// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard. // Copyright (C) 2005-2011 Daniel James // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_UNORDERED_DETAIL_UNIQUE_HPP_INCLUDED #define BOOST_UNORDERED_DETAIL_UNIQUE_HPP_INCLUDED #include #if defined(BOOST_HAS_PRAGMA_ONCE) #pragma once #endif #include #include #include namespace boost { namespace unordered { namespace detail { template struct unique_node; template struct ptr_node; template struct table_impl; template struct unique_node : boost::unordered::detail::value_base { typedef typename ::boost::unordered::detail::rebind_wrap< A, unique_node >::type allocator; typedef typename ::boost::unordered::detail:: allocator_traits::pointer node_pointer; typedef node_pointer link_pointer; link_pointer next_; std::size_t hash_; unique_node() : next_(), hash_(0) {} void init(node_pointer) { } private: unique_node& operator=(unique_node const&); }; template struct ptr_node : boost::unordered::detail::ptr_bucket { typedef T value_type; typedef boost::unordered::detail::ptr_bucket bucket_base; typedef ptr_node* node_pointer; typedef ptr_bucket* link_pointer; std::size_t hash_; boost::unordered::detail::value_base value_base_; ptr_node() : bucket_base(), hash_(0) {} void init(node_pointer) { } void* address() { return value_base_.address(); } value_type& value() { return value_base_.value(); } value_type* value_ptr() { return value_base_.value_ptr(); } private: ptr_node& operator=(ptr_node const&); }; // If the allocator uses raw pointers use ptr_node // Otherwise use node. template struct pick_node2 { typedef boost::unordered::detail::unique_node node; typedef typename boost::unordered::detail::allocator_traits< typename boost::unordered::detail::rebind_wrap::type >::pointer node_pointer; typedef boost::unordered::detail::bucket bucket; typedef node_pointer link_pointer; }; template struct pick_node2*, boost::unordered::detail::ptr_bucket*> { typedef boost::unordered::detail::ptr_node node; typedef boost::unordered::detail::ptr_bucket bucket; typedef bucket* link_pointer; }; template struct pick_node { typedef typename boost::remove_const::type nonconst; typedef boost::unordered::detail::allocator_traits< typename boost::unordered::detail::rebind_wrap >::type > tentative_node_traits; typedef boost::unordered::detail::allocator_traits< typename boost::unordered::detail::rebind_wrap::type > tentative_bucket_traits; typedef pick_node2 pick; typedef typename pick::node node; typedef typename pick::bucket bucket; typedef typename pick::link_pointer link_pointer; }; template struct table_impl : boost::unordered::detail::table { typedef boost::unordered::detail::table table; typedef typename table::value_type value_type; typedef typename table::bucket bucket; typedef typename table::policy policy; typedef typename table::node_pointer node_pointer; typedef typename table::node_allocator node_allocator; typedef typename table::node_allocator_traits node_allocator_traits; typedef typename table::bucket_pointer bucket_pointer; typedef typename table::link_pointer link_pointer; typedef typename table::hasher hasher; typedef typename table::key_equal key_equal; typedef typename table::key_type key_type; typedef typename table::node_constructor node_constructor; typedef typename table::node_tmp node_tmp; typedef typename table::extractor extractor; typedef typename table::iterator iterator; typedef typename table::c_iterator c_iterator; typedef std::pair emplace_return; // Constructors table_impl(std::size_t n, hasher const& hf, key_equal const& eq, node_allocator const& a) : table(n, hf, eq, a) {} table_impl(table_impl const& x) : table(x, node_allocator_traits:: select_on_container_copy_construction(x.node_alloc())) { this->init(x); } table_impl(table_impl const& x, node_allocator const& a) : table(x, a) { this->init(x); } table_impl(table_impl& x, boost::unordered::detail::move_tag m) : table(x, m) {} table_impl(table_impl& x, node_allocator const& a, boost::unordered::detail::move_tag m) : table(x, a, m) { this->move_init(x); } // Node functions. static inline node_pointer next_node(link_pointer n) { return static_cast(n->next_); } // Accessors template node_pointer find_node_impl( std::size_t key_hash, Key const& k, Pred const& eq) const { std::size_t bucket_index = this->hash_to_bucket(key_hash); node_pointer n = this->begin(bucket_index); for (;;) { if (!n) return n; std::size_t node_hash = n->hash_; if (key_hash == node_hash) { if (eq(k, this->get_key(n->value()))) return n; } else { if (this->hash_to_bucket(node_hash) != bucket_index) return node_pointer(); } n = next_node(n); } } std::size_t count(key_type const& k) const { return this->find_node(k) ? 1 : 0; } value_type& at(key_type const& k) const { if (this->size_) { node_pointer n = this->find_node(k); if (n) return n->value(); } boost::throw_exception( std::out_of_range("Unable to find key in unordered_map.")); } std::pair equal_range(key_type const& k) const { node_pointer n = this->find_node(k); return std::make_pair(iterator(n), iterator(n ? next_node(n) : n)); } // equals bool equals(table_impl const& other) const { if(this->size_ != other.size_) return false; for(node_pointer n1 = this->begin(); n1; n1 = next_node(n1)) { node_pointer n2 = other.find_node(other.get_key(n1->value())); if (!n2 || n1->value() != n2->value()) return false; } return true; } // Emplace/Insert inline node_pointer add_node( node_pointer n, std::size_t key_hash) { n->hash_ = key_hash; bucket_pointer b = this->get_bucket(this->hash_to_bucket(key_hash)); if (!b->next_) { link_pointer start_node = this->get_previous_start(); if (start_node->next_) { this->get_bucket(this->hash_to_bucket( next_node(start_node)->hash_) )->next_ = n; } b->next_ = start_node; n->next_ = start_node->next_; start_node->next_ = n; } else { n->next_ = b->next_->next_; b->next_->next_ = n; } ++this->size_; return n; } inline node_pointer resize_and_add_node(node_pointer n, std::size_t key_hash) { node_tmp b(n, this->node_alloc()); this->reserve_for_insert(this->size_ + 1); return this->add_node(b.release(), key_hash); } value_type& operator[](key_type const& k) { std::size_t key_hash = this->hash(k); node_pointer pos = this->find_node(key_hash, k); if (pos) { return pos->value(); } else { return this->resize_and_add_node( boost::unordered::detail::func::construct_node_pair(this->node_alloc(), k), key_hash)->value(); } } #if defined(BOOST_NO_CXX11_RVALUE_REFERENCES) # if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) emplace_return emplace(boost::unordered::detail::emplace_args1< boost::unordered::detail::please_ignore_this_overload> const&) { BOOST_ASSERT(false); return emplace_return(iterator(), false); } iterator emplace_hint(c_iterator, boost::unordered::detail::emplace_args1< boost::unordered::detail::please_ignore_this_overload> const&) { BOOST_ASSERT(false); return iterator(); } # else emplace_return emplace( boost::unordered::detail::please_ignore_this_overload const&) { BOOST_ASSERT(false); return emplace_return(iterator(), false); } iterator emplace_hint(c_iterator, boost::unordered::detail::please_ignore_this_overload const&) { BOOST_ASSERT(false); return iterator(); } # endif #endif template emplace_return emplace(BOOST_UNORDERED_EMPLACE_ARGS) { #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) return emplace_impl( extractor::extract(BOOST_UNORDERED_EMPLACE_FORWARD), BOOST_UNORDERED_EMPLACE_FORWARD); #else return emplace_impl( extractor::extract(args.a0, args.a1), BOOST_UNORDERED_EMPLACE_FORWARD); #endif } template iterator emplace_hint(c_iterator hint, BOOST_UNORDERED_EMPLACE_ARGS) { #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) return emplace_hint_impl(hint, extractor::extract(BOOST_UNORDERED_EMPLACE_FORWARD), BOOST_UNORDERED_EMPLACE_FORWARD); #else return emplace_hint_impl(hint, extractor::extract(args.a0, args.a1), BOOST_UNORDERED_EMPLACE_FORWARD); #endif } #if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) template emplace_return emplace( boost::unordered::detail::emplace_args1 const& args) { return emplace_impl(extractor::extract(args.a0), args); } template iterator emplace_hint(c_iterator hint, boost::unordered::detail::emplace_args1 const& args) { return emplace_hint_impl(hint, extractor::extract(args.a0), args); } #endif template iterator emplace_hint_impl(c_iterator hint, key_type const& k, BOOST_UNORDERED_EMPLACE_ARGS) { if (hint.node_ && this->key_eq()(k, this->get_key(*hint))) { return iterator(hint.node_); } else { return emplace_impl(k, BOOST_UNORDERED_EMPLACE_FORWARD).first; } } template emplace_return emplace_impl(key_type const& k, BOOST_UNORDERED_EMPLACE_ARGS) { std::size_t key_hash = this->hash(k); node_pointer pos = this->find_node(key_hash, k); if (pos) { return emplace_return(iterator(pos), false); } else { return emplace_return( iterator(this->resize_and_add_node( boost::unordered::detail::func::construct_node_from_args( this->node_alloc(), BOOST_UNORDERED_EMPLACE_FORWARD), key_hash)), true); } } template iterator emplace_hint_impl(c_iterator hint, no_key, BOOST_UNORDERED_EMPLACE_ARGS) { node_tmp b( boost::unordered::detail::func::construct_node_from_args( this->node_alloc(), BOOST_UNORDERED_EMPLACE_FORWARD), this->node_alloc()); key_type const& k = this->get_key(b.node_->value()); if (hint.node_ && this->key_eq()(k, this->get_key(*hint))) { return iterator(hint.node_); } std::size_t key_hash = this->hash(k); node_pointer pos = this->find_node(key_hash, k); if (pos) { return iterator(pos); } else { return iterator(this->resize_and_add_node(b.release(), key_hash)); } } template emplace_return emplace_impl(no_key, BOOST_UNORDERED_EMPLACE_ARGS) { node_tmp b( boost::unordered::detail::func::construct_node_from_args( this->node_alloc(), BOOST_UNORDERED_EMPLACE_FORWARD), this->node_alloc()); key_type const& k = this->get_key(b.node_->value()); std::size_t key_hash = this->hash(k); node_pointer pos = this->find_node(key_hash, k); if (pos) { return emplace_return(iterator(pos), false); } else { return emplace_return( iterator(this->resize_and_add_node(b.release(), key_hash)), true); } } //////////////////////////////////////////////////////////////////////// // Insert range methods // // if hash function throws, or inserting > 1 element, basic exception // safety strong otherwise template void insert_range(InputIt i, InputIt j) { if(i != j) return insert_range_impl(extractor::extract(*i), i, j); } template void insert_range_impl(key_type const& k, InputIt i, InputIt j) { insert_range_impl2(k, i, j); while(++i != j) { // Note: can't use get_key as '*i' might not be value_type - it // could be a pair with first_types as key_type without const or // a different second_type. // // TODO: Might be worth storing the value_type instead of the // key here. Could be more efficient if '*i' is expensive. Could // be less efficient if copying the full value_type is // expensive. insert_range_impl2(extractor::extract(*i), i, j); } } template void insert_range_impl2(key_type const& k, InputIt i, InputIt j) { // No side effects in this initial code std::size_t key_hash = this->hash(k); node_pointer pos = this->find_node(key_hash, k); if (!pos) { node_tmp b( boost::unordered::detail::func::construct_node(this->node_alloc(), *i), this->node_alloc()); if(this->size_ + 1 > this->max_load_) this->reserve_for_insert(this->size_ + boost::unordered::detail::insert_size(i, j)); this->add_node(b.release(), key_hash); } } template void insert_range_impl(no_key, InputIt i, InputIt j) { node_constructor a(this->node_alloc()); do { if (!a.node_) { a.create_node(); } boost::unordered::detail::func::call_construct( a.alloc_, a.node_->value_ptr(), *i); node_tmp b(a.release(), a.alloc_); key_type const& k = this->get_key(b.node_->value()); std::size_t key_hash = this->hash(k); node_pointer pos = this->find_node(key_hash, k); if (pos) { a.reclaim(b.release()); } else { // reserve has basic exception safety if the hash function // throws, strong otherwise. this->reserve_for_insert(this->size_ + 1); this->add_node(b.release(), key_hash); } } while(++i != j); } //////////////////////////////////////////////////////////////////////// // Erase // // no throw std::size_t erase_key(key_type const& k) { if(!this->size_) return 0; std::size_t key_hash = this->hash(k); std::size_t bucket_index = this->hash_to_bucket(key_hash); link_pointer prev = this->get_previous_start(bucket_index); if (!prev) return 0; for (;;) { if (!prev->next_) return 0; std::size_t node_hash = next_node(prev)->hash_; if (this->hash_to_bucket(node_hash) != bucket_index) return 0; if (node_hash == key_hash && this->key_eq()(k, this->get_key( next_node(prev)->value()))) break; prev = prev->next_; } link_pointer end = next_node(prev)->next_; std::size_t deleted_count = this->delete_nodes(prev, end); this->fix_bucket(bucket_index, prev); return deleted_count; } iterator erase(c_iterator r) { BOOST_ASSERT(r.node_); node_pointer next = next_node(r.node_); erase_nodes(r.node_, next); return iterator(next); } iterator erase_range(c_iterator r1, c_iterator r2) { if (r1 == r2) return iterator(r2.node_); erase_nodes(r1.node_, r2.node_); return iterator(r2.node_); } void erase_nodes(node_pointer i, node_pointer j) { std::size_t bucket_index = this->hash_to_bucket(i->hash_); // Find the node before i. link_pointer prev = this->get_previous_start(bucket_index); while(prev->next_ != i) prev = prev->next_; // Delete the nodes. do { this->delete_node(prev); bucket_index = this->fix_bucket(bucket_index, prev); } while (prev->next_ != j); } //////////////////////////////////////////////////////////////////////// // fill_buckets void copy_buckets(table const& src) { this->create_buckets(this->bucket_count_); for(node_pointer n = src.begin(); n; n = next_node(n)) { this->add_node( boost::unordered::detail::func::construct_node( this->node_alloc(), n->value()), n->hash_); } } void move_buckets(table const& src) { this->create_buckets(this->bucket_count_); for(node_pointer n = src.begin(); n; n = next_node(n)) { this->add_node( boost::unordered::detail::func::construct_node( this->node_alloc(), boost::move(n->value())), n->hash_); } } void assign_buckets(table const& src) { node_holder holder(*this); for(node_pointer n = src.begin(); n; n = next_node(n)) { this->add_node(holder.copy_of(n->value()), n->hash_); } } void move_assign_buckets(table& src) { node_holder holder(*this); for(node_pointer n = src.begin(); n; n = next_node(n)) { this->add_node(holder.move_copy_of(n->value()), n->hash_); } } // strong otherwise exception safety void rehash_impl(std::size_t num_buckets) { BOOST_ASSERT(this->buckets_); this->create_buckets(num_buckets); link_pointer prev = this->get_previous_start(); while (prev->next_) prev = place_in_bucket(*this, prev); } // Iterate through the nodes placing them in the correct buckets. // pre: prev->next_ is not null. static link_pointer place_in_bucket(table& dst, link_pointer prev) { node_pointer n = next_node(prev); bucket_pointer b = dst.get_bucket(dst.hash_to_bucket(n->hash_)); if (!b->next_) { b->next_ = prev; return n; } else { prev->next_ = n->next_; n->next_ = b->next_->next_; b->next_->next_ = n; return prev; } } }; }}} #endif