// // basic_signal_set.hpp // ~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2016 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_BASIC_SIGNAL_SET_HPP #define BOOST_ASIO_BASIC_SIGNAL_SET_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include #include #include #include #include #include #include namespace boost { namespace asio { /// Provides signal functionality. /** * The basic_signal_set class template provides the ability to perform an * asynchronous wait for one or more signals to occur. * * Most applications will use the boost::asio::signal_set typedef. * * @par Thread Safety * @e Distinct @e objects: Safe.@n * @e Shared @e objects: Unsafe. * * @par Example * Performing an asynchronous wait: * @code * void handler( * const boost::system::error_code& error, * int signal_number) * { * if (!error) * { * // A signal occurred. * } * } * * ... * * // Construct a signal set registered for process termination. * boost::asio::signal_set signals(io_service, SIGINT, SIGTERM); * * // Start an asynchronous wait for one of the signals to occur. * signals.async_wait(handler); * @endcode * * @par Queueing of signal notifications * * If a signal is registered with a signal_set, and the signal occurs when * there are no waiting handlers, then the signal notification is queued. The * next async_wait operation on that signal_set will dequeue the notification. * If multiple notifications are queued, subsequent async_wait operations * dequeue them one at a time. Signal notifications are dequeued in order of * ascending signal number. * * If a signal number is removed from a signal_set (using the @c remove or @c * erase member functions) then any queued notifications for that signal are * discarded. * * @par Multiple registration of signals * * The same signal number may be registered with different signal_set objects. * When the signal occurs, one handler is called for each signal_set object. * * Note that multiple registration only works for signals that are registered * using Asio. The application must not also register a signal handler using * functions such as @c signal() or @c sigaction(). * * @par Signal masking on POSIX platforms * * POSIX allows signals to be blocked using functions such as @c sigprocmask() * and @c pthread_sigmask(). For signals to be delivered, programs must ensure * that any signals registered using signal_set objects are unblocked in at * least one thread. */ template class basic_signal_set : public basic_io_object { public: /// Construct a signal set without adding any signals. /** * This constructor creates a signal set without registering for any signals. * * @param io_service The io_service object that the signal set will use to * dispatch handlers for any asynchronous operations performed on the set. */ explicit basic_signal_set(boost::asio::io_service& io_service) : basic_io_object(io_service) { } /// Construct a signal set and add one signal. /** * This constructor creates a signal set and registers for one signal. * * @param io_service The io_service object that the signal set will use to * dispatch handlers for any asynchronous operations performed on the set. * * @param signal_number_1 The signal number to be added. * * @note This constructor is equivalent to performing: * @code boost::asio::signal_set signals(io_service); * signals.add(signal_number_1); @endcode */ basic_signal_set(boost::asio::io_service& io_service, int signal_number_1) : basic_io_object(io_service) { boost::system::error_code ec; this->service.add(this->implementation, signal_number_1, ec); boost::asio::detail::throw_error(ec, "add"); } /// Construct a signal set and add two signals. /** * This constructor creates a signal set and registers for two signals. * * @param io_service The io_service object that the signal set will use to * dispatch handlers for any asynchronous operations performed on the set. * * @param signal_number_1 The first signal number to be added. * * @param signal_number_2 The second signal number to be added. * * @note This constructor is equivalent to performing: * @code boost::asio::signal_set signals(io_service); * signals.add(signal_number_1); * signals.add(signal_number_2); @endcode */ basic_signal_set(boost::asio::io_service& io_service, int signal_number_1, int signal_number_2) : basic_io_object(io_service) { boost::system::error_code ec; this->service.add(this->implementation, signal_number_1, ec); boost::asio::detail::throw_error(ec, "add"); this->service.add(this->implementation, signal_number_2, ec); boost::asio::detail::throw_error(ec, "add"); } /// Construct a signal set and add three signals. /** * This constructor creates a signal set and registers for three signals. * * @param io_service The io_service object that the signal set will use to * dispatch handlers for any asynchronous operations performed on the set. * * @param signal_number_1 The first signal number to be added. * * @param signal_number_2 The second signal number to be added. * * @param signal_number_3 The third signal number to be added. * * @note This constructor is equivalent to performing: * @code boost::asio::signal_set signals(io_service); * signals.add(signal_number_1); * signals.add(signal_number_2); * signals.add(signal_number_3); @endcode */ basic_signal_set(boost::asio::io_service& io_service, int signal_number_1, int signal_number_2, int signal_number_3) : basic_io_object(io_service) { boost::system::error_code ec; this->service.add(this->implementation, signal_number_1, ec); boost::asio::detail::throw_error(ec, "add"); this->service.add(this->implementation, signal_number_2, ec); boost::asio::detail::throw_error(ec, "add"); this->service.add(this->implementation, signal_number_3, ec); boost::asio::detail::throw_error(ec, "add"); } /// Add a signal to a signal_set. /** * This function adds the specified signal to the set. It has no effect if the * signal is already in the set. * * @param signal_number The signal to be added to the set. * * @throws boost::system::system_error Thrown on failure. */ void add(int signal_number) { boost::system::error_code ec; this->service.add(this->implementation, signal_number, ec); boost::asio::detail::throw_error(ec, "add"); } /// Add a signal to a signal_set. /** * This function adds the specified signal to the set. It has no effect if the * signal is already in the set. * * @param signal_number The signal to be added to the set. * * @param ec Set to indicate what error occurred, if any. */ boost::system::error_code add(int signal_number, boost::system::error_code& ec) { return this->service.add(this->implementation, signal_number, ec); } /// Remove a signal from a signal_set. /** * This function removes the specified signal from the set. It has no effect * if the signal is not in the set. * * @param signal_number The signal to be removed from the set. * * @throws boost::system::system_error Thrown on failure. * * @note Removes any notifications that have been queued for the specified * signal number. */ void remove(int signal_number) { boost::system::error_code ec; this->service.remove(this->implementation, signal_number, ec); boost::asio::detail::throw_error(ec, "remove"); } /// Remove a signal from a signal_set. /** * This function removes the specified signal from the set. It has no effect * if the signal is not in the set. * * @param signal_number The signal to be removed from the set. * * @param ec Set to indicate what error occurred, if any. * * @note Removes any notifications that have been queued for the specified * signal number. */ boost::system::error_code remove(int signal_number, boost::system::error_code& ec) { return this->service.remove(this->implementation, signal_number, ec); } /// Remove all signals from a signal_set. /** * This function removes all signals from the set. It has no effect if the set * is already empty. * * @throws boost::system::system_error Thrown on failure. * * @note Removes all queued notifications. */ void clear() { boost::system::error_code ec; this->service.clear(this->implementation, ec); boost::asio::detail::throw_error(ec, "clear"); } /// Remove all signals from a signal_set. /** * This function removes all signals from the set. It has no effect if the set * is already empty. * * @param ec Set to indicate what error occurred, if any. * * @note Removes all queued notifications. */ boost::system::error_code clear(boost::system::error_code& ec) { return this->service.clear(this->implementation, ec); } /// Cancel all operations associated with the signal set. /** * This function forces the completion of any pending asynchronous wait * operations against the signal set. The handler for each cancelled * operation will be invoked with the boost::asio::error::operation_aborted * error code. * * Cancellation does not alter the set of registered signals. * * @throws boost::system::system_error Thrown on failure. * * @note If a registered signal occurred before cancel() is called, then the * handlers for asynchronous wait operations will: * * @li have already been invoked; or * * @li have been queued for invocation in the near future. * * These handlers can no longer be cancelled, and therefore are passed an * error code that indicates the successful completion of the wait operation. */ void cancel() { boost::system::error_code ec; this->service.cancel(this->implementation, ec); boost::asio::detail::throw_error(ec, "cancel"); } /// Cancel all operations associated with the signal set. /** * This function forces the completion of any pending asynchronous wait * operations against the signal set. The handler for each cancelled * operation will be invoked with the boost::asio::error::operation_aborted * error code. * * Cancellation does not alter the set of registered signals. * * @param ec Set to indicate what error occurred, if any. * * @note If a registered signal occurred before cancel() is called, then the * handlers for asynchronous wait operations will: * * @li have already been invoked; or * * @li have been queued for invocation in the near future. * * These handlers can no longer be cancelled, and therefore are passed an * error code that indicates the successful completion of the wait operation. */ boost::system::error_code cancel(boost::system::error_code& ec) { return this->service.cancel(this->implementation, ec); } /// Start an asynchronous operation to wait for a signal to be delivered. /** * This function may be used to initiate an asynchronous wait against the * signal set. It always returns immediately. * * For each call to async_wait(), the supplied handler will be called exactly * once. The handler will be called when: * * @li One of the registered signals in the signal set occurs; or * * @li The signal set was cancelled, in which case the handler is passed the * error code boost::asio::error::operation_aborted. * * @param handler The handler to be called when the signal occurs. Copies * will be made of the handler as required. The function signature of the * handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * int signal_number // Indicates which signal occurred. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the handler will not be invoked from within this function. Invocation * of the handler will be performed in a manner equivalent to using * boost::asio::io_service::post(). */ template BOOST_ASIO_INITFN_RESULT_TYPE(SignalHandler, void (boost::system::error_code, int)) async_wait(BOOST_ASIO_MOVE_ARG(SignalHandler) handler) { // If you get an error on the following line it means that your handler does // not meet the documented type requirements for a SignalHandler. BOOST_ASIO_SIGNAL_HANDLER_CHECK(SignalHandler, handler) type_check; return this->service.async_wait(this->implementation, BOOST_ASIO_MOVE_CAST(SignalHandler)(handler)); } }; } // namespace asio } // namespace boost #include #endif // BOOST_ASIO_BASIC_SIGNAL_SET_HPP