/* Copyright 2005-2007 Adobe Systems Incorporated Use, modification and distribution are subject to the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt). See http://opensource.adobe.com/gil for most recent version including documentation. */ /*************************************************************************************************/ #ifndef GIL_UTILITIES_H #define GIL_UTILITIES_H #include "gil_config.hpp" #include <functional> #include <boost/config/no_tr1/cmath.hpp> #include <cstddef> #include <algorithm> #include <utility> #include <iterator> #include <boost/static_assert.hpp> #include <boost/type_traits.hpp> #include <boost/mpl/size.hpp> #include <boost/mpl/distance.hpp> #include <boost/mpl/begin.hpp> #include <boost/mpl/find.hpp> #include <boost/mpl/range_c.hpp> #include <boost/iterator/iterator_adaptor.hpp> #include <boost/iterator/iterator_facade.hpp> //////////////////////////////////////////////////////////////////////////////////////// /// \file /// \brief Various utilities not specific to the image library. Some are non-standard STL extensions or generic iterator adaptors /// \author Lubomir Bourdev and Hailin Jin \n /// Adobe Systems Incorporated /// \date 2005-2007 \n Last updated on September 18, 2007 /// /// //////////////////////////////////////////////////////////////////////////////////////// namespace boost { namespace gil { /** \addtogroup PointModel Example: \code point2<std::ptrdiff_t> p(3,2); assert((p[0] == p.x) && (p[1] == p.y)); assert(axis_value<0>(p) == 3); assert(axis_value<1>(p) == 2); \endcode */ //////////////////////////////////////////////////////////////////////////////////////// // CLASS point2 /// /// \brief 2D point both axes of which have the same dimension type /// \ingroup PointModel /// Models: Point2DConcept /// //////////////////////////////////////////////////////////////////////////////////////// template <typename T> class point2 { public: typedef T value_type; template <std::size_t D> struct axis { typedef value_type coord_t; }; static const std::size_t num_dimensions=2; point2() : x(0), y(0) {} point2(T newX, T newY) : x(newX), y(newY) {} point2(const point2& p) : x(p.x), y(p.y) {} ~point2() {} point2& operator=(const point2& p) { x=p.x; y=p.y; return *this; } point2 operator<<(std::ptrdiff_t shift) const { return point2(x<<shift,y<<shift); } point2 operator>>(std::ptrdiff_t shift) const { return point2(x>>shift,y>>shift); } point2& operator+=(const point2& p) { x+=p.x; y+=p.y; return *this; } point2& operator-=(const point2& p) { x-=p.x; y-=p.y; return *this; } point2& operator/=(double t) { x/=t; y/=t; return *this; } const T& operator[](std::size_t i) const { return this->*mem_array[i]; } T& operator[](std::size_t i) { return this->*mem_array[i]; } T x,y; private: // this static array of pointers to member variables makes operator[] safe and doesn't seem to exhibit any performance penalty static T point2<T>::* const mem_array[num_dimensions]; }; template <typename T> T point2<T>::* const point2<T>::mem_array[point2<T>::num_dimensions] = { &point2<T>::x, &point2<T>::y }; /// \ingroup PointModel template <typename T> GIL_FORCEINLINE bool operator==(const point2<T>& p1, const point2<T>& p2) { return (p1.x==p2.x && p1.y==p2.y); } /// \ingroup PointModel template <typename T> GIL_FORCEINLINE bool operator!=(const point2<T>& p1, const point2<T>& p2) { return p1.x!=p2.x || p1.y!=p2.y; } /// \ingroup PointModel template <typename T> GIL_FORCEINLINE point2<T> operator+(const point2<T>& p1, const point2<T>& p2) { return point2<T>(p1.x+p2.x,p1.y+p2.y); } /// \ingroup PointModel template <typename T> GIL_FORCEINLINE point2<T> operator-(const point2<T>& p) { return point2<T>(-p.x,-p.y); } /// \ingroup PointModel template <typename T> GIL_FORCEINLINE point2<T> operator-(const point2<T>& p1, const point2<T>& p2) { return point2<T>(p1.x-p2.x,p1.y-p2.y); } /// \ingroup PointModel template <typename T> GIL_FORCEINLINE point2<double> operator/(const point2<T>& p, double t) { return t==0 ? point2<double>(0,0):point2<double>(p.x/t,p.y/t); } /// \ingroup PointModel template <typename T> GIL_FORCEINLINE point2<T> operator*(const point2<T>& p, std::ptrdiff_t t) { return point2<T>(p.x*t,p.y*t); } /// \ingroup PointModel template <typename T> GIL_FORCEINLINE point2<T> operator*(std::ptrdiff_t t, const point2<T>& p) { return point2<T>(p.x*t,p.y*t); } /// \ingroup PointModel template <std::size_t K, typename T> GIL_FORCEINLINE const T& axis_value(const point2<T>& p) { return p[K]; } /// \ingroup PointModel template <std::size_t K, typename T> GIL_FORCEINLINE T& axis_value( point2<T>& p) { return p[K]; } //////////////////////////////////////////////////////////////////////////////////////// /// /// Rounding of real numbers / points to integers / integer points /// //////////////////////////////////////////////////////////////////////////////////////// inline std::ptrdiff_t iround(float x ) { return static_cast<std::ptrdiff_t>(x + (x < 0.0f ? -0.5f : 0.5f)); } inline std::ptrdiff_t iround(double x) { return static_cast<std::ptrdiff_t>(x + (x < 0.0 ? -0.5 : 0.5)); } inline std::ptrdiff_t ifloor(float x ) { return static_cast<std::ptrdiff_t>(std::floor(x)); } inline std::ptrdiff_t ifloor(double x) { return static_cast<std::ptrdiff_t>(std::floor(x)); } inline std::ptrdiff_t iceil(float x ) { return static_cast<std::ptrdiff_t>(std::ceil(x)); } inline std::ptrdiff_t iceil(double x) { return static_cast<std::ptrdiff_t>(std::ceil(x)); } /** \addtogroup PointAlgorithm Example: \code assert(iround(point2<double>(3.1, 3.9)) == point2<std::ptrdiff_t>(3,4)); \endcode */ /// \ingroup PointAlgorithm inline point2<std::ptrdiff_t> iround(const point2<float >& p) { return point2<std::ptrdiff_t>(iround(p.x),iround(p.y)); } /// \ingroup PointAlgorithm inline point2<std::ptrdiff_t> iround(const point2<double>& p) { return point2<std::ptrdiff_t>(iround(p.x),iround(p.y)); } /// \ingroup PointAlgorithm inline point2<std::ptrdiff_t> ifloor(const point2<float >& p) { return point2<std::ptrdiff_t>(ifloor(p.x),ifloor(p.y)); } /// \ingroup PointAlgorithm inline point2<std::ptrdiff_t> ifloor(const point2<double>& p) { return point2<std::ptrdiff_t>(ifloor(p.x),ifloor(p.y)); } /// \ingroup PointAlgorithm inline point2<std::ptrdiff_t> iceil (const point2<float >& p) { return point2<std::ptrdiff_t>(iceil(p.x), iceil(p.y)); } /// \ingroup PointAlgorithm inline point2<std::ptrdiff_t> iceil (const point2<double>& p) { return point2<std::ptrdiff_t>(iceil(p.x), iceil(p.y)); } //////////////////////////////////////////////////////////////////////////////////////// /// /// computing size with alignment /// //////////////////////////////////////////////////////////////////////////////////////// template <typename T> inline T align(T val, std::size_t alignment) { return val+(alignment - val%alignment)%alignment; } /// \brief Helper base class for pixel dereference adaptors. /// \ingroup PixelDereferenceAdaptorModel /// template <typename ConstT, typename Value, typename Reference, typename ConstReference, typename ArgType, typename ResultType, bool IsMutable> struct deref_base : public std::unary_function<ArgType, ResultType> { typedef ConstT const_t; typedef Value value_type; typedef Reference reference; typedef ConstReference const_reference; BOOST_STATIC_CONSTANT(bool, is_mutable = IsMutable); }; /// \brief Composes two dereference function objects. Similar to std::unary_compose but needs to pull some typedefs from the component types. Models: PixelDereferenceAdaptorConcept /// \ingroup PixelDereferenceAdaptorModel /// template <typename D1, typename D2> class deref_compose : public deref_base< deref_compose<typename D1::const_t, typename D2::const_t>, typename D1::value_type, typename D1::reference, typename D1::const_reference, typename D2::argument_type, typename D1::result_type, D1::is_mutable && D2::is_mutable> { public: D1 _fn1; D2 _fn2; typedef typename D2::argument_type argument_type; typedef typename D1::result_type result_type; deref_compose() {} deref_compose(const D1& x, const D2& y) : _fn1(x), _fn2(y) {} deref_compose(const deref_compose& dc) : _fn1(dc._fn1), _fn2(dc._fn2) {} template <typename _D1, typename _D2> deref_compose(const deref_compose<_D1,_D2>& dc) : _fn1(dc._fn1), _fn2(dc._fn2) {} result_type operator()(argument_type x) const { return _fn1(_fn2(x)); } result_type operator()(argument_type x) { return _fn1(_fn2(x)); } }; // reinterpret_cast is implementation-defined. Static cast is not. template <typename OutPtr, typename In> GIL_FORCEINLINE OutPtr gil_reinterpret_cast( In* p) { return static_cast<OutPtr>(static_cast<void*>(p)); } template <typename OutPtr, typename In> GIL_FORCEINLINE const OutPtr gil_reinterpret_cast_c(const In* p) { return static_cast<const OutPtr>(static_cast<const void*>(p)); } namespace detail { //////////////////////////////////////////////////////////////////////////////////////// /// /// \brief copy_n taken from SGI STL. /// //////////////////////////////////////////////////////////////////////////////////////// template <class InputIter, class Size, class OutputIter> std::pair<InputIter, OutputIter> _copy_n(InputIter first, Size count, OutputIter result, std::input_iterator_tag) { for ( ; count > 0; --count) { *result = *first; ++first; ++result; } return std::pair<InputIter, OutputIter>(first, result); } template <class RAIter, class Size, class OutputIter> inline std::pair<RAIter, OutputIter> _copy_n(RAIter first, Size count, OutputIter result, std::random_access_iterator_tag) { RAIter last = first + count; return std::pair<RAIter, OutputIter>(last, std::copy(first, last, result)); } template <class InputIter, class Size, class OutputIter> inline std::pair<InputIter, OutputIter> _copy_n(InputIter first, Size count, OutputIter result) { return _copy_n(first, count, result, typename std::iterator_traits<InputIter>::iterator_category()); } template <class InputIter, class Size, class OutputIter> inline std::pair<InputIter, OutputIter> copy_n(InputIter first, Size count, OutputIter result) { return detail::_copy_n(first, count, result); } /// \brief identity taken from SGI STL. template <typename T> struct identity : public std::unary_function<T,T> { const T& operator()(const T& val) const { return val; } }; /*************************************************************************************************/ /// \brief plus function object whose arguments may be of different type. template <typename T1, typename T2> struct plus_asymmetric : public std::binary_function<T1,T2,T1> { T1 operator()(T1 f1, T2 f2) const { return f1+f2; } }; /*************************************************************************************************/ /// \brief operator++ wrapped in a function object template <typename T> struct inc : public std::unary_function<T,T> { T operator()(T x) const { return ++x; } }; /*************************************************************************************************/ /// \brief operator-- wrapped in a function object template <typename T> struct dec : public std::unary_function<T,T> { T operator()(T x) const { return --x; } }; /// \brief Returns the index corresponding to the first occurrance of a given given type in // a given MPL RandomAccessSequence (or size if the type is not present) template <typename Types, typename T> struct type_to_index : public mpl::distance<typename mpl::begin<Types>::type, typename mpl::find<Types,T>::type>::type {}; } // namespace detail /// \ingroup ColorSpaceAndLayoutModel /// \brief Represents a color space and ordering of channels in memory template <typename ColorSpace, typename ChannelMapping = mpl::range_c<int,0,mpl::size<ColorSpace>::value> > struct layout { typedef ColorSpace color_space_t; typedef ChannelMapping channel_mapping_t; }; /// \brief A version of swap that also works with reference proxy objects template <typename Value, typename T1, typename T2> // where value_type<T1> == value_type<T2> == Value void swap_proxy(T1& left, T2& right) { Value tmp = left; left = right; right = tmp; } /// \brief Run-time detection of whether the underlying architecture is little endian inline bool little_endian() { short tester = 0x0001; return *(char*)&tester!=0; } /// \brief Run-time detection of whether the underlying architecture is big endian inline bool big_endian() { return !little_endian(); } } } // namespace boost::gil #endif