374 lines
14 KiB
C++
374 lines
14 KiB
C++
|
// Copyright (C) 2001 Vladimir Prus <ghost@cs.msu.su>
|
||
|
// Copyright (C) 2001 Jeremy Siek <jsiek@cs.indiana.edu>
|
||
|
// Distributed under the Boost Software License, Version 1.0. (See
|
||
|
// accompanying file LICENSE_1_0.txt or copy at
|
||
|
// http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
// NOTE: this final is generated by libs/graph/doc/transitive_closure.w
|
||
|
|
||
|
#ifndef BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP
|
||
|
#define BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP
|
||
|
|
||
|
#include <vector>
|
||
|
#include <algorithm> // for std::min and std::max
|
||
|
#include <functional>
|
||
|
#include <boost/config.hpp>
|
||
|
#include <boost/bind.hpp>
|
||
|
#include <boost/graph/strong_components.hpp>
|
||
|
#include <boost/graph/topological_sort.hpp>
|
||
|
#include <boost/graph/graph_concepts.hpp>
|
||
|
#include <boost/graph/named_function_params.hpp>
|
||
|
#include <boost/graph/adjacency_list.hpp>
|
||
|
#include <boost/concept/assert.hpp>
|
||
|
|
||
|
namespace boost
|
||
|
{
|
||
|
|
||
|
namespace detail
|
||
|
{
|
||
|
inline void
|
||
|
union_successor_sets(const std::vector < std::size_t > &s1,
|
||
|
const std::vector < std::size_t > &s2,
|
||
|
std::vector < std::size_t > &s3)
|
||
|
{
|
||
|
BOOST_USING_STD_MIN();
|
||
|
for (std::size_t k = 0; k < s1.size(); ++k)
|
||
|
s3[k] = min BOOST_PREVENT_MACRO_SUBSTITUTION(s1[k], s2[k]);
|
||
|
}
|
||
|
} // namespace detail
|
||
|
|
||
|
namespace detail
|
||
|
{
|
||
|
template < typename TheContainer, typename ST = std::size_t,
|
||
|
typename VT = typename TheContainer::value_type >
|
||
|
struct subscript_t:public std::unary_function < ST, VT >
|
||
|
{
|
||
|
typedef VT& result_type;
|
||
|
|
||
|
subscript_t(TheContainer & c):container(&c)
|
||
|
{
|
||
|
}
|
||
|
VT & operator() (const ST & i) const
|
||
|
{
|
||
|
return (*container)[i];
|
||
|
}
|
||
|
protected:
|
||
|
TheContainer * container;
|
||
|
};
|
||
|
template < typename TheContainer >
|
||
|
subscript_t < TheContainer > subscript(TheContainer & c) {
|
||
|
return subscript_t < TheContainer > (c);
|
||
|
}
|
||
|
} // namespace detail
|
||
|
|
||
|
template < typename Graph, typename GraphTC,
|
||
|
typename G_to_TC_VertexMap,
|
||
|
typename VertexIndexMap >
|
||
|
void transitive_closure(const Graph & g, GraphTC & tc,
|
||
|
G_to_TC_VertexMap g_to_tc_map,
|
||
|
VertexIndexMap index_map)
|
||
|
{
|
||
|
if (num_vertices(g) == 0)
|
||
|
return;
|
||
|
typedef typename graph_traits < Graph >::vertex_descriptor vertex;
|
||
|
typedef typename graph_traits < Graph >::vertex_iterator vertex_iterator;
|
||
|
typedef typename property_traits < VertexIndexMap >::value_type size_type;
|
||
|
typedef typename graph_traits <
|
||
|
Graph >::adjacency_iterator adjacency_iterator;
|
||
|
|
||
|
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept < Graph > ));
|
||
|
BOOST_CONCEPT_ASSERT(( AdjacencyGraphConcept < Graph > ));
|
||
|
BOOST_CONCEPT_ASSERT(( VertexMutableGraphConcept < GraphTC > ));
|
||
|
BOOST_CONCEPT_ASSERT(( EdgeMutableGraphConcept < GraphTC > ));
|
||
|
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept < VertexIndexMap,
|
||
|
vertex > ));
|
||
|
|
||
|
typedef size_type cg_vertex;
|
||
|
std::vector < cg_vertex > component_number_vec(num_vertices(g));
|
||
|
iterator_property_map < cg_vertex *, VertexIndexMap, cg_vertex, cg_vertex& >
|
||
|
component_number(&component_number_vec[0], index_map);
|
||
|
|
||
|
int num_scc = strong_components(g, component_number,
|
||
|
vertex_index_map(index_map));
|
||
|
|
||
|
std::vector < std::vector < vertex > >components;
|
||
|
build_component_lists(g, num_scc, component_number, components);
|
||
|
|
||
|
typedef boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS> CG_t;
|
||
|
CG_t CG(num_scc);
|
||
|
for (cg_vertex s = 0; s < components.size(); ++s) {
|
||
|
std::vector < cg_vertex > adj;
|
||
|
for (size_type i = 0; i < components[s].size(); ++i) {
|
||
|
vertex u = components[s][i];
|
||
|
adjacency_iterator v, v_end;
|
||
|
for (boost::tie(v, v_end) = adjacent_vertices(u, g); v != v_end; ++v) {
|
||
|
cg_vertex t = component_number[*v];
|
||
|
if (s != t) // Avoid loops in the condensation graph
|
||
|
adj.push_back(t);
|
||
|
}
|
||
|
}
|
||
|
std::sort(adj.begin(), adj.end());
|
||
|
typename std::vector<cg_vertex>::iterator di =
|
||
|
std::unique(adj.begin(), adj.end());
|
||
|
if (di != adj.end())
|
||
|
adj.erase(di, adj.end());
|
||
|
for (typename std::vector<cg_vertex>::const_iterator i = adj.begin();
|
||
|
i != adj.end(); ++i) {
|
||
|
add_edge(s, *i, CG);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::vector<cg_vertex> topo_order;
|
||
|
std::vector<cg_vertex> topo_number(num_vertices(CG));
|
||
|
topological_sort(CG, std::back_inserter(topo_order),
|
||
|
vertex_index_map(identity_property_map()));
|
||
|
std::reverse(topo_order.begin(), topo_order.end());
|
||
|
size_type n = 0;
|
||
|
for (typename std::vector<cg_vertex>::iterator iter = topo_order.begin();
|
||
|
iter != topo_order.end(); ++iter)
|
||
|
topo_number[*iter] = n++;
|
||
|
|
||
|
std::vector<std::vector<cg_vertex> > CG_vec(num_vertices(CG));
|
||
|
for (size_type i = 0; i < num_vertices(CG); ++i) {
|
||
|
typedef typename boost::graph_traits<CG_t>::adjacency_iterator cg_adj_iter;
|
||
|
std::pair<cg_adj_iter, cg_adj_iter> pr = adjacent_vertices(i, CG);
|
||
|
CG_vec[i].assign(pr.first, pr.second);
|
||
|
std::sort(CG_vec[i].begin(), CG_vec[i].end(),
|
||
|
boost::bind(std::less<cg_vertex>(),
|
||
|
boost::bind(detail::subscript(topo_number), _1),
|
||
|
boost::bind(detail::subscript(topo_number), _2)));
|
||
|
}
|
||
|
|
||
|
std::vector<std::vector<cg_vertex> > chains;
|
||
|
{
|
||
|
std::vector<cg_vertex> in_a_chain(CG_vec.size());
|
||
|
for (typename std::vector<cg_vertex>::iterator i = topo_order.begin();
|
||
|
i != topo_order.end(); ++i) {
|
||
|
cg_vertex v = *i;
|
||
|
if (!in_a_chain[v]) {
|
||
|
chains.resize(chains.size() + 1);
|
||
|
std::vector<cg_vertex>& chain = chains.back();
|
||
|
for (;;) {
|
||
|
chain.push_back(v);
|
||
|
in_a_chain[v] = true;
|
||
|
typename std::vector<cg_vertex>::const_iterator next
|
||
|
= std::find_if(CG_vec[v].begin(), CG_vec[v].end(),
|
||
|
std::not1(detail::subscript(in_a_chain)));
|
||
|
if (next != CG_vec[v].end())
|
||
|
v = *next;
|
||
|
else
|
||
|
break; // end of chain, dead-end
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
std::vector<size_type> chain_number(CG_vec.size());
|
||
|
std::vector<size_type> pos_in_chain(CG_vec.size());
|
||
|
for (size_type i = 0; i < chains.size(); ++i)
|
||
|
for (size_type j = 0; j < chains[i].size(); ++j) {
|
||
|
cg_vertex v = chains[i][j];
|
||
|
chain_number[v] = i;
|
||
|
pos_in_chain[v] = j;
|
||
|
}
|
||
|
|
||
|
cg_vertex inf = (std::numeric_limits< cg_vertex >::max)();
|
||
|
std::vector<std::vector<cg_vertex> > successors(CG_vec.size(),
|
||
|
std::vector<cg_vertex>
|
||
|
(chains.size(), inf));
|
||
|
for (typename std::vector<cg_vertex>::reverse_iterator
|
||
|
i = topo_order.rbegin(); i != topo_order.rend(); ++i) {
|
||
|
cg_vertex u = *i;
|
||
|
typename std::vector<cg_vertex>::const_iterator adj, adj_last;
|
||
|
for (adj = CG_vec[u].begin(), adj_last = CG_vec[u].end();
|
||
|
adj != adj_last; ++adj) {
|
||
|
cg_vertex v = *adj;
|
||
|
if (topo_number[v] < successors[u][chain_number[v]]) {
|
||
|
// Succ(u) = Succ(u) U Succ(v)
|
||
|
detail::union_successor_sets(successors[u], successors[v],
|
||
|
successors[u]);
|
||
|
// Succ(u) = Succ(u) U {v}
|
||
|
successors[u][chain_number[v]] = topo_number[v];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (size_type i = 0; i < CG_vec.size(); ++i)
|
||
|
CG_vec[i].clear();
|
||
|
for (size_type i = 0; i < CG_vec.size(); ++i)
|
||
|
for (size_type j = 0; j < chains.size(); ++j) {
|
||
|
size_type topo_num = successors[i][j];
|
||
|
if (topo_num < inf) {
|
||
|
cg_vertex v = topo_order[topo_num];
|
||
|
for (size_type k = pos_in_chain[v]; k < chains[j].size(); ++k)
|
||
|
CG_vec[i].push_back(chains[j][k]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Add vertices to the transitive closure graph
|
||
|
{
|
||
|
vertex_iterator i, i_end;
|
||
|
for (boost::tie(i, i_end) = vertices(g); i != i_end; ++i)
|
||
|
g_to_tc_map[*i] = add_vertex(tc);
|
||
|
}
|
||
|
// Add edges between all the vertices in two adjacent SCCs
|
||
|
typename std::vector<std::vector<cg_vertex> >::const_iterator si, si_end;
|
||
|
for (si = CG_vec.begin(), si_end = CG_vec.end(); si != si_end; ++si) {
|
||
|
cg_vertex s = si - CG_vec.begin();
|
||
|
typename std::vector<cg_vertex>::const_iterator i, i_end;
|
||
|
for (i = CG_vec[s].begin(), i_end = CG_vec[s].end(); i != i_end; ++i) {
|
||
|
cg_vertex t = *i;
|
||
|
for (size_type k = 0; k < components[s].size(); ++k)
|
||
|
for (size_type l = 0; l < components[t].size(); ++l)
|
||
|
add_edge(g_to_tc_map[components[s][k]],
|
||
|
g_to_tc_map[components[t][l]], tc);
|
||
|
}
|
||
|
}
|
||
|
// Add edges connecting all vertices in a SCC
|
||
|
for (size_type i = 0; i < components.size(); ++i)
|
||
|
if (components[i].size() > 1)
|
||
|
for (size_type k = 0; k < components[i].size(); ++k)
|
||
|
for (size_type l = 0; l < components[i].size(); ++l) {
|
||
|
vertex u = components[i][k], v = components[i][l];
|
||
|
add_edge(g_to_tc_map[u], g_to_tc_map[v], tc);
|
||
|
}
|
||
|
|
||
|
// Find loopbacks in the original graph.
|
||
|
// Need to add it to transitive closure.
|
||
|
{
|
||
|
vertex_iterator i, i_end;
|
||
|
for (boost::tie(i, i_end) = vertices(g); i != i_end; ++i)
|
||
|
{
|
||
|
adjacency_iterator ab, ae;
|
||
|
for (boost::tie(ab, ae) = adjacent_vertices(*i, g); ab != ae; ++ab)
|
||
|
{
|
||
|
if (*ab == *i)
|
||
|
if (components[component_number[*i]].size() == 1)
|
||
|
add_edge(g_to_tc_map[*i], g_to_tc_map[*i], tc);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename Graph, typename GraphTC>
|
||
|
void transitive_closure(const Graph & g, GraphTC & tc)
|
||
|
{
|
||
|
if (num_vertices(g) == 0)
|
||
|
return;
|
||
|
typedef typename property_map<Graph, vertex_index_t>::const_type
|
||
|
VertexIndexMap;
|
||
|
VertexIndexMap index_map = get(vertex_index, g);
|
||
|
|
||
|
typedef typename graph_traits<GraphTC>::vertex_descriptor tc_vertex;
|
||
|
std::vector<tc_vertex> to_tc_vec(num_vertices(g));
|
||
|
iterator_property_map < tc_vertex *, VertexIndexMap, tc_vertex, tc_vertex&>
|
||
|
g_to_tc_map(&to_tc_vec[0], index_map);
|
||
|
|
||
|
transitive_closure(g, tc, g_to_tc_map, index_map);
|
||
|
}
|
||
|
|
||
|
namespace detail
|
||
|
{
|
||
|
template < typename Graph, typename GraphTC, typename G_to_TC_VertexMap,
|
||
|
typename VertexIndexMap>
|
||
|
void transitive_closure_dispatch
|
||
|
(const Graph & g, GraphTC & tc,
|
||
|
G_to_TC_VertexMap g_to_tc_map, VertexIndexMap index_map)
|
||
|
{
|
||
|
typedef typename graph_traits < GraphTC >::vertex_descriptor tc_vertex;
|
||
|
typename std::vector < tc_vertex >::size_type
|
||
|
n = is_default_param(g_to_tc_map) ? num_vertices(g) : 1;
|
||
|
std::vector < tc_vertex > to_tc_vec(n);
|
||
|
|
||
|
transitive_closure
|
||
|
(g, tc,
|
||
|
choose_param(g_to_tc_map, make_iterator_property_map
|
||
|
(to_tc_vec.begin(), index_map, to_tc_vec[0])),
|
||
|
index_map);
|
||
|
}
|
||
|
} // namespace detail
|
||
|
|
||
|
template < typename Graph, typename GraphTC,
|
||
|
typename P, typename T, typename R >
|
||
|
void transitive_closure(const Graph & g, GraphTC & tc,
|
||
|
const bgl_named_params < P, T, R > ¶ms)
|
||
|
{
|
||
|
if (num_vertices(g) == 0)
|
||
|
return;
|
||
|
detail::transitive_closure_dispatch
|
||
|
(g, tc, get_param(params, orig_to_copy_t()),
|
||
|
choose_const_pmap(get_param(params, vertex_index), g, vertex_index) );
|
||
|
}
|
||
|
|
||
|
|
||
|
template < typename G > void warshall_transitive_closure(G & g)
|
||
|
{
|
||
|
typedef typename graph_traits < G >::vertex_iterator vertex_iterator;
|
||
|
|
||
|
BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept < G > ));
|
||
|
BOOST_CONCEPT_ASSERT(( EdgeMutableGraphConcept < G > ));
|
||
|
|
||
|
// Matrix form:
|
||
|
// for k
|
||
|
// for i
|
||
|
// if A[i,k]
|
||
|
// for j
|
||
|
// A[i,j] = A[i,j] | A[k,j]
|
||
|
vertex_iterator ki, ke, ii, ie, ji, je;
|
||
|
for (boost::tie(ki, ke) = vertices(g); ki != ke; ++ki)
|
||
|
for (boost::tie(ii, ie) = vertices(g); ii != ie; ++ii)
|
||
|
if (edge(*ii, *ki, g).second)
|
||
|
for (boost::tie(ji, je) = vertices(g); ji != je; ++ji)
|
||
|
if (!edge(*ii, *ji, g).second && edge(*ki, *ji, g).second) {
|
||
|
add_edge(*ii, *ji, g);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
template < typename G > void warren_transitive_closure(G & g)
|
||
|
{
|
||
|
using namespace boost;
|
||
|
typedef typename graph_traits < G >::vertex_iterator vertex_iterator;
|
||
|
|
||
|
BOOST_CONCEPT_ASSERT(( AdjacencyMatrixConcept < G > ));
|
||
|
BOOST_CONCEPT_ASSERT(( EdgeMutableGraphConcept < G > ));
|
||
|
|
||
|
// Make sure second loop will work
|
||
|
if (num_vertices(g) == 0)
|
||
|
return;
|
||
|
|
||
|
// for i = 2 to n
|
||
|
// for k = 1 to i - 1
|
||
|
// if A[i,k]
|
||
|
// for j = 1 to n
|
||
|
// A[i,j] = A[i,j] | A[k,j]
|
||
|
|
||
|
vertex_iterator ic, ie, jc, je, kc, ke;
|
||
|
for (boost::tie(ic, ie) = vertices(g), ++ic; ic != ie; ++ic)
|
||
|
for (boost::tie(kc, ke) = vertices(g); *kc != *ic; ++kc)
|
||
|
if (edge(*ic, *kc, g).second)
|
||
|
for (boost::tie(jc, je) = vertices(g); jc != je; ++jc)
|
||
|
if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) {
|
||
|
add_edge(*ic, *jc, g);
|
||
|
}
|
||
|
// for i = 1 to n - 1
|
||
|
// for k = i + 1 to n
|
||
|
// if A[i,k]
|
||
|
// for j = 1 to n
|
||
|
// A[i,j] = A[i,j] | A[k,j]
|
||
|
|
||
|
for (boost::tie(ic, ie) = vertices(g), --ie; ic != ie; ++ic)
|
||
|
for (kc = ic, ke = ie, ++kc; kc != ke; ++kc)
|
||
|
if (edge(*ic, *kc, g).second)
|
||
|
for (boost::tie(jc, je) = vertices(g); jc != je; ++jc)
|
||
|
if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) {
|
||
|
add_edge(*ic, *jc, g);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
} // namespace boost
|
||
|
|
||
|
#endif // BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP
|