////////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2005-2015. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/container for documentation. // ////////////////////////////////////////////////////////////////////////////// #ifndef BOOST_CONTAINER_DEQUE_HPP #define BOOST_CONTAINER_DEQUE_HPP #ifndef BOOST_CONFIG_HPP # include <boost/config.hpp> #endif #if defined(BOOST_HAS_PRAGMA_ONCE) # pragma once #endif #include <boost/container/detail/config_begin.hpp> #include <boost/container/detail/workaround.hpp> // container #include <boost/container/allocator_traits.hpp> #include <boost/container/container_fwd.hpp> #include <boost/container/new_allocator.hpp> //new_allocator #include <boost/container/throw_exception.hpp> // container/detail #include <boost/container/detail/advanced_insert_int.hpp> #include <boost/container/detail/algorithm.hpp> //algo_equal(), algo_lexicographical_compare #include <boost/container/detail/alloc_helpers.hpp> #include <boost/container/detail/copy_move_algo.hpp> #include <boost/container/detail/iterator.hpp> #include <boost/container/detail/iterator_to_raw_pointer.hpp> #include <boost/container/detail/iterators.hpp> #include <boost/container/detail/min_max.hpp> #include <boost/container/detail/mpl.hpp> #include <boost/container/detail/to_raw_pointer.hpp> #include <boost/container/detail/type_traits.hpp> // move #include <boost/move/adl_move_swap.hpp> #include <boost/move/iterator.hpp> #include <boost/move/traits.hpp> #include <boost/move/utility_core.hpp> // move/detail #if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) #include <boost/move/detail/fwd_macros.hpp> #endif #include <boost/move/detail/move_helpers.hpp> // other #include <boost/assert.hpp> #include <boost/core/no_exceptions_support.hpp> // std #include <cstddef> #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) #include <initializer_list> #endif namespace boost { namespace container { #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED template <class T, class Allocator> class deque; template <class T> struct deque_value_traits { typedef T value_type; static const bool trivial_dctr = container_detail::is_trivially_destructible<value_type>::value; static const bool trivial_dctr_after_move = ::boost::has_trivial_destructor_after_move<value_type>::value; }; // Note: this function is simply a kludge to work around several compilers' // bugs in handling constant expressions. template<class T> struct deque_buf_size { static const std::size_t min_size = 512u; static const std::size_t sizeof_t = sizeof(T); static const std::size_t value = sizeof_t < min_size ? (min_size/sizeof_t) : std::size_t(1); }; namespace container_detail { // Class invariants: // For any nonsingular iterator i: // i.node is the address of an element in the map array. The // contents of i.node is a pointer to the beginning of a node. // i.first == //(i.node) // i.last == i.first + node_size // i.cur is a pointer in the range [i.first, i.last). NOTE: // the implication of this is that i.cur is always a dereferenceable // pointer, even if i is a past-the-end iterator. // Start and Finish are always nonsingular iterators. NOTE: this means // that an empty deque must have one node, and that a deque // with N elements, where N is the buffer size, must have two nodes. // For every node other than start.node and finish.node, every element // in the node is an initialized object. If start.node == finish.node, // then [start.cur, finish.cur) are initialized objects, and // the elements outside that range are uninitialized storage. Otherwise, // [start.cur, start.last) and [finish.first, finish.cur) are initialized // objects, and [start.first, start.cur) and [finish.cur, finish.last) // are uninitialized storage. // [map, map + map_size) is a valid, non-empty range. // [start.node, finish.node] is a valid range contained within // [map, map + map_size). // A pointer in the range [map, map + map_size) points to an allocated node // if and only if the pointer is in the range [start.node, finish.node]. template<class Pointer, bool IsConst> class deque_iterator { public: typedef std::random_access_iterator_tag iterator_category; typedef typename boost::intrusive::pointer_traits<Pointer>::element_type value_type; typedef typename boost::intrusive::pointer_traits<Pointer>::difference_type difference_type; typedef typename if_c < IsConst , typename boost::intrusive::pointer_traits<Pointer>::template rebind_pointer<const value_type>::type , Pointer >::type pointer; typedef typename if_c < IsConst , const value_type& , value_type& >::type reference; static std::size_t s_buffer_size() { return deque_buf_size<value_type>::value; } typedef Pointer val_alloc_ptr; typedef typename boost::intrusive::pointer_traits<Pointer>:: template rebind_pointer<Pointer>::type index_pointer; Pointer m_cur; Pointer m_first; Pointer m_last; index_pointer m_node; public: Pointer get_cur() const { return m_cur; } Pointer get_first() const { return m_first; } Pointer get_last() const { return m_last; } index_pointer get_node() const { return m_node; } deque_iterator(val_alloc_ptr x, index_pointer y) BOOST_NOEXCEPT_OR_NOTHROW : m_cur(x), m_first(*y), m_last(*y + s_buffer_size()), m_node(y) {} deque_iterator() BOOST_NOEXCEPT_OR_NOTHROW : m_cur(), m_first(), m_last(), m_node() //Value initialization to achieve "null iterators" (N3644) {} deque_iterator(deque_iterator<Pointer, false> const& x) BOOST_NOEXCEPT_OR_NOTHROW : m_cur(x.get_cur()), m_first(x.get_first()), m_last(x.get_last()), m_node(x.get_node()) {} deque_iterator(Pointer cur, Pointer first, Pointer last, index_pointer node) BOOST_NOEXCEPT_OR_NOTHROW : m_cur(cur), m_first(first), m_last(last), m_node(node) {} deque_iterator<Pointer, false> unconst() const BOOST_NOEXCEPT_OR_NOTHROW { return deque_iterator<Pointer, false>(this->get_cur(), this->get_first(), this->get_last(), this->get_node()); } reference operator*() const BOOST_NOEXCEPT_OR_NOTHROW { return *this->m_cur; } pointer operator->() const BOOST_NOEXCEPT_OR_NOTHROW { return this->m_cur; } difference_type operator-(const deque_iterator& x) const BOOST_NOEXCEPT_OR_NOTHROW { if(!this->m_cur && !x.m_cur){ return 0; } return difference_type(this->s_buffer_size()) * (this->m_node - x.m_node - 1) + (this->m_cur - this->m_first) + (x.m_last - x.m_cur); } deque_iterator& operator++() BOOST_NOEXCEPT_OR_NOTHROW { ++this->m_cur; if (this->m_cur == this->m_last) { this->priv_set_node(this->m_node + 1); this->m_cur = this->m_first; } return *this; } deque_iterator operator++(int) BOOST_NOEXCEPT_OR_NOTHROW { deque_iterator tmp(*this); ++*this; return tmp; } deque_iterator& operator--() BOOST_NOEXCEPT_OR_NOTHROW { if (this->m_cur == this->m_first) { this->priv_set_node(this->m_node - 1); this->m_cur = this->m_last; } --this->m_cur; return *this; } deque_iterator operator--(int) BOOST_NOEXCEPT_OR_NOTHROW { deque_iterator tmp(*this); --*this; return tmp; } deque_iterator& operator+=(difference_type n) BOOST_NOEXCEPT_OR_NOTHROW { difference_type offset = n + (this->m_cur - this->m_first); if (offset >= 0 && offset < difference_type(this->s_buffer_size())) this->m_cur += n; else { difference_type node_offset = offset > 0 ? offset / difference_type(this->s_buffer_size()) : -difference_type((-offset - 1) / this->s_buffer_size()) - 1; this->priv_set_node(this->m_node + node_offset); this->m_cur = this->m_first + (offset - node_offset * difference_type(this->s_buffer_size())); } return *this; } deque_iterator operator+(difference_type n) const BOOST_NOEXCEPT_OR_NOTHROW { deque_iterator tmp(*this); return tmp += n; } deque_iterator& operator-=(difference_type n) BOOST_NOEXCEPT_OR_NOTHROW { return *this += -n; } deque_iterator operator-(difference_type n) const BOOST_NOEXCEPT_OR_NOTHROW { deque_iterator tmp(*this); return tmp -= n; } reference operator[](difference_type n) const BOOST_NOEXCEPT_OR_NOTHROW { return *(*this + n); } friend bool operator==(const deque_iterator& l, const deque_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW { return l.m_cur == r.m_cur; } friend bool operator!=(const deque_iterator& l, const deque_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW { return l.m_cur != r.m_cur; } friend bool operator<(const deque_iterator& l, const deque_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW { return (l.m_node == r.m_node) ? (l.m_cur < r.m_cur) : (l.m_node < r.m_node); } friend bool operator>(const deque_iterator& l, const deque_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW { return r < l; } friend bool operator<=(const deque_iterator& l, const deque_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW { return !(r < l); } friend bool operator>=(const deque_iterator& l, const deque_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW { return !(l < r); } void priv_set_node(index_pointer new_node) BOOST_NOEXCEPT_OR_NOTHROW { this->m_node = new_node; this->m_first = *new_node; this->m_last = this->m_first + this->s_buffer_size(); } friend deque_iterator operator+(difference_type n, deque_iterator x) BOOST_NOEXCEPT_OR_NOTHROW { return x += n; } }; } //namespace container_detail { // Deque base class. It has two purposes. First, its constructor // and destructor allocate (but don't initialize) storage. This makes // exception safety easier. template <class Allocator> class deque_base { BOOST_COPYABLE_AND_MOVABLE(deque_base) public: typedef allocator_traits<Allocator> val_alloc_traits_type; typedef typename val_alloc_traits_type::value_type val_alloc_val; typedef typename val_alloc_traits_type::pointer val_alloc_ptr; typedef typename val_alloc_traits_type::const_pointer val_alloc_cptr; typedef typename val_alloc_traits_type::reference val_alloc_ref; typedef typename val_alloc_traits_type::const_reference val_alloc_cref; typedef typename val_alloc_traits_type::difference_type val_alloc_diff; typedef typename val_alloc_traits_type::size_type val_alloc_size; typedef typename val_alloc_traits_type::template portable_rebind_alloc<val_alloc_ptr>::type ptr_alloc_t; typedef allocator_traits<ptr_alloc_t> ptr_alloc_traits_type; typedef typename ptr_alloc_traits_type::value_type ptr_alloc_val; typedef typename ptr_alloc_traits_type::pointer ptr_alloc_ptr; typedef typename ptr_alloc_traits_type::const_pointer ptr_alloc_cptr; typedef typename ptr_alloc_traits_type::reference ptr_alloc_ref; typedef typename ptr_alloc_traits_type::const_reference ptr_alloc_cref; typedef Allocator allocator_type; typedef allocator_type stored_allocator_type; typedef val_alloc_size size_type; protected: typedef deque_value_traits<val_alloc_val> traits_t; typedef ptr_alloc_t map_allocator_type; static size_type s_buffer_size() BOOST_NOEXCEPT_OR_NOTHROW { return deque_buf_size<val_alloc_val>::value; } val_alloc_ptr priv_allocate_node() { return this->alloc().allocate(s_buffer_size()); } void priv_deallocate_node(val_alloc_ptr p) BOOST_NOEXCEPT_OR_NOTHROW { this->alloc().deallocate(p, s_buffer_size()); } ptr_alloc_ptr priv_allocate_map(size_type n) { return this->ptr_alloc().allocate(n); } void priv_deallocate_map(ptr_alloc_ptr p, size_type n) BOOST_NOEXCEPT_OR_NOTHROW { this->ptr_alloc().deallocate(p, n); } typedef container_detail::deque_iterator<val_alloc_ptr, false> iterator; typedef container_detail::deque_iterator<val_alloc_ptr, true > const_iterator; deque_base(size_type num_elements, const allocator_type& a) : members_(a) { this->priv_initialize_map(num_elements); } explicit deque_base(const allocator_type& a) : members_(a) {} deque_base() : members_() {} explicit deque_base(BOOST_RV_REF(deque_base) x) : members_( boost::move(x.ptr_alloc()) , boost::move(x.alloc()) ) {} ~deque_base() { if (this->members_.m_map) { this->priv_destroy_nodes(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1); this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size); } } private: deque_base(const deque_base&); protected: void swap_members(deque_base &x) BOOST_NOEXCEPT_OR_NOTHROW { ::boost::adl_move_swap(this->members_.m_start, x.members_.m_start); ::boost::adl_move_swap(this->members_.m_finish, x.members_.m_finish); ::boost::adl_move_swap(this->members_.m_map, x.members_.m_map); ::boost::adl_move_swap(this->members_.m_map_size, x.members_.m_map_size); } void priv_initialize_map(size_type num_elements) { // if(num_elements){ size_type num_nodes = num_elements / s_buffer_size() + 1; this->members_.m_map_size = container_detail::max_value((size_type) InitialMapSize, num_nodes + 2); this->members_.m_map = this->priv_allocate_map(this->members_.m_map_size); ptr_alloc_ptr nstart = this->members_.m_map + (this->members_.m_map_size - num_nodes) / 2; ptr_alloc_ptr nfinish = nstart + num_nodes; BOOST_TRY { this->priv_create_nodes(nstart, nfinish); } BOOST_CATCH(...){ this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size); this->members_.m_map = 0; this->members_.m_map_size = 0; BOOST_RETHROW } BOOST_CATCH_END this->members_.m_start.priv_set_node(nstart); this->members_.m_finish.priv_set_node(nfinish - 1); this->members_.m_start.m_cur = this->members_.m_start.m_first; this->members_.m_finish.m_cur = this->members_.m_finish.m_first + num_elements % s_buffer_size(); // } } void priv_create_nodes(ptr_alloc_ptr nstart, ptr_alloc_ptr nfinish) { ptr_alloc_ptr cur = nstart; BOOST_TRY { for (; cur < nfinish; ++cur) *cur = this->priv_allocate_node(); } BOOST_CATCH(...){ this->priv_destroy_nodes(nstart, cur); BOOST_RETHROW } BOOST_CATCH_END } void priv_destroy_nodes(ptr_alloc_ptr nstart, ptr_alloc_ptr nfinish) BOOST_NOEXCEPT_OR_NOTHROW { for (ptr_alloc_ptr n = nstart; n < nfinish; ++n) this->priv_deallocate_node(*n); } void priv_clear_map() BOOST_NOEXCEPT_OR_NOTHROW { if (this->members_.m_map) { this->priv_destroy_nodes(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1); this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size); this->members_.m_map = 0; this->members_.m_map_size = 0; this->members_.m_start = iterator(); this->members_.m_finish = this->members_.m_start; } } enum { InitialMapSize = 8 }; protected: struct members_holder : public ptr_alloc_t , public allocator_type { members_holder() : map_allocator_type(), allocator_type() , m_map(0), m_map_size(0) , m_start(), m_finish(m_start) {} explicit members_holder(const allocator_type &a) : map_allocator_type(a), allocator_type(a) , m_map(0), m_map_size(0) , m_start(), m_finish(m_start) {} template<class ValAllocConvertible, class PtrAllocConvertible> members_holder(BOOST_FWD_REF(PtrAllocConvertible) pa, BOOST_FWD_REF(ValAllocConvertible) va) : map_allocator_type(boost::forward<PtrAllocConvertible>(pa)) , allocator_type (boost::forward<ValAllocConvertible>(va)) , m_map(0), m_map_size(0) , m_start(), m_finish(m_start) {} ptr_alloc_ptr m_map; val_alloc_size m_map_size; iterator m_start; iterator m_finish; } members_; ptr_alloc_t &ptr_alloc() BOOST_NOEXCEPT_OR_NOTHROW { return members_; } const ptr_alloc_t &ptr_alloc() const BOOST_NOEXCEPT_OR_NOTHROW { return members_; } allocator_type &alloc() BOOST_NOEXCEPT_OR_NOTHROW { return members_; } const allocator_type &alloc() const BOOST_NOEXCEPT_OR_NOTHROW { return members_; } }; #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED #ifdef BOOST_CONTAINER_DOXYGEN_INVOKED //! A double-ended queue is a sequence that supports random access to elements, constant time insertion //! and removal of elements at the end of the sequence, and linear time insertion and removal of elements in the middle. //! //! \tparam T The type of object that is stored in the deque //! \tparam Allocator The allocator used for all internal memory management template <class T, class Allocator = new_allocator<T> > #else template <class T, class Allocator> #endif class deque : protected deque_base<Allocator> { #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED private: typedef deque_base<Allocator> Base; #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED public: ////////////////////////////////////////////// // // types // ////////////////////////////////////////////// typedef T value_type; typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer; typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer const_pointer; typedef typename ::boost::container::allocator_traits<Allocator>::reference reference; typedef typename ::boost::container::allocator_traits<Allocator>::const_reference const_reference; typedef typename ::boost::container::allocator_traits<Allocator>::size_type size_type; typedef typename ::boost::container::allocator_traits<Allocator>::difference_type difference_type; typedef Allocator allocator_type; typedef BOOST_CONTAINER_IMPDEF(allocator_type) stored_allocator_type; typedef BOOST_CONTAINER_IMPDEF(typename Base::iterator) iterator; typedef BOOST_CONTAINER_IMPDEF(typename Base::const_iterator) const_iterator; typedef BOOST_CONTAINER_IMPDEF(boost::container::reverse_iterator<iterator>) reverse_iterator; typedef BOOST_CONTAINER_IMPDEF(boost::container::reverse_iterator<const_iterator>) const_reverse_iterator; #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED private: // Internal typedefs BOOST_COPYABLE_AND_MOVABLE(deque) typedef typename Base::ptr_alloc_ptr index_pointer; static size_type s_buffer_size() { return Base::s_buffer_size(); } typedef allocator_traits<Allocator> allocator_traits_type; #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED public: ////////////////////////////////////////////// // // construct/copy/destroy // ////////////////////////////////////////////// //! <b>Effects</b>: Default constructors a deque. //! //! <b>Throws</b>: If allocator_type's default constructor throws. //! //! <b>Complexity</b>: Constant. deque() BOOST_NOEXCEPT_IF(container_detail::is_nothrow_default_constructible<Allocator>::value) : Base() {} //! <b>Effects</b>: Constructs a deque taking the allocator as parameter. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Constant. explicit deque(const allocator_type& a) BOOST_NOEXCEPT_OR_NOTHROW : Base(a) {} //! <b>Effects</b>: Constructs a deque //! and inserts n value initialized values. //! //! <b>Throws</b>: If allocator_type's default constructor //! throws or T's value initialization throws. //! //! <b>Complexity</b>: Linear to n. explicit deque(size_type n) : Base(n, allocator_type()) { container_detail::insert_value_initialized_n_proxy<Allocator, iterator> proxy; proxy.uninitialized_copy_n_and_update(this->alloc(), this->begin(), n); //deque_base will deallocate in case of exception... } //! <b>Effects</b>: Constructs a deque //! and inserts n default initialized values. //! //! <b>Throws</b>: If allocator_type's default constructor //! throws or T's default initialization or copy constructor throws. //! //! <b>Complexity</b>: Linear to n. //! //! <b>Note</b>: Non-standard extension deque(size_type n, default_init_t) : Base(n, allocator_type()) { container_detail::insert_default_initialized_n_proxy<Allocator, iterator> proxy; proxy.uninitialized_copy_n_and_update(this->alloc(), this->begin(), n); //deque_base will deallocate in case of exception... } //! <b>Effects</b>: Constructs a deque that will use a copy of allocator a //! and inserts n value initialized values. //! //! <b>Throws</b>: If allocator_type's default constructor //! throws or T's value initialization throws. //! //! <b>Complexity</b>: Linear to n. explicit deque(size_type n, const allocator_type &a) : Base(n, a) { container_detail::insert_value_initialized_n_proxy<Allocator, iterator> proxy; proxy.uninitialized_copy_n_and_update(this->alloc(), this->begin(), n); //deque_base will deallocate in case of exception... } //! <b>Effects</b>: Constructs a deque that will use a copy of allocator a //! and inserts n default initialized values. //! //! <b>Throws</b>: If allocator_type's default constructor //! throws or T's default initialization or copy constructor throws. //! //! <b>Complexity</b>: Linear to n. //! //! <b>Note</b>: Non-standard extension deque(size_type n, default_init_t, const allocator_type &a) : Base(n, a) { container_detail::insert_default_initialized_n_proxy<Allocator, iterator> proxy; proxy.uninitialized_copy_n_and_update(this->alloc(), this->begin(), n); //deque_base will deallocate in case of exception... } //! <b>Effects</b>: Constructs a deque that will use a copy of allocator a //! and inserts n copies of value. //! //! <b>Throws</b>: If allocator_type's default constructor //! throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to n. deque(size_type n, const value_type& value) : Base(n, allocator_type()) { this->priv_fill_initialize(value); } //! <b>Effects</b>: Constructs a deque that will use a copy of allocator a //! and inserts n copies of value. //! //! <b>Throws</b>: If allocator_type's default constructor //! throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to n. deque(size_type n, const value_type& value, const allocator_type& a) : Base(n, a) { this->priv_fill_initialize(value); } //! <b>Effects</b>: Constructs a deque that will use a copy of allocator a //! and inserts a copy of the range [first, last) in the deque. //! //! <b>Throws</b>: If allocator_type's default constructor //! throws or T's constructor taking a dereferenced InIt throws. //! //! <b>Complexity</b>: Linear to the range [first, last). template <class InIt> deque(InIt first, InIt last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::disable_if_convertible <InIt, size_type>::type * = 0 #endif ) : Base(allocator_type()) { this->priv_range_initialize(first, last); } //! <b>Effects</b>: Constructs a deque that will use a copy of allocator a //! and inserts a copy of the range [first, last) in the deque. //! //! <b>Throws</b>: If allocator_type's default constructor //! throws or T's constructor taking a dereferenced InIt throws. //! //! <b>Complexity</b>: Linear to the range [first, last). template <class InIt> deque(InIt first, InIt last, const allocator_type& a #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::disable_if_convertible <InIt, size_type>::type * = 0 #endif ) : Base(a) { this->priv_range_initialize(first, last); } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) //! <b>Effects</b>: Constructs a deque that will use a copy of allocator a //! and inserts a copy of the range [il.begin(), il.end()) in the deque. //! //! <b>Throws</b>: If allocator_type's default constructor //! throws or T's constructor taking a dereferenced std::initializer_list iterator throws. //! //! <b>Complexity</b>: Linear to the range [il.begin(), il.end()). deque(std::initializer_list<value_type> il, const allocator_type& a = allocator_type()) : Base(a) { this->priv_range_initialize(il.begin(), il.end()); } #endif //! <b>Effects</b>: Copy constructs a deque. //! //! <b>Postcondition</b>: x == *this. //! //! <b>Complexity</b>: Linear to the elements x contains. deque(const deque& x) : Base(allocator_traits_type::select_on_container_copy_construction(x.alloc())) { if(x.size()){ this->priv_initialize_map(x.size()); boost::container::uninitialized_copy_alloc (this->alloc(), x.begin(), x.end(), this->members_.m_start); } } //! <b>Effects</b>: Move constructor. Moves x's resources to *this. //! //! <b>Throws</b>: If allocator_type's copy constructor throws. //! //! <b>Complexity</b>: Constant. deque(BOOST_RV_REF(deque) x) BOOST_NOEXCEPT_OR_NOTHROW : Base(BOOST_MOVE_BASE(Base, x)) { this->swap_members(x); } //! <b>Effects</b>: Copy constructs a vector using the specified allocator. //! //! <b>Postcondition</b>: x == *this. //! //! <b>Throws</b>: If allocation //! throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to the elements x contains. deque(const deque& x, const allocator_type &a) : Base(a) { if(x.size()){ this->priv_initialize_map(x.size()); boost::container::uninitialized_copy_alloc (this->alloc(), x.begin(), x.end(), this->members_.m_start); } } //! <b>Effects</b>: Move constructor using the specified allocator. //! Moves x's resources to *this if a == allocator_type(). //! Otherwise copies values from x to *this. //! //! <b>Throws</b>: If allocation or T's copy constructor throws. //! //! <b>Complexity</b>: Constant if a == x.get_allocator(), linear otherwise. deque(BOOST_RV_REF(deque) x, const allocator_type &a) : Base(a) { if(x.alloc() == a){ this->swap_members(x); } else{ if(x.size()){ this->priv_initialize_map(x.size()); boost::container::uninitialized_copy_alloc ( this->alloc(), boost::make_move_iterator(x.begin()) , boost::make_move_iterator(x.end()), this->members_.m_start); } } } //! <b>Effects</b>: Destroys the deque. All stored values are destroyed //! and used memory is deallocated. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear to the number of elements. ~deque() BOOST_NOEXCEPT_OR_NOTHROW { this->priv_destroy_range(this->members_.m_start, this->members_.m_finish); } //! <b>Effects</b>: Makes *this contain the same elements as x. //! //! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy //! of each of x's elements. //! //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to the number of elements in x. deque& operator= (BOOST_COPY_ASSIGN_REF(deque) x) { if (&x != this){ allocator_type &this_alloc = this->alloc(); const allocator_type &x_alloc = x.alloc(); container_detail::bool_<allocator_traits_type:: propagate_on_container_copy_assignment::value> flag; if(flag && this_alloc != x_alloc){ this->clear(); this->shrink_to_fit(); } container_detail::assign_alloc(this->alloc(), x.alloc(), flag); container_detail::assign_alloc(this->ptr_alloc(), x.ptr_alloc(), flag); this->assign(x.cbegin(), x.cend()); } return *this; } //! <b>Effects</b>: Move assignment. All x's values are transferred to *this. //! //! <b>Throws</b>: If allocator_traits_type::propagate_on_container_move_assignment //! is false and (allocation throws or value_type's move constructor throws) //! //! <b>Complexity</b>: Constant if allocator_traits_type:: //! propagate_on_container_move_assignment is true or //! this->get>allocator() == x.get_allocator(). Linear otherwise. deque& operator= (BOOST_RV_REF(deque) x) BOOST_NOEXCEPT_IF(allocator_traits_type::propagate_on_container_move_assignment::value || allocator_traits_type::is_always_equal::value) { BOOST_ASSERT(this != &x); allocator_type &this_alloc = this->alloc(); allocator_type &x_alloc = x.alloc(); const bool propagate_alloc = allocator_traits_type:: propagate_on_container_move_assignment::value; container_detail::bool_<propagate_alloc> flag; const bool allocators_equal = this_alloc == x_alloc; (void)allocators_equal; //Resources can be transferred if both allocators are //going to be equal after this function (either propagated or already equal) if(propagate_alloc || allocators_equal){ //Destroy objects but retain memory in case x reuses it in the future this->clear(); //Move allocator if needed container_detail::move_alloc(this_alloc, x_alloc, flag); container_detail::move_alloc(this->ptr_alloc(), x.ptr_alloc(), flag); //Nothrow swap this->swap_members(x); } //Else do a one by one move else{ this->assign( boost::make_move_iterator(x.begin()) , boost::make_move_iterator(x.end())); } return *this; } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) //! <b>Effects</b>: Makes *this contain the same elements as il. //! //! <b>Postcondition</b>: this->size() == il.size(). *this contains a copy //! of each of x's elements. //! //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to the number of elements in il. deque& operator=(std::initializer_list<value_type> il) { this->assign(il.begin(), il.end()); return *this; } #endif //! <b>Effects</b>: Assigns the n copies of val to *this. //! //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to n. void assign(size_type n, const T& val) { typedef constant_iterator<value_type, difference_type> c_it; this->assign(c_it(val, n), c_it()); } //! <b>Effects</b>: Assigns the the range [first, last) to *this. //! //! <b>Throws</b>: If memory allocation throws or //! T's constructor from dereferencing InIt throws. //! //! <b>Complexity</b>: Linear to n. template <class InIt> void assign(InIt first, InIt last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::disable_if_or < void , container_detail::is_convertible<InIt, size_type> , container_detail::is_not_input_iterator<InIt> >::type * = 0 #endif ) { iterator cur = this->begin(); for ( ; first != last && cur != end(); ++cur, ++first){ *cur = *first; } if (first == last){ this->erase(cur, this->cend()); } else{ this->insert(this->cend(), first, last); } } #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) template <class FwdIt> void assign(FwdIt first, FwdIt last , typename container_detail::disable_if_or < void , container_detail::is_convertible<FwdIt, size_type> , container_detail::is_input_iterator<FwdIt> >::type * = 0 ) { const size_type len = boost::container::iterator_distance(first, last); if (len > size()) { FwdIt mid = first; boost::container::iterator_advance(mid, this->size()); boost::container::copy(first, mid, begin()); this->insert(this->cend(), mid, last); } else{ this->erase(boost::container::copy(first, last, this->begin()), cend()); } } #endif #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) //! <b>Effects</b>: Assigns the the range [il.begin(), il.end()) to *this. //! //! <b>Throws</b>: If memory allocation throws or //! T's constructor from dereferencing std::initializer_list iterator throws. //! //! <b>Complexity</b>: Linear to il.size(). void assign(std::initializer_list<value_type> il) { this->assign(il.begin(), il.end()); } #endif //! <b>Effects</b>: Returns a copy of the internal allocator. //! //! <b>Throws</b>: If allocator's copy constructor throws. //! //! <b>Complexity</b>: Constant. allocator_type get_allocator() const BOOST_NOEXCEPT_OR_NOTHROW { return Base::alloc(); } //! <b>Effects</b>: Returns a reference to the internal allocator. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Non-standard extension. const stored_allocator_type &get_stored_allocator() const BOOST_NOEXCEPT_OR_NOTHROW { return Base::alloc(); } ////////////////////////////////////////////// // // iterators // ////////////////////////////////////////////// //! <b>Effects</b>: Returns a reference to the internal allocator. //! //! <b>Throws</b>: Nothing //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Non-standard extension. stored_allocator_type &get_stored_allocator() BOOST_NOEXCEPT_OR_NOTHROW { return Base::alloc(); } //! <b>Effects</b>: Returns an iterator to the first element contained in the deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator begin() BOOST_NOEXCEPT_OR_NOTHROW { return this->members_.m_start; } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator begin() const BOOST_NOEXCEPT_OR_NOTHROW { return this->members_.m_start; } //! <b>Effects</b>: Returns an iterator to the end of the deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. iterator end() BOOST_NOEXCEPT_OR_NOTHROW { return this->members_.m_finish; } //! <b>Effects</b>: Returns a const_iterator to the end of the deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator end() const BOOST_NOEXCEPT_OR_NOTHROW { return this->members_.m_finish; } //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning //! of the reversed deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rbegin() BOOST_NOEXCEPT_OR_NOTHROW { return reverse_iterator(this->members_.m_finish); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rbegin() const BOOST_NOEXCEPT_OR_NOTHROW { return const_reverse_iterator(this->members_.m_finish); } //! <b>Effects</b>: Returns a reverse_iterator pointing to the end //! of the reversed deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reverse_iterator rend() BOOST_NOEXCEPT_OR_NOTHROW { return reverse_iterator(this->members_.m_start); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator rend() const BOOST_NOEXCEPT_OR_NOTHROW { return const_reverse_iterator(this->members_.m_start); } //! <b>Effects</b>: Returns a const_iterator to the first element contained in the deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cbegin() const BOOST_NOEXCEPT_OR_NOTHROW { return this->members_.m_start; } //! <b>Effects</b>: Returns a const_iterator to the end of the deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_iterator cend() const BOOST_NOEXCEPT_OR_NOTHROW { return this->members_.m_finish; } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning //! of the reversed deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crbegin() const BOOST_NOEXCEPT_OR_NOTHROW { return const_reverse_iterator(this->members_.m_finish); } //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end //! of the reversed deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reverse_iterator crend() const BOOST_NOEXCEPT_OR_NOTHROW { return const_reverse_iterator(this->members_.m_start); } ////////////////////////////////////////////// // // capacity // ////////////////////////////////////////////// //! <b>Effects</b>: Returns true if the deque contains no elements. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. bool empty() const BOOST_NOEXCEPT_OR_NOTHROW { return this->members_.m_finish == this->members_.m_start; } //! <b>Effects</b>: Returns the number of the elements contained in the deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type size() const BOOST_NOEXCEPT_OR_NOTHROW { return this->members_.m_finish - this->members_.m_start; } //! <b>Effects</b>: Returns the largest possible size of the deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. size_type max_size() const BOOST_NOEXCEPT_OR_NOTHROW { return allocator_traits_type::max_size(this->alloc()); } //! <b>Effects</b>: Inserts or erases elements at the end such that //! the size becomes n. New elements are value initialized. //! //! <b>Throws</b>: If memory allocation throws, or T's constructor throws. //! //! <b>Complexity</b>: Linear to the difference between size() and new_size. void resize(size_type new_size) { const size_type len = size(); if (new_size < len) this->priv_erase_last_n(len - new_size); else{ const size_type n = new_size - this->size(); container_detail::insert_value_initialized_n_proxy<Allocator, iterator> proxy; priv_insert_back_aux_impl(n, proxy); } } //! <b>Effects</b>: Inserts or erases elements at the end such that //! the size becomes n. New elements are default initialized. //! //! <b>Throws</b>: If memory allocation throws, or T's constructor throws. //! //! <b>Complexity</b>: Linear to the difference between size() and new_size. //! //! <b>Note</b>: Non-standard extension void resize(size_type new_size, default_init_t) { const size_type len = size(); if (new_size < len) this->priv_erase_last_n(len - new_size); else{ const size_type n = new_size - this->size(); container_detail::insert_default_initialized_n_proxy<Allocator, iterator> proxy; priv_insert_back_aux_impl(n, proxy); } } //! <b>Effects</b>: Inserts or erases elements at the end such that //! the size becomes n. New elements are copy constructed from x. //! //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to the difference between size() and new_size. void resize(size_type new_size, const value_type& x) { const size_type len = size(); if (new_size < len) this->erase(this->members_.m_start + new_size, this->members_.m_finish); else this->insert(this->members_.m_finish, new_size - len, x); } //! <b>Effects</b>: Tries to deallocate the excess of memory created //! with previous allocations. The size of the deque is unchanged //! //! <b>Throws</b>: If memory allocation throws. //! //! <b>Complexity</b>: Constant. void shrink_to_fit() { //This deque implementation already //deallocates excess nodes when erasing //so there is nothing to do except for //empty deque if(this->empty()){ this->priv_clear_map(); } } ////////////////////////////////////////////// // // element access // ////////////////////////////////////////////// //! <b>Requires</b>: !empty() //! //! <b>Effects</b>: Returns a reference to the first //! element of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reference front() BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!this->empty()); return *this->members_.m_start; } //! <b>Requires</b>: !empty() //! //! <b>Effects</b>: Returns a const reference to the first element //! from the beginning of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reference front() const BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!this->empty()); return *this->members_.m_start; } //! <b>Requires</b>: !empty() //! //! <b>Effects</b>: Returns a reference to the last //! element of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reference back() BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!this->empty()); return *(end()-1); } //! <b>Requires</b>: !empty() //! //! <b>Effects</b>: Returns a const reference to the last //! element of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reference back() const BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!this->empty()); return *(cend()-1); } //! <b>Requires</b>: size() > n. //! //! <b>Effects</b>: Returns a reference to the nth element //! from the beginning of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. reference operator[](size_type n) BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(this->size() > n); return this->members_.m_start[difference_type(n)]; } //! <b>Requires</b>: size() > n. //! //! <b>Effects</b>: Returns a const reference to the nth element //! from the beginning of the container. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. const_reference operator[](size_type n) const BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(this->size() > n); return this->members_.m_start[difference_type(n)]; } //! <b>Requires</b>: size() >= n. //! //! <b>Effects</b>: Returns an iterator to the nth element //! from the beginning of the container. Returns end() //! if n == size(). //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Non-standard extension iterator nth(size_type n) BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(this->size() >= n); return iterator(this->begin()+n); } //! <b>Requires</b>: size() >= n. //! //! <b>Effects</b>: Returns a const_iterator to the nth element //! from the beginning of the container. Returns end() //! if n == size(). //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Non-standard extension const_iterator nth(size_type n) const BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(this->size() >= n); return const_iterator(this->cbegin()+n); } //! <b>Requires</b>: begin() <= p <= end(). //! //! <b>Effects</b>: Returns the index of the element pointed by p //! and size() if p == end(). //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Non-standard extension size_type index_of(iterator p) BOOST_NOEXCEPT_OR_NOTHROW { //Range checked priv_index_of return this->priv_index_of(p); } //! <b>Requires</b>: begin() <= p <= end(). //! //! <b>Effects</b>: Returns the index of the element pointed by p //! and size() if p == end(). //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. //! //! <b>Note</b>: Non-standard extension size_type index_of(const_iterator p) const BOOST_NOEXCEPT_OR_NOTHROW { //Range checked priv_index_of return this->priv_index_of(p); } //! <b>Requires</b>: size() > n. //! //! <b>Effects</b>: Returns a reference to the nth element //! from the beginning of the container. //! //! <b>Throws</b>: std::range_error if n >= size() //! //! <b>Complexity</b>: Constant. reference at(size_type n) { this->priv_throw_if_out_of_range(n); return (*this)[n]; } //! <b>Requires</b>: size() > n. //! //! <b>Effects</b>: Returns a const reference to the nth element //! from the beginning of the container. //! //! <b>Throws</b>: std::range_error if n >= size() //! //! <b>Complexity</b>: Constant. const_reference at(size_type n) const { this->priv_throw_if_out_of_range(n); return (*this)[n]; } ////////////////////////////////////////////// // // modifiers // ////////////////////////////////////////////// #if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... in the beginning of the deque. //! //! <b>Returns</b>: A reference to the created object. //! //! <b>Throws</b>: If memory allocation throws or the in-place constructor throws. //! //! <b>Complexity</b>: Amortized constant time template <class... Args> reference emplace_front(BOOST_FWD_REF(Args)... args) { if(this->priv_push_front_simple_available()){ reference r = *this->priv_push_front_simple_pos(); allocator_traits_type::construct ( this->alloc() , this->priv_push_front_simple_pos() , boost::forward<Args>(args)...); this->priv_push_front_simple_commit(); return r; } else{ typedef container_detail::insert_nonmovable_emplace_proxy<Allocator, iterator, Args...> type; return *this->priv_insert_front_aux_impl(1, type(boost::forward<Args>(args)...)); } } //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... in the end of the deque. //! //! <b>Returns</b>: A reference to the created object. //! //! <b>Throws</b>: If memory allocation throws or the in-place constructor throws. //! //! <b>Complexity</b>: Amortized constant time template <class... Args> reference emplace_back(BOOST_FWD_REF(Args)... args) { if(this->priv_push_back_simple_available()){ reference r = *this->priv_push_back_simple_pos(); allocator_traits_type::construct ( this->alloc() , this->priv_push_back_simple_pos() , boost::forward<Args>(args)...); this->priv_push_back_simple_commit(); return r; } else{ typedef container_detail::insert_nonmovable_emplace_proxy<Allocator, iterator, Args...> type; return *this->priv_insert_back_aux_impl(1, type(boost::forward<Args>(args)...)); } } //! <b>Requires</b>: p must be a valid iterator of *this. //! //! <b>Effects</b>: Inserts an object of type T constructed with //! std::forward<Args>(args)... before p //! //! <b>Throws</b>: If memory allocation throws or the in-place constructor throws. //! //! <b>Complexity</b>: If p is end(), amortized constant time //! Linear time otherwise. template <class... Args> iterator emplace(const_iterator p, BOOST_FWD_REF(Args)... args) { BOOST_ASSERT(this->priv_in_range_or_end(p)); if(p == this->cbegin()){ this->emplace_front(boost::forward<Args>(args)...); return this->begin(); } else if(p == this->cend()){ this->emplace_back(boost::forward<Args>(args)...); return (this->end()-1); } else{ typedef container_detail::insert_emplace_proxy<Allocator, iterator, Args...> type; return this->priv_insert_aux_impl(p, 1, type(boost::forward<Args>(args)...)); } } #else //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) #define BOOST_CONTAINER_DEQUE_EMPLACE_CODE(N) \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N\ reference emplace_front(BOOST_MOVE_UREF##N)\ {\ if(priv_push_front_simple_available()){\ reference r = *this->priv_push_front_simple_pos();\ allocator_traits_type::construct\ ( this->alloc(), this->priv_push_front_simple_pos() BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ priv_push_front_simple_commit();\ return r;\ }\ else{\ typedef container_detail::insert_nonmovable_emplace_proxy##N\ <Allocator, iterator BOOST_MOVE_I##N BOOST_MOVE_TARG##N> type;\ return *priv_insert_front_aux_impl(1, type(BOOST_MOVE_FWD##N));\ }\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N\ reference emplace_back(BOOST_MOVE_UREF##N)\ {\ if(priv_push_back_simple_available()){\ reference r = *this->priv_push_back_simple_pos();\ allocator_traits_type::construct\ ( this->alloc(), this->priv_push_back_simple_pos() BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\ priv_push_back_simple_commit();\ return r;\ }\ else{\ typedef container_detail::insert_nonmovable_emplace_proxy##N\ <Allocator, iterator BOOST_MOVE_I##N BOOST_MOVE_TARG##N> type;\ return *priv_insert_back_aux_impl(1, type(BOOST_MOVE_FWD##N));\ }\ }\ \ BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N\ iterator emplace(const_iterator p BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\ {\ BOOST_ASSERT(this->priv_in_range_or_end(p));\ if(p == this->cbegin()){\ this->emplace_front(BOOST_MOVE_FWD##N);\ return this->begin();\ }\ else if(p == cend()){\ this->emplace_back(BOOST_MOVE_FWD##N);\ return (--this->end());\ }\ else{\ typedef container_detail::insert_emplace_proxy_arg##N\ <Allocator, iterator BOOST_MOVE_I##N BOOST_MOVE_TARG##N> type;\ return this->priv_insert_aux_impl(p, 1, type(BOOST_MOVE_FWD##N));\ }\ } // BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_DEQUE_EMPLACE_CODE) #undef BOOST_CONTAINER_DEQUE_EMPLACE_CODE #endif // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Effects</b>: Inserts a copy of x at the front of the deque. //! //! <b>Throws</b>: If memory allocation throws or //! T's copy constructor throws. //! //! <b>Complexity</b>: Amortized constant time. void push_front(const T &x); //! <b>Effects</b>: Constructs a new element in the front of the deque //! and moves the resources of x to this new element. //! //! <b>Throws</b>: If memory allocation throws. //! //! <b>Complexity</b>: Amortized constant time. void push_front(T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH(push_front, T, void, priv_push_front) #endif #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Effects</b>: Inserts a copy of x at the end of the deque. //! //! <b>Throws</b>: If memory allocation throws or //! T's copy constructor throws. //! //! <b>Complexity</b>: Amortized constant time. void push_back(const T &x); //! <b>Effects</b>: Constructs a new element in the end of the deque //! and moves the resources of x to this new element. //! //! <b>Throws</b>: If memory allocation throws. //! //! <b>Complexity</b>: Amortized constant time. void push_back(T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back) #endif #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED) //! <b>Requires</b>: p must be a valid iterator of *this. //! //! <b>Effects</b>: Insert a copy of x before p. //! //! <b>Returns</b>: an iterator to the inserted element. //! //! <b>Throws</b>: If memory allocation throws or x's copy constructor throws. //! //! <b>Complexity</b>: If p is end(), amortized constant time //! Linear time otherwise. iterator insert(const_iterator p, const T &x); //! <b>Requires</b>: p must be a valid iterator of *this. //! //! <b>Effects</b>: Insert a new element before p with x's resources. //! //! <b>Returns</b>: an iterator to the inserted element. //! //! <b>Throws</b>: If memory allocation throws. //! //! <b>Complexity</b>: If p is end(), amortized constant time //! Linear time otherwise. iterator insert(const_iterator p, T &&x); #else BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator, const_iterator) #endif //! <b>Requires</b>: pos must be a valid iterator of *this. //! //! <b>Effects</b>: Insert n copies of x before pos. //! //! <b>Returns</b>: an iterator to the first inserted element or pos if n is 0. //! //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to n. iterator insert(const_iterator pos, size_type n, const value_type& x) { //Range check of p is done by insert() typedef constant_iterator<value_type, difference_type> c_it; return this->insert(pos, c_it(x, n), c_it()); } //! <b>Requires</b>: pos must be a valid iterator of *this. //! //! <b>Effects</b>: Insert a copy of the [first, last) range before pos. //! //! <b>Returns</b>: an iterator to the first inserted element or pos if first == last. //! //! <b>Throws</b>: If memory allocation throws, T's constructor from a //! dereferenced InIt throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to distance [first, last). template <class InIt> iterator insert(const_iterator pos, InIt first, InIt last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::disable_if_or < void , container_detail::is_convertible<InIt, size_type> , container_detail::is_not_input_iterator<InIt> >::type * = 0 #endif ) { BOOST_ASSERT(this->priv_in_range_or_end(pos)); size_type n = 0; iterator it(pos.unconst()); for(;first != last; ++first, ++n){ it = this->emplace(it, *first); ++it; } it -= n; return it; } #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) //! <b>Requires</b>: pos must be a valid iterator of *this. //! //! <b>Effects</b>: Insert a copy of the [il.begin(), il.end()) range before pos. //! //! <b>Returns</b>: an iterator to the first inserted element or pos if il.begin() == il.end(). //! //! <b>Throws</b>: If memory allocation throws, T's constructor from a //! dereferenced std::initializer_list throws or T's copy constructor throws. //! //! <b>Complexity</b>: Linear to distance [il.begin(), il.end()). iterator insert(const_iterator pos, std::initializer_list<value_type> il) { //Range check os pos is done in insert() return insert(pos, il.begin(), il.end()); } #endif #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) template <class FwdIt> iterator insert(const_iterator p, FwdIt first, FwdIt last #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED) , typename container_detail::disable_if_or < void , container_detail::is_convertible<FwdIt, size_type> , container_detail::is_input_iterator<FwdIt> >::type * = 0 #endif ) { BOOST_ASSERT(this->priv_in_range_or_end(p)); container_detail::insert_range_proxy<Allocator, FwdIt, iterator> proxy(first); return priv_insert_aux_impl(p, boost::container::iterator_distance(first, last), proxy); } #endif //! <b>Effects</b>: Removes the first element from the deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant time. void pop_front() BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!this->empty()); if (this->members_.m_start.m_cur != this->members_.m_start.m_last - 1) { allocator_traits_type::destroy ( this->alloc() , container_detail::to_raw_pointer(this->members_.m_start.m_cur) ); ++this->members_.m_start.m_cur; } else this->priv_pop_front_aux(); } //! <b>Effects</b>: Removes the last element from the deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant time. void pop_back() BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(!this->empty()); if (this->members_.m_finish.m_cur != this->members_.m_finish.m_first) { --this->members_.m_finish.m_cur; allocator_traits_type::destroy ( this->alloc() , container_detail::to_raw_pointer(this->members_.m_finish.m_cur) ); } else this->priv_pop_back_aux(); } //! <b>Effects</b>: Erases the element at p. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear to the elements between pos and the //! last element (if pos is near the end) or the first element //! if(pos is near the beginning). //! Constant if pos is the first or the last element. iterator erase(const_iterator pos) BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(this->priv_in_range(pos)); iterator next = pos.unconst(); ++next; size_type index = pos - this->members_.m_start; if (index < (this->size()/2)) { boost::container::move_backward(this->begin(), pos.unconst(), next); pop_front(); } else { boost::container::move(next, this->end(), pos.unconst()); pop_back(); } return this->members_.m_start + index; } //! <b>Effects</b>: Erases the elements pointed by [first, last). //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear to the distance between first and //! last plus the elements between pos and the //! last element (if pos is near the end) or the first element //! if(pos is near the beginning). iterator erase(const_iterator first, const_iterator last) BOOST_NOEXCEPT_OR_NOTHROW { BOOST_ASSERT(first == last || (first < last && this->priv_in_range(first) && this->priv_in_range_or_end(last))); if (first == this->members_.m_start && last == this->members_.m_finish) { this->clear(); return this->members_.m_finish; } else { const size_type n = static_cast<size_type>(last - first); const size_type elems_before = static_cast<size_type>(first - this->members_.m_start); if (elems_before < (this->size() - n) - elems_before) { boost::container::move_backward(begin(), first.unconst(), last.unconst()); iterator new_start = this->members_.m_start + n; this->priv_destroy_range(this->members_.m_start, new_start); this->priv_destroy_nodes(this->members_.m_start.m_node, new_start.m_node); this->members_.m_start = new_start; } else { boost::container::move(last.unconst(), end(), first.unconst()); iterator new_finish = this->members_.m_finish - n; this->priv_destroy_range(new_finish, this->members_.m_finish); this->priv_destroy_nodes(new_finish.m_node + 1, this->members_.m_finish.m_node + 1); this->members_.m_finish = new_finish; } return this->members_.m_start + elems_before; } } //! <b>Effects</b>: Swaps the contents of *this and x. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Constant. void swap(deque &x) BOOST_NOEXCEPT_IF(allocator_traits_type::propagate_on_container_swap::value || allocator_traits_type::is_always_equal::value) { this->swap_members(x); container_detail::bool_<allocator_traits_type::propagate_on_container_swap::value> flag; container_detail::swap_alloc(this->alloc(), x.alloc(), flag); container_detail::swap_alloc(this->ptr_alloc(), x.ptr_alloc(), flag); } //! <b>Effects</b>: Erases all the elements of the deque. //! //! <b>Throws</b>: Nothing. //! //! <b>Complexity</b>: Linear to the number of elements in the deque. void clear() BOOST_NOEXCEPT_OR_NOTHROW { for (index_pointer node = this->members_.m_start.m_node + 1; node < this->members_.m_finish.m_node; ++node) { this->priv_destroy_range(*node, *node + this->s_buffer_size()); this->priv_deallocate_node(*node); } if (this->members_.m_start.m_node != this->members_.m_finish.m_node) { this->priv_destroy_range(this->members_.m_start.m_cur, this->members_.m_start.m_last); this->priv_destroy_range(this->members_.m_finish.m_first, this->members_.m_finish.m_cur); this->priv_deallocate_node(this->members_.m_finish.m_first); } else this->priv_destroy_range(this->members_.m_start.m_cur, this->members_.m_finish.m_cur); this->members_.m_finish = this->members_.m_start; } //! <b>Effects</b>: Returns true if x and y are equal //! //! <b>Complexity</b>: Linear to the number of elements in the container. friend bool operator==(const deque& x, const deque& y) { return x.size() == y.size() && ::boost::container::algo_equal(x.begin(), x.end(), y.begin()); } //! <b>Effects</b>: Returns true if x and y are unequal //! //! <b>Complexity</b>: Linear to the number of elements in the container. friend bool operator!=(const deque& x, const deque& y) { return !(x == y); } //! <b>Effects</b>: Returns true if x is less than y //! //! <b>Complexity</b>: Linear to the number of elements in the container. friend bool operator<(const deque& x, const deque& y) { return ::boost::container::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } //! <b>Effects</b>: Returns true if x is greater than y //! //! <b>Complexity</b>: Linear to the number of elements in the container. friend bool operator>(const deque& x, const deque& y) { return y < x; } //! <b>Effects</b>: Returns true if x is equal or less than y //! //! <b>Complexity</b>: Linear to the number of elements in the container. friend bool operator<=(const deque& x, const deque& y) { return !(y < x); } //! <b>Effects</b>: Returns true if x is equal or greater than y //! //! <b>Complexity</b>: Linear to the number of elements in the container. friend bool operator>=(const deque& x, const deque& y) { return !(x < y); } //! <b>Effects</b>: x.swap(y) //! //! <b>Complexity</b>: Constant. friend void swap(deque& x, deque& y) { x.swap(y); } #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED private: size_type priv_index_of(const_iterator p) const { BOOST_ASSERT(this->cbegin() <= p); BOOST_ASSERT(p <= this->cend()); return static_cast<size_type>(p - this->cbegin()); } void priv_erase_last_n(size_type n) { if(n == this->size()) { this->clear(); } else { iterator new_finish = this->members_.m_finish - n; this->priv_destroy_range(new_finish, this->members_.m_finish); this->priv_destroy_nodes(new_finish.m_node + 1, this->members_.m_finish.m_node + 1); this->members_.m_finish = new_finish; } } void priv_throw_if_out_of_range(size_type n) const { if (n >= this->size()) throw_out_of_range("deque::at out of range"); } bool priv_in_range(const_iterator pos) const { return (this->begin() <= pos) && (pos < this->end()); } bool priv_in_range_or_end(const_iterator pos) const { return (this->begin() <= pos) && (pos <= this->end()); } template <class U> iterator priv_insert(const_iterator p, BOOST_FWD_REF(U) x) { BOOST_ASSERT(this->priv_in_range_or_end(p)); if (p == cbegin()){ this->push_front(::boost::forward<U>(x)); return begin(); } else if (p == cend()){ this->push_back(::boost::forward<U>(x)); return --end(); } else { return priv_insert_aux_impl ( p, (size_type)1 , container_detail::get_insert_value_proxy<iterator, Allocator>(::boost::forward<U>(x))); } } template <class U> void priv_push_front(BOOST_FWD_REF(U) x) { if(this->priv_push_front_simple_available()){ allocator_traits_type::construct ( this->alloc(), this->priv_push_front_simple_pos(), ::boost::forward<U>(x)); this->priv_push_front_simple_commit(); } else{ priv_insert_aux_impl ( this->cbegin(), (size_type)1 , container_detail::get_insert_value_proxy<iterator, Allocator>(::boost::forward<U>(x))); } } template <class U> void priv_push_back(BOOST_FWD_REF(U) x) { if(this->priv_push_back_simple_available()){ allocator_traits_type::construct ( this->alloc(), this->priv_push_back_simple_pos(), ::boost::forward<U>(x)); this->priv_push_back_simple_commit(); } else{ priv_insert_aux_impl ( this->cend(), (size_type)1 , container_detail::get_insert_value_proxy<iterator, Allocator>(::boost::forward<U>(x))); } } bool priv_push_back_simple_available() const { return this->members_.m_map && (this->members_.m_finish.m_cur != (this->members_.m_finish.m_last - 1)); } T *priv_push_back_simple_pos() const { return container_detail::to_raw_pointer(this->members_.m_finish.m_cur); } void priv_push_back_simple_commit() { ++this->members_.m_finish.m_cur; } bool priv_push_front_simple_available() const { return this->members_.m_map && (this->members_.m_start.m_cur != this->members_.m_start.m_first); } T *priv_push_front_simple_pos() const { return container_detail::to_raw_pointer(this->members_.m_start.m_cur) - 1; } void priv_push_front_simple_commit() { --this->members_.m_start.m_cur; } void priv_destroy_range(iterator p, iterator p2) { if(!Base::traits_t::trivial_dctr){ for(;p != p2; ++p){ allocator_traits_type::destroy(this->alloc(), container_detail::iterator_to_raw_pointer(p)); } } } void priv_destroy_range(pointer p, pointer p2) { if(!Base::traits_t::trivial_dctr){ for(;p != p2; ++p){ allocator_traits_type::destroy(this->alloc(), container_detail::iterator_to_raw_pointer(p)); } } } template<class InsertProxy> iterator priv_insert_aux_impl(const_iterator p, size_type n, InsertProxy proxy) { iterator pos(p.unconst()); const size_type pos_n = p - this->cbegin(); if(!this->members_.m_map){ this->priv_initialize_map(0); pos = this->begin(); } const size_type elemsbefore = static_cast<size_type>(pos - this->members_.m_start); const size_type length = this->size(); if (elemsbefore < length / 2) { const iterator new_start = this->priv_reserve_elements_at_front(n); const iterator old_start = this->members_.m_start; if(!elemsbefore){ proxy.uninitialized_copy_n_and_update(this->alloc(), new_start, n); this->members_.m_start = new_start; } else{ pos = this->members_.m_start + elemsbefore; if (elemsbefore >= n) { const iterator start_n = this->members_.m_start + n; ::boost::container::uninitialized_move_alloc (this->alloc(), this->members_.m_start, start_n, new_start); this->members_.m_start = new_start; boost::container::move(start_n, pos, old_start); proxy.copy_n_and_update(this->alloc(), pos - n, n); } else { const size_type mid_count = n - elemsbefore; const iterator mid_start = old_start - mid_count; proxy.uninitialized_copy_n_and_update(this->alloc(), mid_start, mid_count); this->members_.m_start = mid_start; ::boost::container::uninitialized_move_alloc (this->alloc(), old_start, pos, new_start); this->members_.m_start = new_start; proxy.copy_n_and_update(this->alloc(), old_start, elemsbefore); } } } else { const iterator new_finish = this->priv_reserve_elements_at_back(n); const iterator old_finish = this->members_.m_finish; const size_type elemsafter = length - elemsbefore; if(!elemsafter){ proxy.uninitialized_copy_n_and_update(this->alloc(), old_finish, n); this->members_.m_finish = new_finish; } else{ pos = old_finish - elemsafter; if (elemsafter >= n) { iterator finish_n = old_finish - difference_type(n); ::boost::container::uninitialized_move_alloc (this->alloc(), finish_n, old_finish, old_finish); this->members_.m_finish = new_finish; boost::container::move_backward(pos, finish_n, old_finish); proxy.copy_n_and_update(this->alloc(), pos, n); } else { const size_type raw_gap = n - elemsafter; ::boost::container::uninitialized_move_alloc (this->alloc(), pos, old_finish, old_finish + raw_gap); BOOST_TRY{ proxy.copy_n_and_update(this->alloc(), pos, elemsafter); proxy.uninitialized_copy_n_and_update(this->alloc(), old_finish, raw_gap); } BOOST_CATCH(...){ this->priv_destroy_range(old_finish, old_finish + elemsafter); BOOST_RETHROW } BOOST_CATCH_END this->members_.m_finish = new_finish; } } } return this->begin() + pos_n; } template <class InsertProxy> iterator priv_insert_back_aux_impl(size_type n, InsertProxy proxy) { if(!this->members_.m_map){ this->priv_initialize_map(0); } iterator new_finish = this->priv_reserve_elements_at_back(n); iterator old_finish = this->members_.m_finish; proxy.uninitialized_copy_n_and_update(this->alloc(), old_finish, n); this->members_.m_finish = new_finish; return iterator(this->members_.m_finish - n); } template <class InsertProxy> iterator priv_insert_front_aux_impl(size_type n, InsertProxy proxy) { if(!this->members_.m_map){ this->priv_initialize_map(0); } iterator new_start = this->priv_reserve_elements_at_front(n); proxy.uninitialized_copy_n_and_update(this->alloc(), new_start, n); this->members_.m_start = new_start; return new_start; } iterator priv_fill_insert(const_iterator pos, size_type n, const value_type& x) { typedef constant_iterator<value_type, difference_type> c_it; return this->insert(pos, c_it(x, n), c_it()); } // Precondition: this->members_.m_start and this->members_.m_finish have already been initialized, // but none of the deque's elements have yet been constructed. void priv_fill_initialize(const value_type& value) { index_pointer cur = this->members_.m_start.m_node; BOOST_TRY { for ( ; cur < this->members_.m_finish.m_node; ++cur){ boost::container::uninitialized_fill_alloc (this->alloc(), *cur, *cur + this->s_buffer_size(), value); } boost::container::uninitialized_fill_alloc (this->alloc(), this->members_.m_finish.m_first, this->members_.m_finish.m_cur, value); } BOOST_CATCH(...){ this->priv_destroy_range(this->members_.m_start, iterator(*cur, cur)); BOOST_RETHROW } BOOST_CATCH_END } template <class InIt> void priv_range_initialize(InIt first, InIt last, typename iterator_enable_if_tag<InIt, std::input_iterator_tag>::type* =0) { this->priv_initialize_map(0); BOOST_TRY { for ( ; first != last; ++first) this->emplace_back(*first); } BOOST_CATCH(...){ this->clear(); BOOST_RETHROW } BOOST_CATCH_END } template <class FwdIt> void priv_range_initialize(FwdIt first, FwdIt last, typename iterator_disable_if_tag<FwdIt, std::input_iterator_tag>::type* =0) { size_type n = 0; n = boost::container::iterator_distance(first, last); this->priv_initialize_map(n); index_pointer cur_node = this->members_.m_start.m_node; BOOST_TRY { for (; cur_node < this->members_.m_finish.m_node; ++cur_node) { FwdIt mid = first; boost::container::iterator_advance(mid, this->s_buffer_size()); ::boost::container::uninitialized_copy_alloc(this->alloc(), first, mid, *cur_node); first = mid; } ::boost::container::uninitialized_copy_alloc(this->alloc(), first, last, this->members_.m_finish.m_first); } BOOST_CATCH(...){ this->priv_destroy_range(this->members_.m_start, iterator(*cur_node, cur_node)); BOOST_RETHROW } BOOST_CATCH_END } // Called only if this->members_.m_finish.m_cur == this->members_.m_finish.m_first. void priv_pop_back_aux() BOOST_NOEXCEPT_OR_NOTHROW { this->priv_deallocate_node(this->members_.m_finish.m_first); this->members_.m_finish.priv_set_node(this->members_.m_finish.m_node - 1); this->members_.m_finish.m_cur = this->members_.m_finish.m_last - 1; allocator_traits_type::destroy ( this->alloc() , container_detail::to_raw_pointer(this->members_.m_finish.m_cur) ); } // Called only if this->members_.m_start.m_cur == this->members_.m_start.m_last - 1. Note that // if the deque has at least one element (a precondition for this member // function), and if this->members_.m_start.m_cur == this->members_.m_start.m_last, then the deque // must have at least two nodes. void priv_pop_front_aux() BOOST_NOEXCEPT_OR_NOTHROW { allocator_traits_type::destroy ( this->alloc() , container_detail::to_raw_pointer(this->members_.m_start.m_cur) ); this->priv_deallocate_node(this->members_.m_start.m_first); this->members_.m_start.priv_set_node(this->members_.m_start.m_node + 1); this->members_.m_start.m_cur = this->members_.m_start.m_first; } iterator priv_reserve_elements_at_front(size_type n) { size_type vacancies = this->members_.m_start.m_cur - this->members_.m_start.m_first; if (n > vacancies){ size_type new_elems = n-vacancies; size_type new_nodes = (new_elems + this->s_buffer_size() - 1) / this->s_buffer_size(); size_type s = (size_type)(this->members_.m_start.m_node - this->members_.m_map); if (new_nodes > s){ this->priv_reallocate_map(new_nodes, true); } size_type i = 1; BOOST_TRY { for (; i <= new_nodes; ++i) *(this->members_.m_start.m_node - i) = this->priv_allocate_node(); } BOOST_CATCH(...) { for (size_type j = 1; j < i; ++j) this->priv_deallocate_node(*(this->members_.m_start.m_node - j)); BOOST_RETHROW } BOOST_CATCH_END } return this->members_.m_start - difference_type(n); } iterator priv_reserve_elements_at_back(size_type n) { size_type vacancies = (this->members_.m_finish.m_last - this->members_.m_finish.m_cur) - 1; if (n > vacancies){ size_type new_elems = n - vacancies; size_type new_nodes = (new_elems + this->s_buffer_size() - 1)/s_buffer_size(); size_type s = (size_type)(this->members_.m_map_size - (this->members_.m_finish.m_node - this->members_.m_map)); if (new_nodes + 1 > s){ this->priv_reallocate_map(new_nodes, false); } size_type i = 1; BOOST_TRY { for (; i <= new_nodes; ++i) *(this->members_.m_finish.m_node + i) = this->priv_allocate_node(); } BOOST_CATCH(...) { for (size_type j = 1; j < i; ++j) this->priv_deallocate_node(*(this->members_.m_finish.m_node + j)); BOOST_RETHROW } BOOST_CATCH_END } return this->members_.m_finish + difference_type(n); } void priv_reallocate_map(size_type nodes_to_add, bool add_at_front) { size_type old_num_nodes = this->members_.m_finish.m_node - this->members_.m_start.m_node + 1; size_type new_num_nodes = old_num_nodes + nodes_to_add; index_pointer new_nstart; if (this->members_.m_map_size > 2 * new_num_nodes) { new_nstart = this->members_.m_map + (this->members_.m_map_size - new_num_nodes) / 2 + (add_at_front ? nodes_to_add : 0); if (new_nstart < this->members_.m_start.m_node) boost::container::move(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart); else boost::container::move_backward (this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart + old_num_nodes); } else { size_type new_map_size = this->members_.m_map_size + container_detail::max_value(this->members_.m_map_size, nodes_to_add) + 2; index_pointer new_map = this->priv_allocate_map(new_map_size); new_nstart = new_map + (new_map_size - new_num_nodes) / 2 + (add_at_front ? nodes_to_add : 0); boost::container::move(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart); this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size); this->members_.m_map = new_map; this->members_.m_map_size = new_map_size; } this->members_.m_start.priv_set_node(new_nstart); this->members_.m_finish.priv_set_node(new_nstart + old_num_nodes - 1); } #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED }; }} #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED namespace boost { //!has_trivial_destructor_after_move<> == true_type //!specialization for optimizations template <class T, class Allocator> struct has_trivial_destructor_after_move<boost::container::deque<T, Allocator> > { typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer; static const bool value = ::boost::has_trivial_destructor_after_move<Allocator>::value && ::boost::has_trivial_destructor_after_move<pointer>::value; }; } #endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED #include <boost/container/detail/config_end.hpp> #endif // #ifndef BOOST_CONTAINER_DEQUE_HPP