201 lines
6.1 KiB
C
201 lines
6.1 KiB
C
|
/*
|
||
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
#include <atomic>
|
||
|
#include <climits>
|
||
|
#include <thread>
|
||
|
|
||
|
#include <glog/logging.h>
|
||
|
|
||
|
#include <folly/Likely.h>
|
||
|
#include <folly/detail/Futex.h>
|
||
|
#include <folly/lang/Bits.h>
|
||
|
#include <folly/portability/SysTime.h>
|
||
|
#include <folly/portability/Unistd.h>
|
||
|
|
||
|
namespace folly {
|
||
|
|
||
|
/**
|
||
|
* Event count: a condition variable for lock free algorithms.
|
||
|
*
|
||
|
* See http://www.1024cores.net/home/lock-free-algorithms/eventcounts for
|
||
|
* details.
|
||
|
*
|
||
|
* Event counts allow you to convert a non-blocking lock-free / wait-free
|
||
|
* algorithm into a blocking one, by isolating the blocking logic. You call
|
||
|
* prepareWait() before checking your condition and then either cancelWait()
|
||
|
* or wait() depending on whether the condition was true. When another
|
||
|
* thread makes the condition true, it must call notify() / notifyAll() just
|
||
|
* like a regular condition variable.
|
||
|
*
|
||
|
* If "<" denotes the happens-before relationship, consider 2 threads (T1 and
|
||
|
* T2) and 3 events:
|
||
|
* - E1: T1 returns from prepareWait
|
||
|
* - E2: T1 calls wait
|
||
|
* (obviously E1 < E2, intra-thread)
|
||
|
* - E3: T2 calls notifyAll
|
||
|
*
|
||
|
* If E1 < E3, then E2's wait will complete (and T1 will either wake up,
|
||
|
* or not block at all)
|
||
|
*
|
||
|
* This means that you can use an EventCount in the following manner:
|
||
|
*
|
||
|
* Waiter:
|
||
|
* if (!condition()) { // handle fast path first
|
||
|
* for (;;) {
|
||
|
* auto key = eventCount.prepareWait();
|
||
|
* if (condition()) {
|
||
|
* eventCount.cancelWait();
|
||
|
* break;
|
||
|
* } else {
|
||
|
* eventCount.wait(key);
|
||
|
* }
|
||
|
* }
|
||
|
* }
|
||
|
*
|
||
|
* (This pattern is encapsulated in await())
|
||
|
*
|
||
|
* Poster:
|
||
|
* make_condition_true();
|
||
|
* eventCount.notifyAll();
|
||
|
*
|
||
|
* Note that, just like with regular condition variables, the waiter needs to
|
||
|
* be tolerant of spurious wakeups and needs to recheck the condition after
|
||
|
* being woken up. Also, as there is no mutual exclusion implied, "checking"
|
||
|
* the condition likely means attempting an operation on an underlying
|
||
|
* data structure (push into a lock-free queue, etc) and returning true on
|
||
|
* success and false on failure.
|
||
|
*/
|
||
|
class EventCount {
|
||
|
public:
|
||
|
EventCount() noexcept : val_(0) {}
|
||
|
|
||
|
class Key {
|
||
|
friend class EventCount;
|
||
|
explicit Key(uint32_t e) noexcept : epoch_(e) {}
|
||
|
uint32_t epoch_;
|
||
|
};
|
||
|
|
||
|
void notify() noexcept;
|
||
|
void notifyAll() noexcept;
|
||
|
Key prepareWait() noexcept;
|
||
|
void cancelWait() noexcept;
|
||
|
void wait(Key key) noexcept;
|
||
|
|
||
|
/**
|
||
|
* Wait for condition() to become true. Will clean up appropriately if
|
||
|
* condition() throws, and then rethrow.
|
||
|
*/
|
||
|
template <class Condition>
|
||
|
void await(Condition condition);
|
||
|
|
||
|
private:
|
||
|
void doNotify(int n) noexcept;
|
||
|
EventCount(const EventCount&) = delete;
|
||
|
EventCount(EventCount&&) = delete;
|
||
|
EventCount& operator=(const EventCount&) = delete;
|
||
|
EventCount& operator=(EventCount&&) = delete;
|
||
|
|
||
|
// This requires 64-bit
|
||
|
static_assert(sizeof(int) == 4, "bad platform");
|
||
|
static_assert(sizeof(uint32_t) == 4, "bad platform");
|
||
|
static_assert(sizeof(uint64_t) == 8, "bad platform");
|
||
|
static_assert(sizeof(std::atomic<uint64_t>) == 8, "bad platform");
|
||
|
static_assert(sizeof(detail::Futex<std::atomic>) == 4, "bad platform");
|
||
|
|
||
|
static constexpr size_t kEpochOffset = kIsLittleEndian ? 1 : 0;
|
||
|
|
||
|
// val_ stores the epoch in the most significant 32 bits and the
|
||
|
// waiter count in the least significant 32 bits.
|
||
|
std::atomic<uint64_t> val_;
|
||
|
|
||
|
static constexpr uint64_t kAddWaiter = uint64_t(1);
|
||
|
static constexpr uint64_t kSubWaiter = uint64_t(-1);
|
||
|
static constexpr size_t kEpochShift = 32;
|
||
|
static constexpr uint64_t kAddEpoch = uint64_t(1) << kEpochShift;
|
||
|
static constexpr uint64_t kWaiterMask = kAddEpoch - 1;
|
||
|
};
|
||
|
|
||
|
inline void EventCount::notify() noexcept {
|
||
|
doNotify(1);
|
||
|
}
|
||
|
|
||
|
inline void EventCount::notifyAll() noexcept {
|
||
|
doNotify(INT_MAX);
|
||
|
}
|
||
|
|
||
|
inline void EventCount::doNotify(int n) noexcept {
|
||
|
uint64_t prev = val_.fetch_add(kAddEpoch, std::memory_order_acq_rel);
|
||
|
if (UNLIKELY(prev & kWaiterMask)) {
|
||
|
detail::futexWake(
|
||
|
reinterpret_cast<detail::Futex<std::atomic>*>(&val_) + kEpochOffset, n);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline EventCount::Key EventCount::prepareWait() noexcept {
|
||
|
uint64_t prev = val_.fetch_add(kAddWaiter, std::memory_order_acq_rel);
|
||
|
return Key(prev >> kEpochShift);
|
||
|
}
|
||
|
|
||
|
inline void EventCount::cancelWait() noexcept {
|
||
|
// memory_order_relaxed would suffice for correctness, but the faster
|
||
|
// #waiters gets to 0, the less likely it is that we'll do spurious wakeups
|
||
|
// (and thus system calls).
|
||
|
uint64_t prev = val_.fetch_add(kSubWaiter, std::memory_order_seq_cst);
|
||
|
DCHECK_NE((prev & kWaiterMask), 0);
|
||
|
}
|
||
|
|
||
|
inline void EventCount::wait(Key key) noexcept {
|
||
|
while ((val_.load(std::memory_order_acquire) >> kEpochShift) == key.epoch_) {
|
||
|
detail::futexWait(
|
||
|
reinterpret_cast<detail::Futex<std::atomic>*>(&val_) + kEpochOffset,
|
||
|
key.epoch_);
|
||
|
}
|
||
|
// memory_order_relaxed would suffice for correctness, but the faster
|
||
|
// #waiters gets to 0, the less likely it is that we'll do spurious wakeups
|
||
|
// (and thus system calls)
|
||
|
uint64_t prev = val_.fetch_add(kSubWaiter, std::memory_order_seq_cst);
|
||
|
DCHECK_NE((prev & kWaiterMask), 0);
|
||
|
}
|
||
|
|
||
|
template <class Condition>
|
||
|
void EventCount::await(Condition condition) {
|
||
|
if (condition()) {
|
||
|
return; // fast path
|
||
|
}
|
||
|
|
||
|
// condition() is the only thing that may throw, everything else is
|
||
|
// noexcept, so we can hoist the try/catch block outside of the loop
|
||
|
try {
|
||
|
for (;;) {
|
||
|
auto key = prepareWait();
|
||
|
if (condition()) {
|
||
|
cancelWait();
|
||
|
break;
|
||
|
} else {
|
||
|
wait(key);
|
||
|
}
|
||
|
}
|
||
|
} catch (...) {
|
||
|
cancelWait();
|
||
|
throw;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace folly
|