_ << ": errno=" << errno;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Then let closeNow() take care of the rest
|
||
|
closeNow();
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::shutdownWrite() {
|
||
|
VLOG(5) << "AsyncSocket::shutdownWrite(): this=" << this << ", fd=" << fd_
|
||
|
<< ", state=" << state_ << ", shutdownFlags=" << std::hex
|
||
|
<< (int)shutdownFlags_;
|
||
|
|
||
|
// If there are no pending writes, shutdownWrite() is identical to
|
||
|
// shutdownWriteNow().
|
||
|
if (writeReqHead_ == nullptr) {
|
||
|
shutdownWriteNow();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
|
||
|
// There are pending writes. Set SHUT_WRITE_PENDING so that the actual
|
||
|
// shutdown will be performed once all writes complete.
|
||
|
shutdownFlags_ |= SHUT_WRITE_PENDING;
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::shutdownWriteNow() {
|
||
|
VLOG(5) << "AsyncSocket::shutdownWriteNow(): this=" << this << ", fd=" << fd_
|
||
|
<< ", state=" << state_ << ", shutdownFlags=" << std::hex
|
||
|
<< (int)shutdownFlags_;
|
||
|
|
||
|
if (shutdownFlags_ & SHUT_WRITE) {
|
||
|
// Writes are already shutdown; nothing else to do.
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// If SHUT_READ is already set, just call closeNow() to completely
|
||
|
// close the socket. This can happen if close() was called with writes
|
||
|
// pending, and then shutdownWriteNow() is called before all pending writes
|
||
|
// complete.
|
||
|
if (shutdownFlags_ & SHUT_READ) {
|
||
|
closeNow();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
DestructorGuard dg(this);
|
||
|
if (eventBase_) {
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
}
|
||
|
|
||
|
switch (static_cast<StateEnum>(state_)) {
|
||
|
case StateEnum::ESTABLISHED: {
|
||
|
shutdownFlags_ |= SHUT_WRITE;
|
||
|
|
||
|
// If the write timeout was set, cancel it.
|
||
|
writeTimeout_.cancelTimeout();
|
||
|
|
||
|
// If we are registered for write events, unregister.
|
||
|
if (!updateEventRegistration(0, EventHandler::WRITE)) {
|
||
|
// We will have been moved into the error state.
|
||
|
assert(state_ == StateEnum::ERROR);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Shutdown writes on the file descriptor
|
||
|
netops::shutdown(fd_, SHUT_WR);
|
||
|
|
||
|
// Immediately fail all write requests
|
||
|
failAllWrites(socketShutdownForWritesEx);
|
||
|
return;
|
||
|
}
|
||
|
case StateEnum::CONNECTING: {
|
||
|
// Set the SHUT_WRITE_PENDING flag.
|
||
|
// When the connection completes, it will check this flag,
|
||
|
// shutdown the write half of the socket, and then set SHUT_WRITE.
|
||
|
shutdownFlags_ |= SHUT_WRITE_PENDING;
|
||
|
|
||
|
// Immediately fail all write requests
|
||
|
failAllWrites(socketShutdownForWritesEx);
|
||
|
return;
|
||
|
}
|
||
|
case StateEnum::UNINIT:
|
||
|
// Callers normally shouldn't call shutdownWriteNow() before the socket
|
||
|
// even starts connecting. Nonetheless, go ahead and set
|
||
|
// SHUT_WRITE_PENDING. Once the socket eventually connects it will
|
||
|
// immediately shut down the write side of the socket.
|
||
|
shutdownFlags_ |= SHUT_WRITE_PENDING;
|
||
|
return;
|
||
|
case StateEnum::FAST_OPEN:
|
||
|
// In fast open state we haven't call connected yet, and if we shutdown
|
||
|
// the writes, we will never try to call connect, so shut everything down
|
||
|
shutdownFlags_ |= SHUT_WRITE;
|
||
|
// Immediately fail all write requests
|
||
|
failAllWrites(socketShutdownForWritesEx);
|
||
|
return;
|
||
|
case StateEnum::CLOSED:
|
||
|
case StateEnum::ERROR:
|
||
|
// We should never get here. SHUT_WRITE should always be set
|
||
|
// in STATE_CLOSED and STATE_ERROR.
|
||
|
VLOG(4) << "AsyncSocket::shutdownWriteNow() (this=" << this
|
||
|
<< ", fd=" << fd_ << ") in unexpected state " << state_
|
||
|
<< " with SHUT_WRITE not set (" << std::hex << (int)shutdownFlags_
|
||
|
<< ")";
|
||
|
assert(false);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
LOG(DFATAL) << "AsyncSocket::shutdownWriteNow() (this=" << this
|
||
|
<< ", fd=" << fd_ << ") called in unknown state " << state_;
|
||
|
}
|
||
|
|
||
|
bool AsyncSocket::readable() const {
|
||
|
if (fd_ == NetworkSocket()) {
|
||
|
return false;
|
||
|
}
|
||
|
netops::PollDescriptor fds[1];
|
||
|
fds[0].fd = fd_;
|
||
|
fds[0].events = POLLIN;
|
||
|
fds[0].revents = 0;
|
||
|
int rc = netops::poll(fds, 1, 0);
|
||
|
return rc == 1;
|
||
|
}
|
||
|
|
||
|
bool AsyncSocket::writable() const {
|
||
|
if (fd_ == NetworkSocket()) {
|
||
|
return false;
|
||
|
}
|
||
|
netops::PollDescriptor fds[1];
|
||
|
fds[0].fd = fd_;
|
||
|
fds[0].events = POLLOUT;
|
||
|
fds[0].revents = 0;
|
||
|
int rc = netops::poll(fds, 1, 0);
|
||
|
return rc == 1;
|
||
|
}
|
||
|
|
||
|
bool AsyncSocket::isPending() const {
|
||
|
return ioHandler_.isPending();
|
||
|
}
|
||
|
|
||
|
bool AsyncSocket::hangup() const {
|
||
|
if (fd_ == NetworkSocket()) {
|
||
|
// sanity check, no one should ask for hangup if we are not connected.
|
||
|
assert(false);
|
||
|
return false;
|
||
|
}
|
||
|
#ifdef POLLRDHUP // Linux-only
|
||
|
netops::PollDescriptor fds[1];
|
||
|
fds[0].fd = fd_;
|
||
|
fds[0].events = POLLRDHUP | POLLHUP;
|
||
|
fds[0].revents = 0;
|
||
|
netops::poll(fds, 1, 0);
|
||
|
return (fds[0].revents & (POLLRDHUP | POLLHUP)) != 0;
|
||
|
#else
|
||
|
return false;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
bool AsyncSocket::good() const {
|
||
|
return (
|
||
|
(state_ == StateEnum::CONNECTING || state_ == StateEnum::FAST_OPEN ||
|
||
|
state_ == StateEnum::ESTABLISHED) &&
|
||
|
(shutdownFlags_ == 0) && (eventBase_ != nullptr));
|
||
|
}
|
||
|
|
||
|
bool AsyncSocket::error() const {
|
||
|
return (state_ == StateEnum::ERROR);
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::attachEventBase(EventBase* eventBase) {
|
||
|
VLOG(5) << "AsyncSocket::attachEventBase(this=" << this << ", fd=" << fd_
|
||
|
<< ", old evb=" << eventBase_ << ", new evb=" << eventBase
|
||
|
<< ", state=" << state_ << ", events=" << std::hex << eventFlags_
|
||
|
<< ")";
|
||
|
assert(eventBase_ == nullptr);
|
||
|
eventBase->dcheckIsInEventBaseThread();
|
||
|
|
||
|
eventBase_ = eventBase;
|
||
|
ioHandler_.attachEventBase(eventBase);
|
||
|
|
||
|
updateEventRegistration();
|
||
|
|
||
|
writeTimeout_.attachEventBase(eventBase);
|
||
|
if (evbChangeCb_) {
|
||
|
evbChangeCb_->evbAttached(this);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::detachEventBase() {
|
||
|
VLOG(5) << "AsyncSocket::detachEventBase(this=" << this << ", fd=" << fd_
|
||
|
<< ", old evb=" << eventBase_ << ", state=" << state_
|
||
|
<< ", events=" << std::hex << eventFlags_ << ")";
|
||
|
assert(eventBase_ != nullptr);
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
|
||
|
eventBase_ = nullptr;
|
||
|
|
||
|
ioHandler_.unregisterHandler();
|
||
|
|
||
|
ioHandler_.detachEventBase();
|
||
|
writeTimeout_.detachEventBase();
|
||
|
if (evbChangeCb_) {
|
||
|
evbChangeCb_->evbDetached(this);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool AsyncSocket::isDetachable() const {
|
||
|
DCHECK(eventBase_ != nullptr);
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
|
||
|
return !writeTimeout_.isScheduled();
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::cacheAddresses() {
|
||
|
if (fd_ != NetworkSocket()) {
|
||
|
try {
|
||
|
cacheLocalAddress();
|
||
|
cachePeerAddress();
|
||
|
} catch (const std::system_error& e) {
|
||
|
if (e.code() != std::error_code(ENOTCONN, std::system_category())) {
|
||
|
VLOG(2) << "Error caching addresses: " << e.code().value() << ", "
|
||
|
<< e.code().message();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::cacheLocalAddress() const {
|
||
|
if (!localAddr_.isInitialized()) {
|
||
|
localAddr_.setFromLocalAddress(fd_);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::cachePeerAddress() const {
|
||
|
if (!addr_.isInitialized()) {
|
||
|
addr_.setFromPeerAddress(fd_);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::applyOptions(
|
||
|
const SocketOptionMap& options,
|
||
|
SocketOptionKey::ApplyPos pos) {
|
||
|
auto result = applySocketOptions(fd_, options, pos);
|
||
|
if (result != 0) {
|
||
|
throw AsyncSocketException(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("failed to set socket option"),
|
||
|
result);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool AsyncSocket::isZeroCopyWriteInProgress() const noexcept {
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
return (!idZeroCopyBufPtrMap_.empty());
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::getLocalAddress(folly::SocketAddress* address) const {
|
||
|
cacheLocalAddress();
|
||
|
*address = localAddr_;
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::getPeerAddress(folly::SocketAddress* address) const {
|
||
|
cachePeerAddress();
|
||
|
*address = addr_;
|
||
|
}
|
||
|
|
||
|
bool AsyncSocket::getTFOSucceded() const {
|
||
|
return detail::tfo_succeeded(fd_);
|
||
|
}
|
||
|
|
||
|
int AsyncSocket::setNoDelay(bool noDelay) {
|
||
|
if (fd_ == NetworkSocket()) {
|
||
|
VLOG(4) << "AsyncSocket::setNoDelay() called on non-open socket " << this
|
||
|
<< "(state=" << state_ << ")";
|
||
|
return EINVAL;
|
||
|
}
|
||
|
|
||
|
int value = noDelay ? 1 : 0;
|
||
|
if (netops::setsockopt(
|
||
|
fd_, IPPROTO_TCP, TCP_NODELAY, &value, sizeof(value)) != 0) {
|
||
|
int errnoCopy = errno;
|
||
|
VLOG(2) << "failed to update TCP_NODELAY option on AsyncSocket " << this
|
||
|
<< " (fd=" << fd_ << ", state=" << state_
|
||
|
<< "): " << errnoStr(errnoCopy);
|
||
|
return errnoCopy;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int AsyncSocket::setCongestionFlavor(const std::string& cname) {
|
||
|
#ifndef TCP_CONGESTION
|
||
|
#define TCP_CONGESTION 13
|
||
|
#endif
|
||
|
|
||
|
if (fd_ == NetworkSocket()) {
|
||
|
VLOG(4) << "AsyncSocket::setCongestionFlavor() called on non-open "
|
||
|
<< "socket " << this << "(state=" << state_ << ")";
|
||
|
return EINVAL;
|
||
|
}
|
||
|
|
||
|
if (netops::setsockopt(
|
||
|
fd_,
|
||
|
IPPROTO_TCP,
|
||
|
TCP_CONGESTION,
|
||
|
cname.c_str(),
|
||
|
socklen_t(cname.length() + 1)) != 0) {
|
||
|
int errnoCopy = errno;
|
||
|
VLOG(2) << "failed to update TCP_CONGESTION option on AsyncSocket " << this
|
||
|
<< "(fd=" << fd_ << ", state=" << state_
|
||
|
<< "): " << errnoStr(errnoCopy);
|
||
|
return errnoCopy;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int AsyncSocket::setQuickAck(bool quickack) {
|
||
|
(void)quickack;
|
||
|
if (fd_ == NetworkSocket()) {
|
||
|
VLOG(4) << "AsyncSocket::setQuickAck() called on non-open socket " << this
|
||
|
<< "(state=" << state_ << ")";
|
||
|
return EINVAL;
|
||
|
}
|
||
|
|
||
|
#ifdef TCP_QUICKACK // Linux-only
|
||
|
int value = quickack ? 1 : 0;
|
||
|
if (netops::setsockopt(
|
||
|
fd_, IPPROTO_TCP, TCP_QUICKACK, &value, sizeof(value)) != 0) {
|
||
|
int errnoCopy = errno;
|
||
|
VLOG(2) << "failed to update TCP_QUICKACK option on AsyncSocket" << this
|
||
|
<< "(fd=" << fd_ << ", state=" << state_
|
||
|
<< "): " << errnoStr(errnoCopy);
|
||
|
return errnoCopy;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
#else
|
||
|
return ENOSYS;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
int AsyncSocket::setSendBufSize(size_t bufsize) {
|
||
|
if (fd_ == NetworkSocket()) {
|
||
|
VLOG(4) << "AsyncSocket::setSendBufSize() called on non-open socket "
|
||
|
<< this << "(state=" << state_ << ")";
|
||
|
return EINVAL;
|
||
|
}
|
||
|
|
||
|
if (netops::setsockopt(
|
||
|
fd_, SOL_SOCKET, SO_SNDBUF, &bufsize, sizeof(bufsize)) != 0) {
|
||
|
int errnoCopy = errno;
|
||
|
VLOG(2) << "failed to update SO_SNDBUF option on AsyncSocket" << this
|
||
|
<< "(fd=" << fd_ << ", state=" << state_
|
||
|
<< "): " << errnoStr(errnoCopy);
|
||
|
return errnoCopy;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int AsyncSocket::setRecvBufSize(size_t bufsize) {
|
||
|
if (fd_ == NetworkSocket()) {
|
||
|
VLOG(4) << "AsyncSocket::setRecvBufSize() called on non-open socket "
|
||
|
<< this << "(state=" << state_ << ")";
|
||
|
return EINVAL;
|
||
|
}
|
||
|
|
||
|
if (netops::setsockopt(
|
||
|
fd_, SOL_SOCKET, SO_RCVBUF, &bufsize, sizeof(bufsize)) != 0) {
|
||
|
int errnoCopy = errno;
|
||
|
VLOG(2) << "failed to update SO_RCVBUF option on AsyncSocket" << this
|
||
|
<< "(fd=" << fd_ << ", state=" << state_
|
||
|
<< "): " << errnoStr(errnoCopy);
|
||
|
return errnoCopy;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#if defined(__linux__)
|
||
|
size_t AsyncSocket::getSendBufInUse() const {
|
||
|
if (fd_ == NetworkSocket()) {
|
||
|
std::stringstream issueString;
|
||
|
issueString << "AsyncSocket::getSendBufInUse() called on non-open socket "
|
||
|
<< this << "(state=" << state_ << ")";
|
||
|
VLOG(4) << issueString.str();
|
||
|
throw std::logic_error(issueString.str());
|
||
|
}
|
||
|
|
||
|
size_t returnValue = 0;
|
||
|
if (-1 == ::ioctl(fd_.toFd(), SIOCOUTQ, &returnValue)) {
|
||
|
int errnoCopy = errno;
|
||
|
std::stringstream issueString;
|
||
|
issueString << "Failed to get the tx used bytes on Socket: " << this
|
||
|
<< "(fd=" << fd_ << ", state=" << state_
|
||
|
<< "): " << errnoStr(errnoCopy);
|
||
|
VLOG(2) << issueString.str();
|
||
|
throw std::logic_error(issueString.str());
|
||
|
}
|
||
|
|
||
|
return returnValue;
|
||
|
}
|
||
|
|
||
|
size_t AsyncSocket::getRecvBufInUse() const {
|
||
|
if (fd_ == NetworkSocket()) {
|
||
|
std::stringstream issueString;
|
||
|
issueString << "AsyncSocket::getRecvBufInUse() called on non-open socket "
|
||
|
<< this << "(state=" << state_ << ")";
|
||
|
VLOG(4) << issueString.str();
|
||
|
throw std::logic_error(issueString.str());
|
||
|
}
|
||
|
|
||
|
size_t returnValue = 0;
|
||
|
if (-1 == ::ioctl(fd_.toFd(), SIOCINQ, &returnValue)) {
|
||
|
std::stringstream issueString;
|
||
|
int errnoCopy = errno;
|
||
|
issueString << "Failed to get the rx used bytes on Socket: " << this
|
||
|
<< "(fd=" << fd_ << ", state=" << state_
|
||
|
<< "): " << errnoStr(errnoCopy);
|
||
|
VLOG(2) << issueString.str();
|
||
|
throw std::logic_error(issueString.str());
|
||
|
}
|
||
|
|
||
|
return returnValue;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
int AsyncSocket::setTCPProfile(int profd) {
|
||
|
if (fd_ == NetworkSocket()) {
|
||
|
VLOG(4) << "AsyncSocket::setTCPProfile() called on non-open socket " << this
|
||
|
<< "(state=" << state_ << ")";
|
||
|
return EINVAL;
|
||
|
}
|
||
|
|
||
|
if (netops::setsockopt(
|
||
|
fd_, SOL_SOCKET, SO_SET_NAMESPACE, &profd, sizeof(int)) != 0) {
|
||
|
int errnoCopy = errno;
|
||
|
VLOG(2) << "failed to set socket namespace option on AsyncSocket" << this
|
||
|
<< "(fd=" << fd_ << ", state=" << state_
|
||
|
<< "): " << errnoStr(errnoCopy);
|
||
|
return errnoCopy;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::ioReady(uint16_t events) noexcept {
|
||
|
VLOG(7) << "AsyncSocket::ioRead() this=" << this << ", fd=" << fd_
|
||
|
<< ", events=" << std::hex << events << ", state=" << state_;
|
||
|
DestructorGuard dg(this);
|
||
|
assert(events & EventHandler::READ_WRITE);
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
|
||
|
auto relevantEvents = uint16_t(events & EventHandler::READ_WRITE);
|
||
|
EventBase* originalEventBase = eventBase_;
|
||
|
// If we got there it means that either EventHandler::READ or
|
||
|
// EventHandler::WRITE is set. Any of these flags can
|
||
|
// indicate that there are messages available in the socket
|
||
|
// error message queue.
|
||
|
// Return if we handle any error messages - this is to avoid
|
||
|
// unnecessary read/write calls
|
||
|
if (handleErrMessages()) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Return now if handleErrMessages() detached us from our EventBase
|
||
|
if (eventBase_ != originalEventBase) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (relevantEvents == EventHandler::READ) {
|
||
|
handleRead();
|
||
|
} else if (relevantEvents == EventHandler::WRITE) {
|
||
|
handleWrite();
|
||
|
} else if (relevantEvents == EventHandler::READ_WRITE) {
|
||
|
// If both read and write events are ready, process writes first.
|
||
|
handleWrite();
|
||
|
|
||
|
// Return now if handleWrite() detached us from our EventBase
|
||
|
if (eventBase_ != originalEventBase) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Only call handleRead() if a read callback is still installed.
|
||
|
// (It's possible that the read callback was uninstalled during
|
||
|
// handleWrite().)
|
||
|
if (readCallback_) {
|
||
|
handleRead();
|
||
|
}
|
||
|
} else {
|
||
|
VLOG(4) << "AsyncSocket::ioRead() called with unexpected events "
|
||
|
<< std::hex << events << "(this=" << this << ")";
|
||
|
abort();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
AsyncSocket::ReadResult
|
||
|
AsyncSocket::performRead(void** buf, size_t* buflen, size_t* /* offset */) {
|
||
|
VLOG(5) << "AsyncSocket::performRead() this=" << this << ", buf=" << *buf
|
||
|
<< ", buflen=" << *buflen;
|
||
|
|
||
|
if (preReceivedData_ && !preReceivedData_->empty()) {
|
||
|
VLOG(5) << "AsyncSocket::performRead() this=" << this
|
||
|
<< ", reading pre-received data";
|
||
|
|
||
|
io::Cursor cursor(preReceivedData_.get());
|
||
|
auto len = cursor.pullAtMost(*buf, *buflen);
|
||
|
|
||
|
IOBufQueue queue;
|
||
|
queue.append(std::move(preReceivedData_));
|
||
|
queue.trimStart(len);
|
||
|
preReceivedData_ = queue.move();
|
||
|
|
||
|
appBytesReceived_ += len;
|
||
|
return ReadResult(len);
|
||
|
}
|
||
|
|
||
|
ssize_t bytes = netops::recv(fd_, *buf, *buflen, MSG_DONTWAIT);
|
||
|
if (bytes < 0) {
|
||
|
if (errno == EAGAIN || errno == EWOULDBLOCK) {
|
||
|
// No more data to read right now.
|
||
|
return ReadResult(READ_BLOCKING);
|
||
|
} else {
|
||
|
return ReadResult(READ_ERROR);
|
||
|
}
|
||
|
} else {
|
||
|
appBytesReceived_ += bytes;
|
||
|
return ReadResult(bytes);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::prepareReadBuffer(void** buf, size_t* buflen) {
|
||
|
// no matter what, buffer should be preapared for non-ssl socket
|
||
|
CHECK(readCallback_);
|
||
|
readCallback_->getReadBuffer(buf, buflen);
|
||
|
}
|
||
|
|
||
|
size_t AsyncSocket::handleErrMessages() noexcept {
|
||
|
// This method has non-empty implementation only for platforms
|
||
|
// supporting per-socket error queues.
|
||
|
VLOG(5) << "AsyncSocket::handleErrMessages() this=" << this << ", fd=" << fd_
|
||
|
<< ", state=" << state_;
|
||
|
if (errMessageCallback_ == nullptr && idZeroCopyBufPtrMap_.empty()) {
|
||
|
VLOG(7) << "AsyncSocket::handleErrMessages(): "
|
||
|
<< "no callback installed - exiting.";
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#ifdef FOLLY_HAVE_MSG_ERRQUEUE
|
||
|
uint8_t ctrl[1024];
|
||
|
unsigned char data;
|
||
|
struct msghdr msg;
|
||
|
iovec entry;
|
||
|
|
||
|
entry.iov_base = &data;
|
||
|
entry.iov_len = sizeof(data);
|
||
|
msg.msg_iov = &entry;
|
||
|
msg.msg_iovlen = 1;
|
||
|
msg.msg_name = nullptr;
|
||
|
msg.msg_namelen = 0;
|
||
|
msg.msg_control = ctrl;
|
||
|
msg.msg_controllen = sizeof(ctrl);
|
||
|
msg.msg_flags = 0;
|
||
|
|
||
|
int ret;
|
||
|
size_t num = 0;
|
||
|
// the socket may be closed by errMessage callback, so check on each iteration
|
||
|
while (fd_ != NetworkSocket()) {
|
||
|
ret = netops::recvmsg(fd_, &msg, MSG_ERRQUEUE);
|
||
|
VLOG(5) << "AsyncSocket::handleErrMessages(): recvmsg returned " << ret;
|
||
|
|
||
|
if (ret < 0) {
|
||
|
if (errno != EAGAIN) {
|
||
|
auto errnoCopy = errno;
|
||
|
LOG(ERROR) << "::recvmsg exited with code " << ret
|
||
|
<< ", errno: " << errnoCopy << ", fd: " << fd_;
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("recvmsg() failed"),
|
||
|
errnoCopy);
|
||
|
failErrMessageRead(__func__, ex);
|
||
|
}
|
||
|
|
||
|
return num;
|
||
|
}
|
||
|
|
||
|
for (struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg);
|
||
|
cmsg != nullptr && cmsg->cmsg_len != 0;
|
||
|
cmsg = CMSG_NXTHDR(&msg, cmsg)) {
|
||
|
++num;
|
||
|
if (isZeroCopyMsg(*cmsg)) {
|
||
|
processZeroCopyMsg(*cmsg);
|
||
|
} else {
|
||
|
if (errMessageCallback_) {
|
||
|
errMessageCallback_->errMessage(*cmsg);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return num;
|
||
|
#else
|
||
|
return 0;
|
||
|
#endif // FOLLY_HAVE_MSG_ERRQUEUE
|
||
|
}
|
||
|
|
||
|
bool AsyncSocket::processZeroCopyWriteInProgress() noexcept {
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
if (idZeroCopyBufPtrMap_.empty()) {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
handleErrMessages();
|
||
|
|
||
|
return idZeroCopyBufPtrMap_.empty();
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::handleRead() noexcept {
|
||
|
VLOG(5) << "AsyncSocket::handleRead() this=" << this << ", fd=" << fd_
|
||
|
<< ", state=" << state_;
|
||
|
assert(state_ == StateEnum::ESTABLISHED);
|
||
|
assert((shutdownFlags_ & SHUT_READ) == 0);
|
||
|
assert(readCallback_ != nullptr);
|
||
|
assert(eventFlags_ & EventHandler::READ);
|
||
|
|
||
|
// Loop until:
|
||
|
// - a read attempt would block
|
||
|
// - readCallback_ is uninstalled
|
||
|
// - the number of loop iterations exceeds the optional maximum
|
||
|
// - this AsyncSocket is moved to another EventBase
|
||
|
//
|
||
|
// When we invoke readDataAvailable() it may uninstall the readCallback_,
|
||
|
// which is why need to check for it here.
|
||
|
//
|
||
|
// The last bullet point is slightly subtle. readDataAvailable() may also
|
||
|
// detach this socket from this EventBase. However, before
|
||
|
// readDataAvailable() returns another thread may pick it up, attach it to
|
||
|
// a different EventBase, and install another readCallback_. We need to
|
||
|
// exit immediately after readDataAvailable() returns if the eventBase_ has
|
||
|
// changed. (The caller must perform some sort of locking to transfer the
|
||
|
// AsyncSocket between threads properly. This will be sufficient to ensure
|
||
|
// that this thread sees the updated eventBase_ variable after
|
||
|
// readDataAvailable() returns.)
|
||
|
uint16_t numReads = 0;
|
||
|
EventBase* originalEventBase = eventBase_;
|
||
|
while (readCallback_ && eventBase_ == originalEventBase) {
|
||
|
// Get the buffer to read into.
|
||
|
void* buf = nullptr;
|
||
|
size_t buflen = 0, offset = 0;
|
||
|
try {
|
||
|
prepareReadBuffer(&buf, &buflen);
|
||
|
VLOG(5) << "prepareReadBuffer() buf=" << buf << ", buflen=" << buflen;
|
||
|
} catch (const AsyncSocketException& ex) {
|
||
|
return failRead(__func__, ex);
|
||
|
} catch (const std::exception& ex) {
|
||
|
AsyncSocketException tex(
|
||
|
AsyncSocketException::BAD_ARGS,
|
||
|
string("ReadCallback::getReadBuffer() "
|
||
|
"threw exception: ") +
|
||
|
ex.what());
|
||
|
return failRead(__func__, tex);
|
||
|
} catch (...) {
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::BAD_ARGS,
|
||
|
"ReadCallback::getReadBuffer() threw "
|
||
|
"non-exception type");
|
||
|
return failRead(__func__, ex);
|
||
|
}
|
||
|
if (buf == nullptr || buflen == 0) {
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::BAD_ARGS,
|
||
|
"ReadCallback::getReadBuffer() returned "
|
||
|
"empty buffer");
|
||
|
return failRead(__func__, ex);
|
||
|
}
|
||
|
|
||
|
// Perform the read
|
||
|
auto readResult = performRead(&buf, &buflen, &offset);
|
||
|
auto bytesRead = readResult.readReturn;
|
||
|
VLOG(4) << "this=" << this << ", AsyncSocket::handleRead() got "
|
||
|
<< bytesRead << " bytes";
|
||
|
if (bytesRead > 0) {
|
||
|
readCallback_->readDataAvailable(size_t(bytesRead));
|
||
|
|
||
|
// Fall through and continue around the loop if the read
|
||
|
// completely filled the available buffer.
|
||
|
// Note that readCallback_ may have been uninstalled or changed inside
|
||
|
// readDataAvailable().
|
||
|
if (size_t(bytesRead) < buflen) {
|
||
|
return;
|
||
|
}
|
||
|
} else if (bytesRead == READ_BLOCKING) {
|
||
|
// No more data to read right now.
|
||
|
return;
|
||
|
} else if (bytesRead == READ_ERROR) {
|
||
|
readErr_ = READ_ERROR;
|
||
|
if (readResult.exception) {
|
||
|
return failRead(__func__, *readResult.exception);
|
||
|
}
|
||
|
auto errnoCopy = errno;
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("recv() failed"),
|
||
|
errnoCopy);
|
||
|
return failRead(__func__, ex);
|
||
|
} else {
|
||
|
assert(bytesRead == READ_EOF);
|
||
|
readErr_ = READ_EOF;
|
||
|
// EOF
|
||
|
shutdownFlags_ |= SHUT_READ;
|
||
|
if (!updateEventRegistration(0, EventHandler::READ)) {
|
||
|
// we've already been moved into STATE_ERROR
|
||
|
assert(state_ == StateEnum::ERROR);
|
||
|
assert(readCallback_ == nullptr);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
ReadCallback* callback = readCallback_;
|
||
|
readCallback_ = nullptr;
|
||
|
callback->readEOF();
|
||
|
return;
|
||
|
}
|
||
|
if (maxReadsPerEvent_ && (++numReads >= maxReadsPerEvent_)) {
|
||
|
if (readCallback_ != nullptr) {
|
||
|
// We might still have data in the socket.
|
||
|
// (e.g. see comment in AsyncSSLSocket::checkForImmediateRead)
|
||
|
scheduleImmediateRead();
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This function attempts to write as much data as possible, until no more data
|
||
|
* can be written.
|
||
|
*
|
||
|
* - If it sends all available data, it unregisters for write events, and stops
|
||
|
* the writeTimeout_.
|
||
|
*
|
||
|
* - If not all of the data can be sent immediately, it reschedules
|
||
|
* writeTimeout_ (if a non-zero timeout is set), and ensures the handler is
|
||
|
* registered for write events.
|
||
|
*/
|
||
|
void AsyncSocket::handleWrite() noexcept {
|
||
|
VLOG(5) << "AsyncSocket::handleWrite() this=" << this << ", fd=" << fd_
|
||
|
<< ", state=" << state_;
|
||
|
DestructorGuard dg(this);
|
||
|
|
||
|
if (state_ == StateEnum::CONNECTING) {
|
||
|
handleConnect();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Normal write
|
||
|
assert(state_ == StateEnum::ESTABLISHED);
|
||
|
assert((shutdownFlags_ & SHUT_WRITE) == 0);
|
||
|
assert(writeReqHead_ != nullptr);
|
||
|
|
||
|
// Loop until we run out of write requests,
|
||
|
// or until this socket is moved to another EventBase.
|
||
|
// (See the comment in handleRead() explaining how this can happen.)
|
||
|
EventBase* originalEventBase = eventBase_;
|
||
|
while (writeReqHead_ != nullptr && eventBase_ == originalEventBase) {
|
||
|
auto writeResult = writeReqHead_->performWrite();
|
||
|
if (writeResult.writeReturn < 0) {
|
||
|
if (writeResult.exception) {
|
||
|
return failWrite(__func__, *writeResult.exception);
|
||
|
}
|
||
|
auto errnoCopy = errno;
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("writev() failed"),
|
||
|
errnoCopy);
|
||
|
return failWrite(__func__, ex);
|
||
|
} else if (writeReqHead_->isComplete()) {
|
||
|
// We finished this request
|
||
|
WriteRequest* req = writeReqHead_;
|
||
|
writeReqHead_ = req->getNext();
|
||
|
|
||
|
if (writeReqHead_ == nullptr) {
|
||
|
writeReqTail_ = nullptr;
|
||
|
// This is the last write request.
|
||
|
// Unregister for write events and cancel the send timer
|
||
|
// before we invoke the callback. We have to update the state properly
|
||
|
// before calling the callback, since it may want to detach us from
|
||
|
// the EventBase.
|
||
|
if (eventFlags_ & EventHandler::WRITE) {
|
||
|
if (!updateEventRegistration(0, EventHandler::WRITE)) {
|
||
|
assert(state_ == StateEnum::ERROR);
|
||
|
return;
|
||
|
}
|
||
|
// Stop the send timeout
|
||
|
writeTimeout_.cancelTimeout();
|
||
|
}
|
||
|
assert(!writeTimeout_.isScheduled());
|
||
|
|
||
|
// If SHUT_WRITE_PENDING is set, we should shutdown the socket after
|
||
|
// we finish sending the last write request.
|
||
|
//
|
||
|
// We have to do this before invoking writeSuccess(), since
|
||
|
// writeSuccess() may detach us from our EventBase.
|
||
|
if (shutdownFlags_ & SHUT_WRITE_PENDING) {
|
||
|
assert(connectCallback_ == nullptr);
|
||
|
shutdownFlags_ |= SHUT_WRITE;
|
||
|
|
||
|
if (shutdownFlags_ & SHUT_READ) {
|
||
|
// Reads have already been shutdown. Fully close the socket and
|
||
|
// move to STATE_CLOSED.
|
||
|
//
|
||
|
// Note: This code currently moves us to STATE_CLOSED even if
|
||
|
// close() hasn't ever been called. This can occur if we have
|
||
|
// received EOF from the peer and shutdownWrite() has been called
|
||
|
// locally. Should we bother staying in STATE_ESTABLISHED in this
|
||
|
// case, until close() is actually called? I can't think of a
|
||
|
// reason why we would need to do so. No other operations besides
|
||
|
// calling close() or destroying the socket can be performed at
|
||
|
// this point.
|
||
|
assert(readCallback_ == nullptr);
|
||
|
state_ = StateEnum::CLOSED;
|
||
|
if (fd_ != NetworkSocket()) {
|
||
|
ioHandler_.changeHandlerFD(NetworkSocket());
|
||
|
doClose();
|
||
|
}
|
||
|
} else {
|
||
|
// Reads are still enabled, so we are only doing a half-shutdown
|
||
|
netops::shutdown(fd_, SHUT_WR);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Invoke the callback
|
||
|
WriteCallback* callback = req->getCallback();
|
||
|
req->destroy();
|
||
|
if (callback) {
|
||
|
callback->writeSuccess();
|
||
|
}
|
||
|
// We'll continue around the loop, trying to write another request
|
||
|
} else {
|
||
|
// Partial write.
|
||
|
writeReqHead_->consume();
|
||
|
if (bufferCallback_) {
|
||
|
bufferCallback_->onEgressBuffered();
|
||
|
}
|
||
|
// Stop after a partial write; it's highly likely that a subsequent write
|
||
|
// attempt will just return EAGAIN.
|
||
|
//
|
||
|
// Ensure that we are registered for write events.
|
||
|
if ((eventFlags_ & EventHandler::WRITE) == 0) {
|
||
|
if (!updateEventRegistration(EventHandler::WRITE, 0)) {
|
||
|
assert(state_ == StateEnum::ERROR);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Reschedule the send timeout, since we have made some write progress.
|
||
|
if (sendTimeout_ > 0) {
|
||
|
if (!writeTimeout_.scheduleTimeout(sendTimeout_)) {
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("failed to reschedule write timeout"));
|
||
|
return failWrite(__func__, ex);
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
if (!writeReqHead_ && bufferCallback_) {
|
||
|
bufferCallback_->onEgressBufferCleared();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::checkForImmediateRead() noexcept {
|
||
|
// We currently don't attempt to perform optimistic reads in AsyncSocket.
|
||
|
// (However, note that some subclasses do override this method.)
|
||
|
//
|
||
|
// Simply calling handleRead() here would be bad, as this would call
|
||
|
// readCallback_->getReadBuffer(), forcing the callback to allocate a read
|
||
|
// buffer even though no data may be available. This would waste lots of
|
||
|
// memory, since the buffer will sit around unused until the socket actually
|
||
|
// becomes readable.
|
||
|
//
|
||
|
// Checking if the socket is readable now also seems like it would probably
|
||
|
// be a pessimism. In most cases it probably wouldn't be readable, and we
|
||
|
// would just waste an extra system call. Even if it is readable, waiting to
|
||
|
// find out from libevent on the next event loop doesn't seem that bad.
|
||
|
//
|
||
|
// The exception to this is if we have pre-received data. In that case there
|
||
|
// is definitely data available immediately.
|
||
|
if (preReceivedData_ && !preReceivedData_->empty()) {
|
||
|
handleRead();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::handleInitialReadWrite() noexcept {
|
||
|
// Our callers should already be holding a DestructorGuard, but grab
|
||
|
// one here just to make sure, in case one of our calling code paths ever
|
||
|
// changes.
|
||
|
DestructorGuard dg(this);
|
||
|
// If we have a readCallback_, make sure we enable read events. We
|
||
|
// may already be registered for reads if connectSuccess() set
|
||
|
// the read calback.
|
||
|
if (readCallback_ && !(eventFlags_ & EventHandler::READ)) {
|
||
|
assert(state_ == StateEnum::ESTABLISHED);
|
||
|
assert((shutdownFlags_ & SHUT_READ) == 0);
|
||
|
if (!updateEventRegistration(EventHandler::READ, 0)) {
|
||
|
assert(state_ == StateEnum::ERROR);
|
||
|
return;
|
||
|
}
|
||
|
checkForImmediateRead();
|
||
|
} else if (readCallback_ == nullptr) {
|
||
|
// Unregister for read events.
|
||
|
updateEventRegistration(0, EventHandler::READ);
|
||
|
}
|
||
|
|
||
|
// If we have write requests pending, try to send them immediately.
|
||
|
// Since we just finished accepting, there is a very good chance that we can
|
||
|
// write without blocking.
|
||
|
//
|
||
|
// However, we only process them if EventHandler::WRITE is not already set,
|
||
|
// which means that we're already blocked on a write attempt. (This can
|
||
|
// happen if connectSuccess() called write() before returning.)
|
||
|
if (writeReqHead_ && !(eventFlags_ & EventHandler::WRITE)) {
|
||
|
// Call handleWrite() to perform write processing.
|
||
|
handleWrite();
|
||
|
} else if (writeReqHead_ == nullptr) {
|
||
|
// Unregister for write event.
|
||
|
updateEventRegistration(0, EventHandler::WRITE);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::handleConnect() noexcept {
|
||
|
VLOG(5) << "AsyncSocket::handleConnect() this=" << this << ", fd=" << fd_
|
||
|
<< ", state=" << state_;
|
||
|
assert(state_ == StateEnum::CONNECTING);
|
||
|
// SHUT_WRITE can never be set while we are still connecting;
|
||
|
// SHUT_WRITE_PENDING may be set, be we only set SHUT_WRITE once the connect
|
||
|
// finishes
|
||
|
assert((shutdownFlags_ & SHUT_WRITE) == 0);
|
||
|
|
||
|
// In case we had a connect timeout, cancel the timeout
|
||
|
writeTimeout_.cancelTimeout();
|
||
|
// We don't use a persistent registration when waiting on a connect event,
|
||
|
// so we have been automatically unregistered now. Update eventFlags_ to
|
||
|
// reflect reality.
|
||
|
assert(eventFlags_ == EventHandler::WRITE);
|
||
|
eventFlags_ = EventHandler::NONE;
|
||
|
|
||
|
// Call getsockopt() to check if the connect succeeded
|
||
|
int error;
|
||
|
socklen_t len = sizeof(error);
|
||
|
int rv = netops::getsockopt(fd_, SOL_SOCKET, SO_ERROR, &error, &len);
|
||
|
if (rv != 0) {
|
||
|
auto errnoCopy = errno;
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("error calling getsockopt() after connect"),
|
||
|
errnoCopy);
|
||
|
VLOG(4) << "AsyncSocket::handleConnect(this=" << this << ", fd=" << fd_
|
||
|
<< " host=" << addr_.describe() << ") exception:" << ex.what();
|
||
|
return failConnect(__func__, ex);
|
||
|
}
|
||
|
|
||
|
if (error != 0) {
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::NOT_OPEN, "connect failed", error);
|
||
|
VLOG(2) << "AsyncSocket::handleConnect(this=" << this << ", fd=" << fd_
|
||
|
<< " host=" << addr_.describe() << ") exception: " << ex.what();
|
||
|
return failConnect(__func__, ex);
|
||
|
}
|
||
|
|
||
|
// Move into STATE_ESTABLISHED
|
||
|
state_ = StateEnum::ESTABLISHED;
|
||
|
|
||
|
// If SHUT_WRITE_PENDING is set and we don't have any write requests to
|
||
|
// perform, immediately shutdown the write half of the socket.
|
||
|
if ((shutdownFlags_ & SHUT_WRITE_PENDING) && writeReqHead_ == nullptr) {
|
||
|
// SHUT_READ shouldn't be set. If close() is called on the socket while we
|
||
|
// are still connecting we just abort the connect rather than waiting for
|
||
|
// it to complete.
|
||
|
assert((shutdownFlags_ & SHUT_READ) == 0);
|
||
|
netops::shutdown(fd_, SHUT_WR);
|
||
|
shutdownFlags_ |= SHUT_WRITE;
|
||
|
}
|
||
|
|
||
|
VLOG(7) << "AsyncSocket " << this << ": fd " << fd_
|
||
|
<< "successfully connected; state=" << state_;
|
||
|
|
||
|
// Remember the EventBase we are attached to, before we start invoking any
|
||
|
// callbacks (since the callbacks may call detachEventBase()).
|
||
|
EventBase* originalEventBase = eventBase_;
|
||
|
|
||
|
invokeConnectSuccess();
|
||
|
// Note that the connect callback may have changed our state.
|
||
|
// (set or unset the read callback, called write(), closed the socket, etc.)
|
||
|
// The following code needs to handle these situations correctly.
|
||
|
//
|
||
|
// If the socket has been closed, readCallback_ and writeReqHead_ will
|
||
|
// always be nullptr, so that will prevent us from trying to read or write.
|
||
|
//
|
||
|
// The main thing to check for is if eventBase_ is still originalEventBase.
|
||
|
// If not, we have been detached from this event base, so we shouldn't
|
||
|
// perform any more operations.
|
||
|
if (eventBase_ != originalEventBase) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
handleInitialReadWrite();
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::timeoutExpired() noexcept {
|
||
|
VLOG(7) << "AsyncSocket " << this << ", fd " << fd_ << ": timeout expired: "
|
||
|
<< "state=" << state_ << ", events=" << std::hex << eventFlags_;
|
||
|
DestructorGuard dg(this);
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
|
||
|
if (state_ == StateEnum::CONNECTING) {
|
||
|
// connect() timed out
|
||
|
// Unregister for I/O events.
|
||
|
if (connectCallback_) {
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::TIMED_OUT,
|
||
|
folly::sformat(
|
||
|
"connect timed out after {}ms", connectTimeout_.count()));
|
||
|
failConnect(__func__, ex);
|
||
|
} else {
|
||
|
// we faced a connect error without a connect callback, which could
|
||
|
// happen due to TFO.
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::TIMED_OUT, "write timed out during connection");
|
||
|
failWrite(__func__, ex);
|
||
|
}
|
||
|
} else {
|
||
|
// a normal write operation timed out
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::TIMED_OUT,
|
||
|
folly::sformat("write timed out after {}ms", sendTimeout_));
|
||
|
failWrite(__func__, ex);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ssize_t
|
||
|
AsyncSocket::tfoSendMsg(NetworkSocket fd, struct msghdr* msg, int msg_flags) {
|
||
|
return detail::tfo_sendmsg(fd, msg, msg_flags);
|
||
|
}
|
||
|
|
||
|
AsyncSocket::WriteResult AsyncSocket::sendSocketMessage(
|
||
|
NetworkSocket fd,
|
||
|
struct msghdr* msg,
|
||
|
int msg_flags) {
|
||
|
ssize_t totalWritten = 0;
|
||
|
if (state_ == StateEnum::FAST_OPEN) {
|
||
|
sockaddr_storage addr;
|
||
|
auto len = addr_.getAddress(&addr);
|
||
|
msg->msg_name = &addr;
|
||
|
msg->msg_namelen = len;
|
||
|
totalWritten = tfoSendMsg(fd_, msg, msg_flags);
|
||
|
if (totalWritten >= 0) {
|
||
|
tfoFinished_ = true;
|
||
|
state_ = StateEnum::ESTABLISHED;
|
||
|
// We schedule this asynchrously so that we don't end up
|
||
|
// invoking initial read or write while a write is in progress.
|
||
|
scheduleInitialReadWrite();
|
||
|
} else if (errno == EINPROGRESS) {
|
||
|
VLOG(4) << "TFO falling back to connecting";
|
||
|
// A normal sendmsg doesn't return EINPROGRESS, however
|
||
|
// TFO might fallback to connecting if there is no
|
||
|
// cookie.
|
||
|
state_ = StateEnum::CONNECTING;
|
||
|
try {
|
||
|
scheduleConnectTimeout();
|
||
|
registerForConnectEvents();
|
||
|
} catch (const AsyncSocketException& ex) {
|
||
|
return WriteResult(
|
||
|
WRITE_ERROR, std::make_unique<AsyncSocketException>(ex));
|
||
|
}
|
||
|
// Let's fake it that no bytes were written and return an errno.
|
||
|
errno = EAGAIN;
|
||
|
totalWritten = -1;
|
||
|
} else if (errno == EOPNOTSUPP) {
|
||
|
// Try falling back to connecting.
|
||
|
VLOG(4) << "TFO not supported";
|
||
|
state_ = StateEnum::CONNECTING;
|
||
|
try {
|
||
|
int ret = socketConnect((const sockaddr*)&addr, len);
|
||
|
if (ret == 0) {
|
||
|
// connect succeeded immediately
|
||
|
// Treat this like no data was written.
|
||
|
state_ = StateEnum::ESTABLISHED;
|
||
|
scheduleInitialReadWrite();
|
||
|
}
|
||
|
// If there was no exception during connections,
|
||
|
// we would return that no bytes were written.
|
||
|
errno = EAGAIN;
|
||
|
totalWritten = -1;
|
||
|
} catch (const AsyncSocketException& ex) {
|
||
|
return WriteResult(
|
||
|
WRITE_ERROR, std::make_unique<AsyncSocketException>(ex));
|
||
|
}
|
||
|
} else if (errno == EAGAIN) {
|
||
|
// Normally sendmsg would indicate that the write would block.
|
||
|
// However in the fast open case, it would indicate that sendmsg
|
||
|
// fell back to a connect. This is a return code from connect()
|
||
|
// instead, and is an error condition indicating no fds available.
|
||
|
return WriteResult(
|
||
|
WRITE_ERROR,
|
||
|
std::make_unique<AsyncSocketException>(
|
||
|
AsyncSocketException::UNKNOWN, "No more free local ports"));
|
||
|
}
|
||
|
} else {
|
||
|
totalWritten = netops::sendmsg(fd, msg, msg_flags);
|
||
|
}
|
||
|
return WriteResult(totalWritten);
|
||
|
}
|
||
|
|
||
|
AsyncSocket::WriteResult AsyncSocket::performWrite(
|
||
|
const iovec* vec,
|
||
|
uint32_t count,
|
||
|
WriteFlags flags,
|
||
|
uint32_t* countWritten,
|
||
|
uint32_t* partialWritten) {
|
||
|
// We use sendmsg() instead of writev() so that we can pass in MSG_NOSIGNAL
|
||
|
// We correctly handle EPIPE errors, so we never want to receive SIGPIPE
|
||
|
// (since it may terminate the program if the main program doesn't explicitly
|
||
|
// ignore it).
|
||
|
struct msghdr msg;
|
||
|
msg.msg_name = nullptr;
|
||
|
msg.msg_namelen = 0;
|
||
|
msg.msg_iov = const_cast<iovec*>(vec);
|
||
|
msg.msg_iovlen = std::min<size_t>(count, kIovMax);
|
||
|
msg.msg_flags = 0;
|
||
|
msg.msg_controllen = sendMsgParamCallback_->getAncillaryDataSize(flags);
|
||
|
CHECK_GE(
|
||
|
AsyncSocket::SendMsgParamsCallback::maxAncillaryDataSize,
|
||
|
msg.msg_controllen);
|
||
|
|
||
|
if (msg.msg_controllen != 0) {
|
||
|
msg.msg_control = reinterpret_cast<char*>(alloca(msg.msg_controllen));
|
||
|
sendMsgParamCallback_->getAncillaryData(flags, msg.msg_control);
|
||
|
} else {
|
||
|
msg.msg_control = nullptr;
|
||
|
}
|
||
|
int msg_flags = sendMsgParamCallback_->getFlags(flags, zeroCopyEnabled_);
|
||
|
|
||
|
auto writeResult = sendSocketMessage(fd_, &msg, msg_flags);
|
||
|
auto totalWritten = writeResult.writeReturn;
|
||
|
if (totalWritten < 0 && zeroCopyEnabled_ && errno == ENOBUFS) {
|
||
|
// workaround for running with zerocopy enabled but without a big enough
|
||
|
// memlock value - see ulimit -l
|
||
|
zeroCopyEnabled_ = false;
|
||
|
zeroCopyReenableCounter_ = zeroCopyReenableThreshold_;
|
||
|
msg_flags = sendMsgParamCallback_->getFlags(flags, zeroCopyEnabled_);
|
||
|
writeResult = sendSocketMessage(fd_, &msg, msg_flags);
|
||
|
totalWritten = writeResult.writeReturn;
|
||
|
}
|
||
|
if (totalWritten < 0) {
|
||
|
bool tryAgain = (errno == EAGAIN);
|
||
|
#ifdef __APPLE__
|
||
|
// Apple has a bug where doing a second write on a socket which we
|
||
|
// have opened with TFO causes an ENOTCONN to be thrown. However the
|
||
|
// socket is really connected, so treat ENOTCONN as a EAGAIN until
|
||
|
// this bug is fixed.
|
||
|
tryAgain |= (errno == ENOTCONN);
|
||
|
#endif
|
||
|
|
||
|
if (!writeResult.exception && tryAgain) {
|
||
|
// TCP buffer is full; we can't write any more data right now.
|
||
|
*countWritten = 0;
|
||
|
*partialWritten = 0;
|
||
|
return WriteResult(0);
|
||
|
}
|
||
|
// error
|
||
|
*countWritten = 0;
|
||
|
*partialWritten = 0;
|
||
|
return writeResult;
|
||
|
}
|
||
|
|
||
|
appBytesWritten_ += totalWritten;
|
||
|
|
||
|
uint32_t bytesWritten;
|
||
|
uint32_t n;
|
||
|
for (bytesWritten = uint32_t(totalWritten), n = 0; n < count; ++n) {
|
||
|
const iovec* v = vec + n;
|
||
|
if (v->iov_len > bytesWritten) {
|
||
|
// Partial write finished in the middle of this iovec
|
||
|
*countWritten = n;
|
||
|
*partialWritten = bytesWritten;
|
||
|
return WriteResult(totalWritten);
|
||
|
}
|
||
|
|
||
|
bytesWritten -= uint32_t(v->iov_len);
|
||
|
}
|
||
|
|
||
|
assert(bytesWritten == 0);
|
||
|
*countWritten = n;
|
||
|
*partialWritten = 0;
|
||
|
return WriteResult(totalWritten);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Re-register the EventHandler after eventFlags_ has changed.
|
||
|
*
|
||
|
* If an error occurs, fail() is called to move the socket into the error state
|
||
|
* and call all currently installed callbacks. After an error, the
|
||
|
* AsyncSocket is completely unregistered.
|
||
|
*
|
||
|
* @return Returns true on success, or false on error.
|
||
|
*/
|
||
|
bool AsyncSocket::updateEventRegistration() {
|
||
|
VLOG(5) << "AsyncSocket::updateEventRegistration(this=" << this
|
||
|
<< ", fd=" << fd_ << ", evb=" << eventBase_ << ", state=" << state_
|
||
|
<< ", events=" << std::hex << eventFlags_;
|
||
|
if (eventFlags_ == EventHandler::NONE) {
|
||
|
if (ioHandler_.isHandlerRegistered()) {
|
||
|
DCHECK(eventBase_ != nullptr);
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
}
|
||
|
ioHandler_.unregisterHandler();
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
eventBase_->dcheckIsInEventBaseThread();
|
||
|
|
||
|
// Always register for persistent events, so we don't have to re-register
|
||
|
// after being called back.
|
||
|
if (!ioHandler_.registerHandler(
|
||
|
uint16_t(eventFlags_ | EventHandler::PERSIST))) {
|
||
|
eventFlags_ = EventHandler::NONE; // we're not registered after error
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("failed to update AsyncSocket event registration"));
|
||
|
fail("updateEventRegistration", ex);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool AsyncSocket::updateEventRegistration(uint16_t enable, uint16_t disable) {
|
||
|
uint16_t oldFlags = eventFlags_;
|
||
|
eventFlags_ |= enable;
|
||
|
eventFlags_ &= ~disable;
|
||
|
if (eventFlags_ == oldFlags) {
|
||
|
return true;
|
||
|
} else {
|
||
|
return updateEventRegistration();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::startFail() {
|
||
|
// startFail() should only be called once
|
||
|
assert(state_ != StateEnum::ERROR);
|
||
|
assert(getDestructorGuardCount() > 0);
|
||
|
state_ = StateEnum::ERROR;
|
||
|
// Ensure that SHUT_READ and SHUT_WRITE are set,
|
||
|
// so all future attempts to read or write will be rejected
|
||
|
shutdownFlags_ |= (SHUT_READ | SHUT_WRITE);
|
||
|
|
||
|
// Cancel any scheduled immediate read.
|
||
|
if (immediateReadHandler_.isLoopCallbackScheduled()) {
|
||
|
immediateReadHandler_.cancelLoopCallback();
|
||
|
}
|
||
|
|
||
|
if (eventFlags_ != EventHandler::NONE) {
|
||
|
eventFlags_ = EventHandler::NONE;
|
||
|
ioHandler_.unregisterHandler();
|
||
|
}
|
||
|
writeTimeout_.cancelTimeout();
|
||
|
|
||
|
if (fd_ != NetworkSocket()) {
|
||
|
ioHandler_.changeHandlerFD(NetworkSocket());
|
||
|
doClose();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::invokeAllErrors(const AsyncSocketException& ex) {
|
||
|
invokeConnectErr(ex);
|
||
|
failAllWrites(ex);
|
||
|
|
||
|
if (readCallback_) {
|
||
|
ReadCallback* callback = readCallback_;
|
||
|
readCallback_ = nullptr;
|
||
|
callback->readErr(ex);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::finishFail() {
|
||
|
assert(state_ == StateEnum::ERROR);
|
||
|
assert(getDestructorGuardCount() > 0);
|
||
|
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::INTERNAL_ERROR,
|
||
|
withAddr("socket closing after error"));
|
||
|
invokeAllErrors(ex);
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::finishFail(const AsyncSocketException& ex) {
|
||
|
assert(state_ == StateEnum::ERROR);
|
||
|
assert(getDestructorGuardCount() > 0);
|
||
|
invokeAllErrors(ex);
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::fail(const char* fn, const AsyncSocketException& ex) {
|
||
|
VLOG(4) << "AsyncSocket(this=" << this << ", fd=" << fd_
|
||
|
<< ", state=" << state_ << " host=" << addr_.describe()
|
||
|
<< "): failed in " << fn << "(): " << ex.what();
|
||
|
startFail();
|
||
|
finishFail();
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::failConnect(const char* fn, const AsyncSocketException& ex) {
|
||
|
VLOG(5) << "AsyncSocket(this=" << this << ", fd=" << fd_
|
||
|
<< ", state=" << state_ << " host=" << addr_.describe()
|
||
|
<< "): failed while connecting in " << fn << "(): " << ex.what();
|
||
|
startFail();
|
||
|
|
||
|
invokeConnectErr(ex);
|
||
|
finishFail(ex);
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::failRead(const char* fn, const AsyncSocketException& ex) {
|
||
|
VLOG(5) << "AsyncSocket(this=" << this << ", fd=" << fd_
|
||
|
<< ", state=" << state_ << " host=" << addr_.describe()
|
||
|
<< "): failed while reading in " << fn << "(): " << ex.what();
|
||
|
startFail();
|
||
|
|
||
|
if (readCallback_ != nullptr) {
|
||
|
ReadCallback* callback = readCallback_;
|
||
|
readCallback_ = nullptr;
|
||
|
callback->readErr(ex);
|
||
|
}
|
||
|
|
||
|
finishFail();
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::failErrMessageRead(
|
||
|
const char* fn,
|
||
|
const AsyncSocketException& ex) {
|
||
|
VLOG(5) << "AsyncSocket(this=" << this << ", fd=" << fd_
|
||
|
<< ", state=" << state_ << " host=" << addr_.describe()
|
||
|
<< "): failed while reading message in " << fn << "(): " << ex.what();
|
||
|
startFail();
|
||
|
|
||
|
if (errMessageCallback_ != nullptr) {
|
||
|
ErrMessageCallback* callback = errMessageCallback_;
|
||
|
errMessageCallback_ = nullptr;
|
||
|
callback->errMessageError(ex);
|
||
|
}
|
||
|
|
||
|
finishFail();
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::failWrite(const char* fn, const AsyncSocketException& ex) {
|
||
|
VLOG(5) << "AsyncSocket(this=" << this << ", fd=" << fd_
|
||
|
<< ", state=" << state_ << " host=" << addr_.describe()
|
||
|
<< "): failed while writing in " << fn << "(): " << ex.what();
|
||
|
startFail();
|
||
|
|
||
|
// Only invoke the first write callback, since the error occurred while
|
||
|
// writing this request. Let any other pending write callbacks be invoked in
|
||
|
// finishFail().
|
||
|
if (writeReqHead_ != nullptr) {
|
||
|
WriteRequest* req = writeReqHead_;
|
||
|
writeReqHead_ = req->getNext();
|
||
|
WriteCallback* callback = req->getCallback();
|
||
|
uint32_t bytesWritten = req->getTotalBytesWritten();
|
||
|
req->destroy();
|
||
|
if (callback) {
|
||
|
callback->writeErr(bytesWritten, ex);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
finishFail();
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::failWrite(
|
||
|
const char* fn,
|
||
|
WriteCallback* callback,
|
||
|
size_t bytesWritten,
|
||
|
const AsyncSocketException& ex) {
|
||
|
// This version of failWrite() is used when the failure occurs before
|
||
|
// we've added the callback to writeReqHead_.
|
||
|
VLOG(4) << "AsyncSocket(this=" << this << ", fd=" << fd_
|
||
|
<< ", state=" << state_ << " host=" << addr_.describe()
|
||
|
<< "): failed while writing in " << fn << "(): " << ex.what();
|
||
|
if (closeOnFailedWrite_) {
|
||
|
startFail();
|
||
|
}
|
||
|
|
||
|
if (callback != nullptr) {
|
||
|
callback->writeErr(bytesWritten, ex);
|
||
|
}
|
||
|
|
||
|
if (closeOnFailedWrite_) {
|
||
|
finishFail();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::failAllWrites(const AsyncSocketException& ex) {
|
||
|
// Invoke writeError() on all write callbacks.
|
||
|
// This is used when writes are forcibly shutdown with write requests
|
||
|
// pending, or when an error occurs with writes pending.
|
||
|
while (writeReqHead_ != nullptr) {
|
||
|
WriteRequest* req = writeReqHead_;
|
||
|
writeReqHead_ = req->getNext();
|
||
|
WriteCallback* callback = req->getCallback();
|
||
|
if (callback) {
|
||
|
callback->writeErr(req->getTotalBytesWritten(), ex);
|
||
|
}
|
||
|
req->destroy();
|
||
|
}
|
||
|
|
||
|
// All pending writes have failed - reset totalAppBytesScheduledForWrite_
|
||
|
totalAppBytesScheduledForWrite_ = appBytesWritten_;
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::invalidState(ConnectCallback* callback) {
|
||
|
VLOG(5) << "AsyncSocket(this=" << this << ", fd=" << fd_
|
||
|
<< "): connect() called in invalid state " << state_;
|
||
|
|
||
|
/*
|
||
|
* The invalidState() methods don't use the normal failure mechanisms,
|
||
|
* since we don't know what state we are in. We don't want to call
|
||
|
* startFail()/finishFail() recursively if we are already in the middle of
|
||
|
* cleaning up.
|
||
|
*/
|
||
|
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::ALREADY_OPEN,
|
||
|
"connect() called with socket in invalid state");
|
||
|
connectEndTime_ = std::chrono::steady_clock::now();
|
||
|
if (state_ == StateEnum::CLOSED || state_ == StateEnum::ERROR) {
|
||
|
if (callback) {
|
||
|
callback->connectErr(ex);
|
||
|
}
|
||
|
} else {
|
||
|
// We can't use failConnect() here since connectCallback_
|
||
|
// may already be set to another callback. Invoke this ConnectCallback
|
||
|
// here; any other connectCallback_ will be invoked in finishFail()
|
||
|
startFail();
|
||
|
if (callback) {
|
||
|
callback->connectErr(ex);
|
||
|
}
|
||
|
finishFail();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::invalidState(ErrMessageCallback* callback) {
|
||
|
VLOG(4) << "AsyncSocket(this=" << this << ", fd=" << fd_
|
||
|
<< "): setErrMessageCB(" << callback << ") called in invalid state "
|
||
|
<< state_;
|
||
|
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::NOT_OPEN,
|
||
|
msgErrQueueSupported
|
||
|
? "setErrMessageCB() called with socket in invalid state"
|
||
|
: "This platform does not support socket error message notifications");
|
||
|
if (state_ == StateEnum::CLOSED || state_ == StateEnum::ERROR) {
|
||
|
if (callback) {
|
||
|
callback->errMessageError(ex);
|
||
|
}
|
||
|
} else {
|
||
|
startFail();
|
||
|
if (callback) {
|
||
|
callback->errMessageError(ex);
|
||
|
}
|
||
|
finishFail();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::invokeConnectErr(const AsyncSocketException& ex) {
|
||
|
connectEndTime_ = std::chrono::steady_clock::now();
|
||
|
if (connectCallback_) {
|
||
|
ConnectCallback* callback = connectCallback_;
|
||
|
connectCallback_ = nullptr;
|
||
|
callback->connectErr(ex);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::invokeConnectSuccess() {
|
||
|
connectEndTime_ = std::chrono::steady_clock::now();
|
||
|
if (connectCallback_) {
|
||
|
ConnectCallback* callback = connectCallback_;
|
||
|
connectCallback_ = nullptr;
|
||
|
callback->connectSuccess();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::invalidState(ReadCallback* callback) {
|
||
|
VLOG(4) << "AsyncSocket(this=" << this << ", fd=" << fd_
|
||
|
<< "): setReadCallback(" << callback << ") called in invalid state "
|
||
|
<< state_;
|
||
|
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::NOT_OPEN,
|
||
|
"setReadCallback() called with socket in "
|
||
|
"invalid state");
|
||
|
if (state_ == StateEnum::CLOSED || state_ == StateEnum::ERROR) {
|
||
|
if (callback) {
|
||
|
callback->readErr(ex);
|
||
|
}
|
||
|
} else {
|
||
|
startFail();
|
||
|
if (callback) {
|
||
|
callback->readErr(ex);
|
||
|
}
|
||
|
finishFail();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::invalidState(WriteCallback* callback) {
|
||
|
VLOG(4) << "AsyncSocket(this=" << this << ", fd=" << fd_
|
||
|
<< "): write() called in invalid state " << state_;
|
||
|
|
||
|
AsyncSocketException ex(
|
||
|
AsyncSocketException::NOT_OPEN,
|
||
|
withAddr("write() called with socket in invalid state"));
|
||
|
if (state_ == StateEnum::CLOSED || state_ == StateEnum::ERROR) {
|
||
|
if (callback) {
|
||
|
callback->writeErr(0, ex);
|
||
|
}
|
||
|
} else {
|
||
|
startFail();
|
||
|
if (callback) {
|
||
|
callback->writeErr(0, ex);
|
||
|
}
|
||
|
finishFail();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::doClose() {
|
||
|
if (fd_ == NetworkSocket()) {
|
||
|
return;
|
||
|
}
|
||
|
if (const auto shutdownSocketSet = wShutdownSocketSet_.lock()) {
|
||
|
shutdownSocketSet->close(fd_);
|
||
|
} else {
|
||
|
netops::close(fd_);
|
||
|
}
|
||
|
fd_ = NetworkSocket();
|
||
|
|
||
|
// we also want to clear the zerocopy maps
|
||
|
// if the fd has been closed
|
||
|
idZeroCopyBufPtrMap_.clear();
|
||
|
idZeroCopyBufInfoMap_.clear();
|
||
|
}
|
||
|
|
||
|
std::ostream& operator<<(
|
||
|
std::ostream& os,
|
||
|
const AsyncSocket::StateEnum& state) {
|
||
|
os << static_cast<int>(state);
|
||
|
return os;
|
||
|
}
|
||
|
|
||
|
std::string AsyncSocket::withAddr(folly::StringPiece s) {
|
||
|
// Don't use addr_ directly because it may not be initialized
|
||
|
// e.g. if constructed from fd
|
||
|
folly::SocketAddress peer, local;
|
||
|
try {
|
||
|
getLocalAddress(&local);
|
||
|
} catch (...) {
|
||
|
// ignore
|
||
|
}
|
||
|
try {
|
||
|
getPeerAddress(&peer);
|
||
|
} catch (...) {
|
||
|
// ignore
|
||
|
}
|
||
|
|
||
|
return folly::to<std::string>(
|
||
|
s, " (peer=", peer.describe(), ", local=", local.describe(), ")");
|
||
|
}
|
||
|
|
||
|
void AsyncSocket::setBufferCallback(BufferCallback* cb) {
|
||
|
bufferCallback_ = cb;
|
||
|
}
|
||
|
|
||
|
} // namespace folly
|