// Copyright Oliver Kowalke 2014. // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_CONTEXT_EXECUTION_CONTEXT_H #define BOOST_CONTEXT_EXECUTION_CONTEXT_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(BOOST_NO_CXX17_STD_APPLY) #include #endif #include #include #include #include #include #include #include #ifdef BOOST_HAS_ABI_HEADERS # include BOOST_ABI_PREFIX #endif #if defined(BOOST_USE_SEGMENTED_STACKS) extern "C" { void __splitstack_getcontext( void * [BOOST_CONTEXT_SEGMENTS]); void __splitstack_setcontext( void * [BOOST_CONTEXT_SEGMENTS]); } #endif namespace boost { namespace context { namespace detail { template< typename Fn > transfer_t context_ontop( transfer_t); struct activation_record; struct data_t { activation_record * from; void * data; }; struct activation_record { typedef boost::intrusive_ptr< activation_record > ptr_t; thread_local static ptr_t current_rec; std::atomic< std::size_t > use_count{ 0 }; fcontext_t fctx{ nullptr }; stack_context sctx{}; bool main_ctx{ true }; // used for toplevel-context // (e.g. main context, thread-entry context) constexpr activation_record() = default; activation_record( fcontext_t fctx_, stack_context sctx_) noexcept : fctx{ fctx_ }, sctx( sctx_ ), // sctx{ sctx_ } - clang-3.6: no viable conversion from 'boost::context::stack_context' to 'std::size_t' main_ctx{ false } { } virtual ~activation_record() = default; bool is_main_context() const noexcept { return main_ctx; } void * resume( void * vp) { // store current activation record in local variable auto from = current_rec.get(); // store `this` in static, thread local pointer // `this` will become the active (running) context // returned by execution_context::current() current_rec = this; #if defined(BOOST_USE_SEGMENTED_STACKS) // adjust segmented stack properties __splitstack_getcontext( from->sctx.segments_ctx); __splitstack_setcontext( sctx.segments_ctx); #endif data_t d = { from, vp }; // context switch from parent context to `this`-context transfer_t t = jump_fcontext( fctx, & d); data_t * dp = reinterpret_cast< data_t * >( t.data); dp->from->fctx = t.fctx; // parent context resumed return dp->data; } template< typename Fn > void * resume_ontop( void * data, Fn && fn) { // store current activation record in local variable activation_record * from = current_rec.get(); // store `this` in static, thread local pointer // `this` will become the active (running) context // returned by execution_context::current() current_rec = this; #if defined(BOOST_USE_SEGMENTED_STACKS) // adjust segmented stack properties __splitstack_getcontext( from->sctx.segments_ctx); __splitstack_setcontext( sctx.segments_ctx); #endif std::tuple< void *, Fn > p = std::forward_as_tuple( data, fn); data_t d = { from, & p }; // context switch from parent context to `this`-context // execute Fn( Tpl) on top of `this` transfer_t t = ontop_fcontext( fctx, & d, context_ontop< Fn >); data_t * dp = reinterpret_cast< data_t * >( t.data); dp->from->fctx = t.fctx; // parent context resumed return dp->data; } virtual void deallocate() noexcept { } friend void intrusive_ptr_add_ref( activation_record * ar) noexcept { ++ar->use_count; } friend void intrusive_ptr_release( activation_record * ar) noexcept { BOOST_ASSERT( nullptr != ar); if ( 0 == --ar->use_count) { ar->deallocate(); } } }; struct activation_record_initializer { activation_record_initializer() noexcept; ~activation_record_initializer(); }; template< typename Fn > transfer_t context_ontop( transfer_t t) { data_t * dp = reinterpret_cast< data_t * >( t.data); dp->from->fctx = t.fctx; auto tpl = reinterpret_cast< std::tuple< void *, Fn > * >( dp->data); BOOST_ASSERT( nullptr != tpl); auto data = std::get< 0 >( * tpl); typename std::decay< Fn >::type fn = std::forward< Fn >( std::get< 1 >( * tpl) ); #if defined(BOOST_NO_CXX17_STD_APPLY) dp->data = apply( fn, std::tie( data) ); #else dp->data = std::apply( fn, std::tie( data) ); #endif return { t.fctx, dp }; } template< typename StackAlloc, typename Fn, typename ... Args > class capture_record : public activation_record { private: StackAlloc salloc_; typename std::decay< Fn >::type fn_; std::tuple< typename std::decay< Args >::type ... > args_; activation_record * caller_; static void destroy( capture_record * p) noexcept { StackAlloc salloc = p->salloc_; stack_context sctx = p->sctx; // deallocate activation record p->~capture_record(); // destroy stack with stack allocator salloc.deallocate( sctx); } public: capture_record( stack_context sctx, StackAlloc const& salloc, fcontext_t fctx, activation_record * caller, Fn && fn, Args && ... args) noexcept : activation_record{ fctx, sctx }, salloc_{ salloc }, fn_( std::forward< Fn >( fn) ), args_( std::forward< Args >( args) ... ), caller_{ caller } { } void deallocate() noexcept override final { destroy( this); } void run() { auto data = caller_->resume( nullptr); #if defined(BOOST_NO_CXX17_STD_APPLY) apply( fn_, std::tuple_cat( args_, std::tie( data) ) ); #else std::apply( fn_, std::tuple_cat( args_, std::tie( data) ) ); #endif BOOST_ASSERT_MSG( ! main_ctx, "main-context does not execute activation-record::run()"); } }; } class BOOST_CONTEXT_DECL execution_context { private: // tampoline function // entered if the execution context // is resumed for the first time template< typename AR > static void entry_func( detail::transfer_t t) noexcept { detail::data_t * dp = reinterpret_cast< detail::data_t * >( t.data); AR * ar = static_cast< AR * >( dp->data); BOOST_ASSERT( nullptr != ar); dp->from->fctx = t.fctx; // start execution of toplevel context-function ar->run(); } typedef boost::intrusive_ptr< detail::activation_record > ptr_t; ptr_t ptr_; template< typename StackAlloc, typename Fn, typename ... Args > static detail::activation_record * create_context( StackAlloc salloc, Fn && fn, Args && ... args) { typedef detail::capture_record< StackAlloc, Fn, Args ... > capture_t; auto sctx = salloc.allocate(); // reserve space for control structure #if defined(BOOST_NO_CXX11_CONSTEXPR) || defined(BOOST_NO_CXX11_STD_ALIGN) const std::size_t size = sctx.size - sizeof( capture_t); void * sp = static_cast< char * >( sctx.sp) - sizeof( capture_t); #else constexpr std::size_t func_alignment = 64; // alignof( capture_t); constexpr std::size_t func_size = sizeof( capture_t); // reserve space on stack void * sp = static_cast< char * >( sctx.sp) - func_size - func_alignment; // align sp pointer std::size_t space = func_size + func_alignment; sp = std::align( func_alignment, func_size, sp, space); BOOST_ASSERT( nullptr != sp); // calculate remaining size const std::size_t size = sctx.size - ( static_cast< char * >( sctx.sp) - static_cast< char * >( sp) ); #endif // create fast-context const detail::fcontext_t fctx = detail::make_fcontext( sp, size, & execution_context::entry_func< capture_t >); BOOST_ASSERT( nullptr != fctx); // get current activation record auto curr = execution_context::current().ptr_; // placment new for control structure on fast-context stack return ::new ( sp) capture_t{ sctx, salloc, fctx, curr.get(), std::forward< Fn >( fn), std::forward< Args >( args) ... }; } template< typename StackAlloc, typename Fn, typename ... Args > static detail::activation_record * create_context( preallocated palloc, StackAlloc salloc, Fn && fn, Args && ... args) { typedef detail::capture_record< StackAlloc, Fn, Args ... > capture_t; // reserve space for control structure #if defined(BOOST_NO_CXX11_CONSTEXPR) || defined(BOOST_NO_CXX11_STD_ALIGN) const std::size_t size = palloc.size - sizeof( capture_t); void * sp = static_cast< char * >( palloc.sp) - sizeof( capture_t); #else constexpr std::size_t func_alignment = 64; // alignof( capture_t); constexpr std::size_t func_size = sizeof( capture_t); // reserve space on stack void * sp = static_cast< char * >( palloc.sp) - func_size - func_alignment; // align sp pointer std::size_t space = func_size + func_alignment; sp = std::align( func_alignment, func_size, sp, space); BOOST_ASSERT( nullptr != sp); // calculate remaining size const std::size_t size = palloc.size - ( static_cast< char * >( palloc.sp) - static_cast< char * >( sp) ); #endif // create fast-context const detail::fcontext_t fctx = detail::make_fcontext( sp, size, & execution_context::entry_func< capture_t >); BOOST_ASSERT( nullptr != fctx); // get current activation record auto curr = execution_context::current().ptr_; // placment new for control structure on fast-context stack return ::new ( sp) capture_t{ palloc.sctx, salloc, fctx, curr.get(), std::forward< Fn >( fn), std::forward< Args >( args) ... }; } execution_context() noexcept : // default constructed with current activation_record ptr_{ detail::activation_record::current_rec } { } public: static execution_context current() noexcept; #if defined(BOOST_USE_SEGMENTED_STACKS) template< typename Fn, typename ... Args, typename = detail::disable_overload< execution_context, Fn > > execution_context( Fn && fn, Args && ... args) : // deferred execution of fn and its arguments // arguments are stored in std::tuple<> // non-type template parameter pack via std::index_sequence_for<> // preserves the number of arguments // used to extract the function arguments from std::tuple<> ptr_{ create_context( segmented_stack(), std::forward< Fn >( fn), std::forward< Args >( args) ...) } { ptr_->resume( ptr_.get() ); } template< typename Fn, typename ... Args > execution_context( std::allocator_arg_t, segmented_stack salloc, Fn && fn, Args && ... args) : // deferred execution of fn and its arguments // arguments are stored in std::tuple<> // non-type template parameter pack via std::index_sequence_for<> // preserves the number of arguments // used to extract the function arguments from std::tuple<> ptr_{ create_context( salloc, std::forward< Fn >( fn), std::forward< Args >( args) ...) } { ptr_->resume( ptr_.get() ); } template< typename Fn, typename ... Args > execution_context( std::allocator_arg_t, preallocated palloc, segmented_stack salloc, Fn && fn, Args && ... args) : // deferred execution of fn and its arguments // arguments are stored in std::tuple<> // non-type template parameter pack via std::index_sequence_for<> // preserves the number of arguments // used to extract the function arguments from std::tuple<> ptr_{ create_context( palloc, salloc, std::forward< Fn >( fn), std::forward< Args >( args) ...) } { ptr_->resume( ptr_.get() ); } #else template< typename Fn, typename ... Args, typename = detail::disable_overload< execution_context, Fn > > execution_context( Fn && fn, Args && ... args) : // deferred execution of fn and its arguments // arguments are stored in std::tuple<> // non-type template parameter pack via std::index_sequence_for<> // preserves the number of arguments // used to extract the function arguments from std::tuple<> ptr_{ create_context( fixedsize_stack(), std::forward< Fn >( fn), std::forward< Args >( args) ...) } { ptr_->resume( ptr_.get() ); } template< typename StackAlloc, typename Fn, typename ... Args > execution_context( std::allocator_arg_t, StackAlloc salloc, Fn && fn, Args && ... args) : // deferred execution of fn and its arguments // arguments are stored in std::tuple<> // non-type template parameter pack via std::index_sequence_for<> // preserves the number of arguments // used to extract the function arguments from std::tuple<> ptr_{ create_context( salloc, std::forward< Fn >( fn), std::forward< Args >( args) ...) } { ptr_->resume( ptr_.get() ); } template< typename StackAlloc, typename Fn, typename ... Args > execution_context( std::allocator_arg_t, preallocated palloc, StackAlloc salloc, Fn && fn, Args && ... args) : // deferred execution of fn and its arguments // arguments are stored in std::tuple<> // non-type template parameter pack via std::index_sequence_for<> // preserves the number of arguments // used to extract the function arguments from std::tuple<> ptr_{ create_context( palloc, salloc, std::forward< Fn >( fn), std::forward< Args >( args) ...) } { ptr_->resume( ptr_.get() ); } #endif execution_context( execution_context const& other) noexcept : ptr_{ other.ptr_ } { } execution_context( execution_context && other) noexcept : ptr_{ other.ptr_ } { other.ptr_.reset(); } execution_context & operator=( execution_context const& other) noexcept { // intrusive_ptr<> does not test for self-assignment if ( this == & other) return * this; ptr_ = other.ptr_; return * this; } execution_context & operator=( execution_context && other) noexcept { if ( this == & other) return * this; execution_context tmp{ std::move( other) }; swap( tmp); return * this; } void * operator()( void * vp = nullptr) { return ptr_->resume( vp); } template< typename Fn > void * operator()( exec_ontop_arg_t, Fn && fn, void * vp = nullptr) { return ptr_->resume_ontop( vp, std::forward< Fn >( fn) ); } explicit operator bool() const noexcept { return nullptr != ptr_.get(); } bool operator!() const noexcept { return nullptr == ptr_.get(); } bool operator==( execution_context const& other) const noexcept { return ptr_ == other.ptr_; } bool operator!=( execution_context const& other) const noexcept { return ptr_ != other.ptr_; } bool operator<( execution_context const& other) const noexcept { return ptr_ < other.ptr_; } bool operator>( execution_context const& other) const noexcept { return other.ptr_ < ptr_; } bool operator<=( execution_context const& other) const noexcept { return ! ( * this > other); } bool operator>=( execution_context const& other) const noexcept { return ! ( * this < other); } template< typename charT, class traitsT > friend std::basic_ostream< charT, traitsT > & operator<<( std::basic_ostream< charT, traitsT > & os, execution_context const& other) { if ( nullptr != other.ptr_) { return os << other.ptr_; } else { return os << "{not-a-context}"; } } void swap( execution_context & other) noexcept { ptr_.swap( other.ptr_); } }; inline void swap( execution_context & l, execution_context & r) noexcept { l.swap( r); } }} #ifdef BOOST_HAS_ABI_HEADERS # include BOOST_ABI_SUFFIX #endif #endif // BOOST_CONTEXT_EXECUTION_CONTEXT_H