//---------------------------------------------------------------------------// // Copyright (c) 2013 Kyle Lutz // // Distributed under the Boost Software License, Version 1.0 // See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt // // See http://boostorg.github.com/compute for more information. //---------------------------------------------------------------------------// #ifndef BOOST_COMPUTE_BUFFER_HPP #define BOOST_COMPUTE_BUFFER_HPP #include #include #include #include #include namespace boost { namespace compute { // forward declarations class command_queue; /// \class buffer /// \brief A memory buffer on a compute device. /// /// The buffer class represents a memory buffer on a compute device. /// /// Buffers are allocated within a compute context. For example, to allocate /// a memory buffer for 32 float's: /// /// \snippet test/test_buffer.cpp constructor /// /// Once created, data can be copied to and from the buffer using the /// \c enqueue_*_buffer() methods in the command_queue class. For example, to /// copy a set of \c int values from the host to the device: /// \code /// int data[] = { 1, 2, 3, 4 }; /// /// queue.enqueue_write_buffer(buf, 0, 4 * sizeof(int), data); /// \endcode /// /// Also see the copy() algorithm for a higher-level interface to copying data /// between the host and the device. For a higher-level, dynamically-resizable, /// type-safe container for data on a compute device, use the vector class. /// /// Buffer objects have reference semantics. Creating a copy of a buffer /// object simply creates another reference to the underlying OpenCL memory /// object. To create an actual copy use the buffer::clone() method. /// /// \see context, command_queue class buffer : public memory_object { public: /// Creates a null buffer object. buffer() : memory_object() { } /// Creates a buffer object for \p mem. If \p retain is \c true, the /// reference count for \p mem will be incremented. explicit buffer(cl_mem mem, bool retain = true) : memory_object(mem, retain) { } /// Create a new memory buffer in of \p size with \p flags in /// \p context. /// /// \see_opencl_ref{clCreateBuffer} buffer(const context &context, size_t size, cl_mem_flags flags = read_write, void *host_ptr = 0) { cl_int error = 0; m_mem = clCreateBuffer(context, flags, (std::max)(size, size_t(1)), host_ptr, &error); if(!m_mem){ BOOST_THROW_EXCEPTION(opencl_error(error)); } } /// Creates a new buffer object as a copy of \p other. buffer(const buffer &other) : memory_object(other) { } /// Copies the buffer object from \p other to \c *this. buffer& operator=(const buffer &other) { if(this != &other){ memory_object::operator=(other); } return *this; } #ifndef BOOST_COMPUTE_NO_RVALUE_REFERENCES /// Move-constructs a new buffer object from \p other. buffer(buffer&& other) BOOST_NOEXCEPT : memory_object(std::move(other)) { } /// Move-assigns the buffer from \p other to \c *this. buffer& operator=(buffer&& other) BOOST_NOEXCEPT { memory_object::operator=(std::move(other)); return *this; } #endif // BOOST_COMPUTE_NO_RVALUE_REFERENCES /// Destroys the buffer object. ~buffer() { } /// Returns the size of the buffer in bytes. size_t size() const { return get_memory_size(); } /// \internal_ size_t max_size() const { return get_context().get_device().max_memory_alloc_size(); } /// Returns information about the buffer. /// /// \see_opencl_ref{clGetMemObjectInfo} template T get_info(cl_mem_info info) const { return get_memory_info(info); } /// \overload template typename detail::get_object_info_type::type get_info() const; /// Creates a new buffer with a copy of the data in \c *this. Uses /// \p queue to perform the copy. buffer clone(command_queue &queue) const; #if defined(CL_VERSION_1_1) || defined(BOOST_COMPUTE_DOXYGEN_INVOKED) /// Creates a new buffer out of this buffer. /// The new buffer is a sub region of this buffer. /// \p flags The mem_flags which should be used to create the new buffer /// \p origin The start index in this buffer /// \p size The size of the new sub buffer /// /// \see_opencl_ref{clCreateSubBuffer} /// /// \opencl_version_warning{1,1} buffer create_subbuffer(cl_mem_flags flags, size_t origin, size_t size) { BOOST_ASSERT(origin + size <= this->size()); BOOST_ASSERT(origin % (get_context(). get_device(). get_info() / 8) == 0); cl_int error = 0; cl_buffer_region region = { origin, size }; cl_mem mem = clCreateSubBuffer(m_mem, flags, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &error); if(!mem){ BOOST_THROW_EXCEPTION(opencl_error(error)); } return buffer(mem, false); } #endif // CL_VERSION_1_1 }; /// \internal_ define get_info() specializations for buffer BOOST_COMPUTE_DETAIL_DEFINE_GET_INFO_SPECIALIZATIONS(buffer, ((cl_mem_object_type, CL_MEM_TYPE)) ((cl_mem_flags, CL_MEM_FLAGS)) ((size_t, CL_MEM_SIZE)) ((void *, CL_MEM_HOST_PTR)) ((cl_uint, CL_MEM_MAP_COUNT)) ((cl_uint, CL_MEM_REFERENCE_COUNT)) ((cl_context, CL_MEM_CONTEXT)) ) #ifdef CL_VERSION_1_1 BOOST_COMPUTE_DETAIL_DEFINE_GET_INFO_SPECIALIZATIONS(buffer, ((cl_mem, CL_MEM_ASSOCIATED_MEMOBJECT)) ((size_t, CL_MEM_OFFSET)) ) #endif // CL_VERSION_1_1 namespace detail { // set_kernel_arg specialization for buffer template<> struct set_kernel_arg { void operator()(kernel &kernel_, size_t index, const buffer &buffer_) { kernel_.set_arg(index, buffer_.get()); } }; } // end detail namespace } // end compute namespace } // end boost namespace #endif // BOOST_COMPUTE_BUFFER_HPP