vn-verdnaturachat/ios/Pods/boost-for-react-native/boost/compute/container/mapped_view.hpp

251 lines
7.0 KiB
C++
Raw Normal View History

//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_CONTAINER_MAPPED_VIEW_HPP
#define BOOST_COMPUTE_CONTAINER_MAPPED_VIEW_HPP
#include <cstddef>
#include <exception>
#include <boost/config.hpp>
#include <boost/throw_exception.hpp>
#include <boost/compute/buffer.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/context.hpp>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/iterator/buffer_iterator.hpp>
namespace boost {
namespace compute {
/// \class mapped_view
/// \brief A mapped view of host memory.
///
/// The mapped_view class simplifies mapping host-memory to a compute
/// device. This allows for host-allocated memory to be used with the
/// Boost.Compute algorithms.
///
/// The following example shows how to map a simple C-array containing
/// data on the host to the device and run the reduce() algorithm to
/// calculate the sum:
///
/// \snippet test/test_mapped_view.cpp reduce
///
/// \see buffer
template<class T>
class mapped_view
{
public:
typedef T value_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef buffer_iterator<T> iterator;
typedef buffer_iterator<T> const_iterator;
/// Creates a null mapped_view object.
mapped_view()
{
m_mapped_ptr = 0;
}
/// Creates a mapped_view for \p host_ptr with \p n elements. After
/// constructing a mapped_view the data is available for use by a
/// compute device. Use the \p unmap() method to make the updated data
/// available to the host.
mapped_view(T *host_ptr,
size_type n,
const context &context = system::default_context())
: m_buffer(_make_mapped_buffer(host_ptr, n, context))
{
m_mapped_ptr = 0;
}
/// Creates a read-only mapped_view for \p host_ptr with \p n elements.
/// After constructing a mapped_view the data is available for use by a
/// compute device. Use the \p unmap() method to make the updated data
/// available to the host.
mapped_view(const T *host_ptr,
size_type n,
const context &context = system::default_context())
: m_buffer(_make_mapped_buffer(host_ptr, n, context))
{
m_mapped_ptr = 0;
}
/// Creates a copy of \p other.
mapped_view(const mapped_view<T> &other)
: m_buffer(other.m_buffer)
{
m_mapped_ptr = 0;
}
/// Copies the mapped buffer from \p other.
mapped_view<T>& operator=(const mapped_view<T> &other)
{
if(this != &other){
m_buffer = other.m_buffer;
m_mapped_ptr = 0;
}
return *this;
}
/// Destroys the mapped_view object.
~mapped_view()
{
}
/// Returns an iterator to the first element in the mapped_view.
iterator begin()
{
return ::boost::compute::make_buffer_iterator<T>(m_buffer, 0);
}
/// Returns a const_iterator to the first element in the mapped_view.
const_iterator begin() const
{
return ::boost::compute::make_buffer_iterator<T>(m_buffer, 0);
}
/// Returns a const_iterator to the first element in the mapped_view.
const_iterator cbegin() const
{
return begin();
}
/// Returns an iterator to one past the last element in the mapped_view.
iterator end()
{
return ::boost::compute::make_buffer_iterator<T>(m_buffer, size());
}
/// Returns a const_iterator to one past the last element in the mapped_view.
const_iterator end() const
{
return ::boost::compute::make_buffer_iterator<T>(m_buffer, size());
}
/// Returns a const_iterator to one past the last element in the mapped_view.
const_iterator cend() const
{
return end();
}
/// Returns the number of elements in the mapped_view.
size_type size() const
{
return m_buffer.size() / sizeof(T);
}
/// Returns the host data pointer.
T* get_host_ptr()
{
return static_cast<T *>(m_buffer.get_info<void *>(CL_MEM_HOST_PTR));
}
/// Returns the host data pointer.
const T* get_host_ptr() const
{
return static_cast<T *>(m_buffer.get_info<void *>(CL_MEM_HOST_PTR));
}
/// Resizes the mapped_view to \p size elements.
void resize(size_type size)
{
T *old_ptr = get_host_ptr();
m_buffer = _make_mapped_buffer(old_ptr, size, m_buffer.get_context());
}
/// Returns \c true if the mapped_view is empty.
bool empty() const
{
return size() == 0;
}
/// Returns the mapped buffer.
const buffer& get_buffer() const
{
return m_buffer;
}
/// Maps the buffer into the host address space.
///
/// \see_opencl_ref{clEnqueueMapBuffer}
void map(cl_map_flags flags, command_queue &queue)
{
BOOST_ASSERT(m_mapped_ptr == 0);
m_mapped_ptr = queue.enqueue_map_buffer(
m_buffer, flags, 0, m_buffer.size()
);
}
/// Maps the buffer into the host address space for reading and writing.
///
/// Equivalent to:
/// \code
/// map(CL_MAP_READ | CL_MAP_WRITE, queue);
/// \endcode
void map(command_queue &queue)
{
map(CL_MAP_READ | CL_MAP_WRITE, queue);
}
/// Unmaps the buffer from the host address space.
///
/// \see_opencl_ref{clEnqueueUnmapMemObject}
void unmap(command_queue &queue)
{
BOOST_ASSERT(m_mapped_ptr != 0);
queue.enqueue_unmap_buffer(m_buffer, m_mapped_ptr);
m_mapped_ptr = 0;
}
private:
/// \internal_
static buffer _make_mapped_buffer(T *host_ptr,
size_t n,
const context &context)
{
return buffer(
context,
n * sizeof(T),
buffer::read_write | buffer::use_host_ptr,
host_ptr
);
}
/// \internal_
static buffer _make_mapped_buffer(const T *host_ptr,
size_t n,
const context &context)
{
return buffer(
context,
n * sizeof(T),
buffer::read_only | buffer::use_host_ptr,
const_cast<void *>(static_cast<const void *>(host_ptr))
);
}
private:
buffer m_buffer;
void *m_mapped_ptr;
};
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_CONTAINER_MAPPED_VIEW_HPP