vn-verdnaturachat/ios/Pods/Flipper-Folly/folly/io/async/NotificationQueue.h

918 lines
27 KiB
C
Raw Normal View History

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <sys/types.h>
#include <algorithm>
#include <iterator>
#include <memory>
#include <stdexcept>
#include <utility>
#include <boost/intrusive/slist.hpp>
#include <folly/Exception.h>
#include <folly/FileUtil.h>
#include <folly/Likely.h>
#include <folly/ScopeGuard.h>
#include <folly/SpinLock.h>
#include <folly/io/async/DelayedDestruction.h>
#include <folly/io/async/EventBase.h>
#include <folly/io/async/EventHandler.h>
#include <folly/io/async/Request.h>
#include <folly/portability/Fcntl.h>
#include <folly/portability/Sockets.h>
#include <folly/portability/Unistd.h>
#include <glog/logging.h>
#if defined(__linux__) && !defined(__ANDROID__)
#define FOLLY_HAVE_EVENTFD
#include <folly/io/async/EventFDWrapper.h>
#endif
namespace folly {
/**
* A producer-consumer queue for passing messages between EventBase threads.
*
* Messages can be added to the queue from any thread. Multiple consumers may
* listen to the queue from multiple EventBase threads.
*
* A NotificationQueue may not be destroyed while there are still consumers
* registered to receive events from the queue. It is the user's
* responsibility to ensure that all consumers are unregistered before the
* queue is destroyed.
*
* MessageT should be MoveConstructible (i.e., must support either a move
* constructor or a copy constructor, or both). Ideally it's move constructor
* (or copy constructor if no move constructor is provided) should never throw
* exceptions. If the constructor may throw, the consumers could end up
* spinning trying to move a message off the queue and failing, and then
* retrying.
*/
template <typename MessageT>
class NotificationQueue {
struct Node : public boost::intrusive::slist_base_hook<
boost::intrusive::cache_last<true>> {
template <typename MessageTT>
Node(MessageTT&& msg, std::shared_ptr<RequestContext> ctx)
: msg_(std::forward<MessageTT>(msg)), ctx_(std::move(ctx)) {}
MessageT msg_;
std::shared_ptr<RequestContext> ctx_;
};
public:
/**
* A callback interface for consuming messages from the queue as they arrive.
*/
class Consumer : public DelayedDestruction, private EventHandler {
public:
enum : uint16_t { kDefaultMaxReadAtOnce = 10 };
Consumer()
: queue_(nullptr),
destroyedFlagPtr_(nullptr),
maxReadAtOnce_(kDefaultMaxReadAtOnce) {}
// create a consumer in-place, without the need to build new class
template <typename TCallback>
static std::unique_ptr<Consumer, DelayedDestruction::Destructor> make(
TCallback&& callback);
/**
* messageAvailable() will be invoked whenever a new
* message is available from the pipe.
*/
virtual void messageAvailable(MessageT&& message) noexcept = 0;
/**
* Begin consuming messages from the specified queue.
*
* messageAvailable() will be called whenever a message is available. This
* consumer will continue to consume messages until stopConsuming() is
* called.
*
* A Consumer may only consume messages from a single NotificationQueue at
* a time. startConsuming() should not be called if this consumer is
* already consuming.
*/
void startConsuming(EventBase* eventBase, NotificationQueue* queue) {
init(eventBase, queue);
registerHandler(READ | PERSIST);
}
/**
* Same as above but registers this event handler as internal so that it
* doesn't count towards the pending reader count for the IOLoop.
*/
void startConsumingInternal(
EventBase* eventBase,
NotificationQueue* queue) {
init(eventBase, queue);
registerInternalHandler(READ | PERSIST);
}
/**
* Stop consuming messages.
*
* startConsuming() may be called again to resume consumption of messages
* at a later point in time.
*/
void stopConsuming();
/**
* Consume messages off the queue until it is empty. No messages may be
* added to the queue while it is draining, so that the process is bounded.
* To that end, putMessage/tryPutMessage will throw an std::runtime_error,
* and tryPutMessageNoThrow will return false.
*
* @returns true if the queue was drained, false otherwise. In practice,
* this will only fail if someone else is already draining the queue.
*/
bool consumeUntilDrained(size_t* numConsumed = nullptr) noexcept;
/**
* Get the NotificationQueue that this consumer is currently consuming
* messages from. Returns nullptr if the consumer is not currently
* consuming events from any queue.
*/
NotificationQueue* getCurrentQueue() const {
return queue_;
}
/**
* Set a limit on how many messages this consumer will read each iteration
* around the event loop.
*
* This helps rate-limit how much work the Consumer will do each event loop
* iteration, to prevent it from starving other event handlers.
*
* A limit of 0 means no limit will be enforced. If unset, the limit
* defaults to kDefaultMaxReadAtOnce (defined to 10 above).
*/
void setMaxReadAtOnce(uint32_t maxAtOnce) {
maxReadAtOnce_ = maxAtOnce;
}
uint32_t getMaxReadAtOnce() const {
return maxReadAtOnce_;
}
EventBase* getEventBase() {
return base_;
}
void handlerReady(uint16_t events) noexcept override;
protected:
void destroy() override;
~Consumer() override {}
private:
/**
* Consume messages off the the queue until
* - the queue is empty (1), or
* - until the consumer is destroyed, or
* - until the consumer is uninstalled, or
* - an exception is thrown in the course of dequeueing, or
* - unless isDrain is true, until the maxReadAtOnce_ limit is hit
*
* (1) Well, maybe. See logic/comments around "wasEmpty" in implementation.
*/
void consumeMessages(bool isDrain, size_t* numConsumed = nullptr) noexcept;
void setActive(bool active, bool shouldLock = false) {
if (!queue_) {
active_ = active;
return;
}
if (shouldLock) {
queue_->spinlock_.lock();
}
if (!active_ && active) {
++queue_->numActiveConsumers_;
} else if (active_ && !active) {
--queue_->numActiveConsumers_;
}
active_ = active;
if (shouldLock) {
queue_->spinlock_.unlock();
}
}
void init(EventBase* eventBase, NotificationQueue* queue);
NotificationQueue* queue_;
bool* destroyedFlagPtr_;
uint32_t maxReadAtOnce_;
EventBase* base_;
bool active_{false};
};
class SimpleConsumer {
public:
explicit SimpleConsumer(NotificationQueue& queue) : queue_(queue) {
++queue_.numConsumers_;
}
~SimpleConsumer() {
--queue_.numConsumers_;
}
int getFd() const {
return queue_.eventfd_ >= 0 ? queue_.eventfd_ : queue_.pipeFds_[0];
}
template <typename F>
void consumeUntilDrained(F&& foreach);
private:
NotificationQueue& queue_;
};
enum class FdType {
PIPE,
#ifdef FOLLY_HAVE_EVENTFD
EVENTFD,
#endif
};
/**
* Create a new NotificationQueue.
*
* If the maxSize parameter is specified, this sets the maximum queue size
* that will be enforced by tryPutMessage(). (This size is advisory, and may
* be exceeded if producers explicitly use putMessage() instead of
* tryPutMessage().)
*
* The fdType parameter determines the type of file descriptor used
* internally to signal message availability. The default (eventfd) is
* preferable for performance and because it won't fail when the queue gets
* too long. It is not available on on older and non-linux kernels, however.
* In this case the code will fall back to using a pipe, the parameter is
* mostly for testing purposes.
*/
explicit NotificationQueue(
uint32_t maxSize = 0,
#ifdef FOLLY_HAVE_EVENTFD
FdType fdType = FdType::EVENTFD)
#else
FdType fdType = FdType::PIPE)
#endif
: eventfd_(-1),
pipeFds_{-1, -1},
advisoryMaxQueueSize_(maxSize),
pid_(pid_t(getpid())) {
#ifdef FOLLY_HAVE_EVENTFD
if (fdType == FdType::EVENTFD) {
eventfd_ = eventfd(0, EFD_CLOEXEC | EFD_NONBLOCK);
if (eventfd_ == -1) {
if (errno == ENOSYS || errno == EINVAL) {
// eventfd not availalble
LOG(ERROR) << "failed to create eventfd for NotificationQueue: "
<< errno << ", falling back to pipe mode (is your kernel "
<< "> 2.6.30?)";
fdType = FdType::PIPE;
} else {
// some other error
folly::throwSystemError(
"Failed to create eventfd for "
"NotificationQueue",
errno);
}
}
}
#endif
if (fdType == FdType::PIPE) {
if (pipe(pipeFds_)) {
folly::throwSystemError(
"Failed to create pipe for NotificationQueue", errno);
}
try {
// put both ends of the pipe into non-blocking mode
if (fcntl(pipeFds_[0], F_SETFL, O_RDONLY | O_NONBLOCK) != 0) {
folly::throwSystemError(
"failed to put NotificationQueue pipe read "
"endpoint into non-blocking mode",
errno);
}
if (fcntl(pipeFds_[1], F_SETFL, O_WRONLY | O_NONBLOCK) != 0) {
folly::throwSystemError(
"failed to put NotificationQueue pipe write "
"endpoint into non-blocking mode",
errno);
}
} catch (...) {
::close(pipeFds_[0]);
::close(pipeFds_[1]);
throw;
}
}
}
~NotificationQueue() {
std::unique_ptr<Node> data;
while (!queue_.empty()) {
data.reset(&queue_.front());
queue_.pop_front();
}
if (eventfd_ >= 0) {
::close(eventfd_);
eventfd_ = -1;
}
if (pipeFds_[0] >= 0) {
::close(pipeFds_[0]);
pipeFds_[0] = -1;
}
if (pipeFds_[1] >= 0) {
::close(pipeFds_[1]);
pipeFds_[1] = -1;
}
}
/**
* Set the advisory maximum queue size.
*
* This maximum queue size affects calls to tryPutMessage(). Message
* producers can still use the putMessage() call to unconditionally put a
* message on the queue, ignoring the configured maximum queue size. This
* can cause the queue size to exceed the configured maximum.
*/
void setMaxQueueSize(uint32_t max) {
advisoryMaxQueueSize_ = max;
}
/**
* Attempt to put a message on the queue if the queue is not already full.
*
* If the queue is full, a std::overflow_error will be thrown. The
* setMaxQueueSize() function controls the maximum queue size.
*
* If the queue is currently draining, an std::runtime_error will be thrown.
*
* This method may contend briefly on a spinlock if many threads are
* concurrently accessing the queue, but for all intents and purposes it will
* immediately place the message on the queue and return.
*
* tryPutMessage() may throw std::bad_alloc if memory allocation fails, and
* may throw any other exception thrown by the MessageT move/copy
* constructor.
*/
template <typename MessageTT>
void tryPutMessage(MessageTT&& message) {
putMessageImpl(std::forward<MessageTT>(message), advisoryMaxQueueSize_);
}
/**
* No-throw versions of the above. Instead returns true on success, false on
* failure.
*
* Only std::overflow_error (the common exception case) and std::runtime_error
* (which indicates that the queue is being drained) are prevented from being
* thrown. User code must still catch std::bad_alloc errors.
*/
template <typename MessageTT>
bool tryPutMessageNoThrow(MessageTT&& message) {
return putMessageImpl(
std::forward<MessageTT>(message), advisoryMaxQueueSize_, false);
}
/**
* Unconditionally put a message on the queue.
*
* This method is like tryPutMessage(), but ignores the maximum queue size
* and always puts the message on the queue, even if the maximum queue size
* would be exceeded.
*
* putMessage() may throw
* - std::bad_alloc if memory allocation fails, and may
* - std::runtime_error if the queue is currently draining
* - any other exception thrown by the MessageT move/copy constructor.
*/
template <typename MessageTT>
void putMessage(MessageTT&& message) {
putMessageImpl(std::forward<MessageTT>(message), 0);
}
/**
* Put several messages on the queue.
*/
template <typename InputIteratorT>
void putMessages(InputIteratorT first, InputIteratorT last) {
typedef typename std::iterator_traits<InputIteratorT>::iterator_category
IterCategory;
putMessagesImpl(first, last, IterCategory());
}
/**
* Try to immediately pull a message off of the queue, without blocking.
*
* If a message is immediately available, the result parameter will be
* updated to contain the message contents and true will be returned.
*
* If no message is available, false will be returned and result will be left
* unmodified.
*/
bool tryConsume(MessageT& result) {
SCOPE_EXIT {
syncSignalAndQueue();
};
checkPid();
std::unique_ptr<Node> data;
{
folly::SpinLockGuard g(spinlock_);
if (UNLIKELY(queue_.empty())) {
return false;
}
data.reset(&queue_.front());
queue_.pop_front();
}
result = std::move(data->msg_);
RequestContext::setContext(std::move(data->ctx_));
return true;
}
size_t size() const {
folly::SpinLockGuard g(spinlock_);
return queue_.size();
}
/**
* Check that the NotificationQueue is being used from the correct process.
*
* If you create a NotificationQueue in one process, then fork, and try to
* send messages to the queue from the child process, you're going to have a
* bad time. Unfortunately users have (accidentally) run into this.
*
* Because we use an eventfd/pipe, the child process can actually signal the
* parent process that an event is ready. However, it can't put anything on
* the parent's queue, so the parent wakes up and finds an empty queue. This
* check ensures that we catch the problem in the misbehaving child process
* code, and crash before signalling the parent process.
*/
void checkPid() const {
CHECK_EQ(pid_, pid_t(getpid()));
}
private:
// Forbidden copy constructor and assignment operator
NotificationQueue(NotificationQueue const&) = delete;
NotificationQueue& operator=(NotificationQueue const&) = delete;
inline bool checkQueueSize(size_t maxSize, bool throws = true) const {
DCHECK(0 == spinlock_.try_lock());
if (maxSize > 0 && queue_.size() >= maxSize) {
if (throws) {
throw std::overflow_error(
"unable to add message to NotificationQueue: "
"queue is full");
}
return false;
}
return true;
}
inline bool checkDraining(bool throws = true) {
if (UNLIKELY(draining_ && throws)) {
throw std::runtime_error("queue is draining, cannot add message");
}
return draining_;
}
void ensureSignalLocked() const {
// semantics: empty fd == empty queue <=> !signal_
if (signal_) {
return;
}
ssize_t bytes_written = 0;
size_t bytes_expected = 0;
do {
if (eventfd_ >= 0) {
// eventfd(2) dictates that we must write a 64-bit integer
uint64_t signal = 1;
bytes_expected = sizeof(signal);
bytes_written = ::write(eventfd_, &signal, bytes_expected);
} else {
uint8_t signal = 1;
bytes_expected = sizeof(signal);
bytes_written = ::write(pipeFds_[1], &signal, bytes_expected);
}
} while (bytes_written == -1 && errno == EINTR);
if (bytes_written == ssize_t(bytes_expected)) {
signal_ = true;
} else {
folly::throwSystemError(
"failed to signal NotificationQueue after "
"write",
errno);
}
}
void drainSignalsLocked() {
ssize_t bytes_read = 0;
if (eventfd_ > 0) {
uint64_t message;
bytes_read = readNoInt(eventfd_, &message, sizeof(message));
CHECK(bytes_read != -1 || errno == EAGAIN);
} else {
// There should only be one byte in the pipe. To avoid potential leaks we
// still drain.
uint8_t message[32];
ssize_t result;
while ((result = readNoInt(pipeFds_[0], &message, sizeof(message))) !=
-1) {
bytes_read += result;
}
CHECK(result == -1 && errno == EAGAIN);
LOG_IF(ERROR, bytes_read > 1)
<< "[NotificationQueue] Unexpected state while draining pipe: bytes_read="
<< bytes_read << " bytes, expected <= 1";
}
LOG_IF(ERROR, (signal_ && bytes_read == 0) || (!signal_ && bytes_read > 0))
<< "[NotificationQueue] Unexpected state while draining signals: signal_="
<< signal_ << " bytes_read=" << bytes_read;
signal_ = false;
}
void ensureSignal() const {
folly::SpinLockGuard g(spinlock_);
ensureSignalLocked();
}
void syncSignalAndQueue() {
folly::SpinLockGuard g(spinlock_);
if (queue_.empty()) {
drainSignalsLocked();
} else {
ensureSignalLocked();
}
}
template <typename MessageTT>
bool putMessageImpl(MessageTT&& message, size_t maxSize, bool throws = true) {
checkPid();
bool signal = false;
{
auto data = std::make_unique<Node>(
std::forward<MessageTT>(message), RequestContext::saveContext());
folly::SpinLockGuard g(spinlock_);
if (checkDraining(throws) || !checkQueueSize(maxSize, throws)) {
return false;
}
// We only need to signal an event if not all consumers are
// awake.
if (numActiveConsumers_ < numConsumers_) {
signal = true;
}
queue_.push_back(*data.release());
if (signal) {
ensureSignalLocked();
}
}
return true;
}
template <typename InputIteratorT>
void putMessagesImpl(
InputIteratorT first,
InputIteratorT last,
std::input_iterator_tag) {
checkPid();
bool signal = false;
boost::intrusive::slist<Node, boost::intrusive::cache_last<true>> q;
try {
while (first != last) {
auto data = std::make_unique<Node>(
std::move(*first), RequestContext::saveContext());
q.push_back(*data.release());
++first;
}
folly::SpinLockGuard g(spinlock_);
checkDraining();
queue_.splice(queue_.end(), q);
if (numActiveConsumers_ < numConsumers_) {
signal = true;
}
if (signal) {
ensureSignalLocked();
}
} catch (...) {
std::unique_ptr<Node> data;
while (!q.empty()) {
data.reset(&q.front());
q.pop_front();
}
throw;
}
}
mutable folly::SpinLock spinlock_;
mutable bool signal_{false};
int eventfd_;
int pipeFds_[2]; // to fallback to on older/non-linux systems
uint32_t advisoryMaxQueueSize_;
pid_t pid_;
boost::intrusive::slist<Node, boost::intrusive::cache_last<true>> queue_;
int numConsumers_{0};
std::atomic<int> numActiveConsumers_{0};
bool draining_{false};
};
template <typename MessageT>
void NotificationQueue<MessageT>::Consumer::destroy() {
// If we are in the middle of a call to handlerReady(), destroyedFlagPtr_
// will be non-nullptr. Mark the value that it points to, so that
// handlerReady() will know the callback is destroyed, and that it cannot
// access any member variables anymore.
if (destroyedFlagPtr_) {
*destroyedFlagPtr_ = true;
}
stopConsuming();
DelayedDestruction::destroy();
}
template <typename MessageT>
void NotificationQueue<MessageT>::Consumer::handlerReady(
uint16_t /*events*/) noexcept {
consumeMessages(false);
}
template <typename MessageT>
void NotificationQueue<MessageT>::Consumer::consumeMessages(
bool isDrain,
size_t* numConsumed) noexcept {
DestructorGuard dg(this);
uint32_t numProcessed = 0;
setActive(true);
SCOPE_EXIT {
if (queue_) {
queue_->syncSignalAndQueue();
}
};
SCOPE_EXIT {
setActive(false, /* shouldLock = */ true);
};
SCOPE_EXIT {
if (numConsumed != nullptr) {
*numConsumed = numProcessed;
}
};
while (true) {
// Now pop the message off of the queue.
//
// We have to manually acquire and release the spinlock here, rather than
// using SpinLockHolder since the MessageT has to be constructed while
// holding the spinlock and available after we release it. SpinLockHolder
// unfortunately doesn't provide a release() method. (We can't construct
// MessageT first since we have no guarantee that MessageT has a default
// constructor.
queue_->spinlock_.lock();
bool locked = true;
try {
if (UNLIKELY(queue_->queue_.empty())) {
// If there is no message, we've reached the end of the queue, return.
setActive(false);
queue_->spinlock_.unlock();
return;
}
// Pull a message off the queue.
std::unique_ptr<Node> data;
data.reset(&queue_->queue_.front());
queue_->queue_.pop_front();
// Check to see if the queue is empty now.
// We use this as an optimization to see if we should bother trying to
// loop again and read another message after invoking this callback.
bool wasEmpty = queue_->queue_.empty();
if (wasEmpty) {
setActive(false);
}
// Now unlock the spinlock before we invoke the callback.
queue_->spinlock_.unlock();
RequestContextScopeGuard rctx(std::move(data->ctx_));
locked = false;
// Call the callback
bool callbackDestroyed = false;
CHECK(destroyedFlagPtr_ == nullptr);
destroyedFlagPtr_ = &callbackDestroyed;
messageAvailable(std::move(data->msg_));
destroyedFlagPtr_ = nullptr;
// If the callback was destroyed before it returned, we are done
if (callbackDestroyed) {
return;
}
// If the callback is no longer installed, we are done.
if (queue_ == nullptr) {
return;
}
// If we have hit maxReadAtOnce_, we are done.
++numProcessed;
if (!isDrain && maxReadAtOnce_ > 0 && numProcessed >= maxReadAtOnce_) {
return;
}
// If the queue was empty before we invoked the callback, it's probable
// that it is still empty now. Just go ahead and return, rather than
// looping again and trying to re-read from the eventfd. (If a new
// message had in fact arrived while we were invoking the callback, we
// will simply be woken up the next time around the event loop and will
// process the message then.)
if (wasEmpty) {
return;
}
} catch (const std::exception&) {
// This catch block is really just to handle the case where the MessageT
// constructor throws. The messageAvailable() callback itself is
// declared as noexcept and should never throw.
//
// If the MessageT constructor does throw we try to handle it as best as
// we can, but we can't work miracles. We will just ignore the error for
// now and return. The next time around the event loop we will end up
// trying to read the message again. If MessageT continues to throw we
// will never make forward progress and will keep trying each time around
// the event loop.
if (locked) {
// Unlock the spinlock.
queue_->spinlock_.unlock();
}
return;
}
}
}
template <typename MessageT>
void NotificationQueue<MessageT>::Consumer::init(
EventBase* eventBase,
NotificationQueue* queue) {
eventBase->dcheckIsInEventBaseThread();
assert(queue_ == nullptr);
assert(!isHandlerRegistered());
queue->checkPid();
base_ = eventBase;
queue_ = queue;
{
folly::SpinLockGuard g(queue_->spinlock_);
queue_->numConsumers_++;
}
queue_->ensureSignal();
if (queue_->eventfd_ >= 0) {
initHandler(eventBase, folly::NetworkSocket::fromFd(queue_->eventfd_));
} else {
initHandler(eventBase, folly::NetworkSocket::fromFd(queue_->pipeFds_[0]));
}
}
template <typename MessageT>
void NotificationQueue<MessageT>::Consumer::stopConsuming() {
if (queue_ == nullptr) {
assert(!isHandlerRegistered());
return;
}
{
folly::SpinLockGuard g(queue_->spinlock_);
queue_->numConsumers_--;
setActive(false);
}
assert(isHandlerRegistered());
unregisterHandler();
detachEventBase();
queue_ = nullptr;
}
template <typename MessageT>
bool NotificationQueue<MessageT>::Consumer::consumeUntilDrained(
size_t* numConsumed) noexcept {
DestructorGuard dg(this);
{
folly::SpinLockGuard g(queue_->spinlock_);
if (queue_->draining_) {
return false;
}
queue_->draining_ = true;
}
consumeMessages(true, numConsumed);
{
folly::SpinLockGuard g(queue_->spinlock_);
queue_->draining_ = false;
}
return true;
}
template <typename MessageT>
template <typename F>
void NotificationQueue<MessageT>::SimpleConsumer::consumeUntilDrained(
F&& foreach) {
SCOPE_EXIT {
queue_.syncSignalAndQueue();
};
queue_.checkPid();
while (true) {
std::unique_ptr<Node> data;
{
folly::SpinLockGuard g(queue_.spinlock_);
if (UNLIKELY(queue_.queue_.empty())) {
return;
}
data.reset(&queue_.queue_.front());
queue_.queue_.pop_front();
}
RequestContextScopeGuard rctx(std::move(data->ctx_));
foreach(std::move(data->msg_));
// Make sure message destructor is called with the correct RequestContext.
data.reset();
}
}
/**
* Creates a NotificationQueue::Consumer wrapping a function object
* Modeled after AsyncTimeout::make
*
*/
namespace detail {
template <typename MessageT, typename TCallback>
struct notification_queue_consumer_wrapper
: public NotificationQueue<MessageT>::Consumer {
template <typename UCallback>
explicit notification_queue_consumer_wrapper(UCallback&& callback)
: callback_(std::forward<UCallback>(callback)) {}
// we are being stricter here and requiring noexcept for callback
void messageAvailable(MessageT&& message) noexcept override {
static_assert(
noexcept(std::declval<TCallback>()(std::forward<MessageT>(message))),
"callback must be declared noexcept, e.g.: `[]() noexcept {}`");
callback_(std::forward<MessageT>(message));
}
private:
TCallback callback_;
};
} // namespace detail
template <typename MessageT>
template <typename TCallback>
std::unique_ptr<
typename NotificationQueue<MessageT>::Consumer,
DelayedDestruction::Destructor>
NotificationQueue<MessageT>::Consumer::make(TCallback&& callback) {
return std::unique_ptr<
NotificationQueue<MessageT>::Consumer,
DelayedDestruction::Destructor>(
new detail::notification_queue_consumer_wrapper<
MessageT,
typename std::decay<TCallback>::type>(
std::forward<TCallback>(callback)));
}
} // namespace folly