// Copyright John Maddock 2006. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // Test real concept. // real_concept is an archetype for User defined Real types. // This file defines the features, constructors, operators, functions... // that are essential to use mathematical and statistical functions. // The template typename "RealType" is used where this type // (as well as the normal built-in types, float, double & long double) // can be used. // That this is the minimum set is confirmed by use as a type // in tests of all functions & distributions, for example: // test_spots(0.F); & test_spots(0.); for float and double, but also // test_spots(boost::math::concepts::real_concept(0.)); // NTL quad_float type is an example of a type meeting the requirements, // but note minor additions are needed - see ntl.diff and documentation // "Using With NTL - a High-Precision Floating-Point Library". #ifndef BOOST_MATH_REAL_CONCEPT_HPP #define BOOST_MATH_REAL_CONCEPT_HPP #include #include #include #include #include #include #include #include #if defined(__SGI_STL_PORT) # include #endif #include #include #include #include // fmodl #if defined(__SGI_STL_PORT) || defined(_RWSTD_VER) || defined(__LIBCOMO__) # include #endif namespace boost{ namespace math{ namespace concepts { #ifdef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS typedef double real_concept_base_type; #else typedef long double real_concept_base_type; #endif class real_concept { public: // Constructors: real_concept() : m_value(0){} real_concept(char c) : m_value(c){} #ifndef BOOST_NO_INTRINSIC_WCHAR_T real_concept(wchar_t c) : m_value(c){} #endif real_concept(unsigned char c) : m_value(c){} real_concept(signed char c) : m_value(c){} real_concept(unsigned short c) : m_value(c){} real_concept(short c) : m_value(c){} real_concept(unsigned int c) : m_value(c){} real_concept(int c) : m_value(c){} real_concept(unsigned long c) : m_value(c){} real_concept(long c) : m_value(c){} #if defined(__DECCXX) || defined(__SUNPRO_CC) real_concept(unsigned long long c) : m_value(static_cast(c)){} real_concept(long long c) : m_value(static_cast(c)){} #elif defined(BOOST_HAS_LONG_LONG) real_concept(boost::ulong_long_type c) : m_value(static_cast(c)){} real_concept(boost::long_long_type c) : m_value(static_cast(c)){} #elif defined(BOOST_HAS_MS_INT64) real_concept(unsigned __int64 c) : m_value(static_cast(c)){} real_concept(__int64 c) : m_value(static_cast(c)){} #endif real_concept(float c) : m_value(c){} real_concept(double c) : m_value(c){} real_concept(long double c) : m_value(c){} #ifdef BOOST_MATH_USE_FLOAT128 real_concept(BOOST_MATH_FLOAT128_TYPE c) : m_value(c){} #endif // Assignment: real_concept& operator=(char c) { m_value = c; return *this; } real_concept& operator=(unsigned char c) { m_value = c; return *this; } real_concept& operator=(signed char c) { m_value = c; return *this; } #ifndef BOOST_NO_INTRINSIC_WCHAR_T real_concept& operator=(wchar_t c) { m_value = c; return *this; } #endif real_concept& operator=(short c) { m_value = c; return *this; } real_concept& operator=(unsigned short c) { m_value = c; return *this; } real_concept& operator=(int c) { m_value = c; return *this; } real_concept& operator=(unsigned int c) { m_value = c; return *this; } real_concept& operator=(long c) { m_value = c; return *this; } real_concept& operator=(unsigned long c) { m_value = c; return *this; } #ifdef BOOST_HAS_LONG_LONG real_concept& operator=(boost::long_long_type c) { m_value = static_cast(c); return *this; } real_concept& operator=(boost::ulong_long_type c) { m_value = static_cast(c); return *this; } #endif real_concept& operator=(float c) { m_value = c; return *this; } real_concept& operator=(double c) { m_value = c; return *this; } real_concept& operator=(long double c) { m_value = c; return *this; } // Access: real_concept_base_type value()const{ return m_value; } // Member arithmetic: real_concept& operator+=(const real_concept& other) { m_value += other.value(); return *this; } real_concept& operator-=(const real_concept& other) { m_value -= other.value(); return *this; } real_concept& operator*=(const real_concept& other) { m_value *= other.value(); return *this; } real_concept& operator/=(const real_concept& other) { m_value /= other.value(); return *this; } real_concept operator-()const { return -m_value; } real_concept const& operator+()const { return *this; } real_concept& operator++() { ++m_value; return *this; } real_concept& operator--() { --m_value; return *this; } private: real_concept_base_type m_value; }; // Non-member arithmetic: inline real_concept operator+(const real_concept& a, const real_concept& b) { real_concept result(a); result += b; return result; } inline real_concept operator-(const real_concept& a, const real_concept& b) { real_concept result(a); result -= b; return result; } inline real_concept operator*(const real_concept& a, const real_concept& b) { real_concept result(a); result *= b; return result; } inline real_concept operator/(const real_concept& a, const real_concept& b) { real_concept result(a); result /= b; return result; } // Comparison: inline bool operator == (const real_concept& a, const real_concept& b) { return a.value() == b.value(); } inline bool operator != (const real_concept& a, const real_concept& b) { return a.value() != b.value();} inline bool operator < (const real_concept& a, const real_concept& b) { return a.value() < b.value(); } inline bool operator <= (const real_concept& a, const real_concept& b) { return a.value() <= b.value(); } inline bool operator > (const real_concept& a, const real_concept& b) { return a.value() > b.value(); } inline bool operator >= (const real_concept& a, const real_concept& b) { return a.value() >= b.value(); } // Non-member functions: inline real_concept acos(real_concept a) { return std::acos(a.value()); } inline real_concept cos(real_concept a) { return std::cos(a.value()); } inline real_concept asin(real_concept a) { return std::asin(a.value()); } inline real_concept atan(real_concept a) { return std::atan(a.value()); } inline real_concept atan2(real_concept a, real_concept b) { return std::atan2(a.value(), b.value()); } inline real_concept ceil(real_concept a) { return std::ceil(a.value()); } #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS // I've seen std::fmod(long double) crash on some platforms // so use fmodl instead: #ifdef _WIN32_WCE // // Ugly workaround for macro fmodl: // inline long double call_fmodl(long double a, long double b) { return fmodl(a, b); } inline real_concept fmod(real_concept a, real_concept b) { return call_fmodl(a.value(), b.value()); } #else inline real_concept fmod(real_concept a, real_concept b) { return fmodl(a.value(), b.value()); } #endif #endif inline real_concept cosh(real_concept a) { return std::cosh(a.value()); } inline real_concept exp(real_concept a) { return std::exp(a.value()); } inline real_concept fabs(real_concept a) { return std::fabs(a.value()); } inline real_concept abs(real_concept a) { return std::abs(a.value()); } inline real_concept floor(real_concept a) { return std::floor(a.value()); } inline real_concept modf(real_concept a, real_concept* ipart) { #ifdef __MINGW32__ real_concept_base_type ip; real_concept_base_type result = boost::math::modf(a.value(), &ip); *ipart = ip; return result; #else real_concept_base_type ip; real_concept_base_type result = std::modf(a.value(), &ip); *ipart = ip; return result; #endif } inline real_concept frexp(real_concept a, int* expon) { return std::frexp(a.value(), expon); } inline real_concept ldexp(real_concept a, int expon) { return std::ldexp(a.value(), expon); } inline real_concept log(real_concept a) { return std::log(a.value()); } inline real_concept log10(real_concept a) { return std::log10(a.value()); } inline real_concept tan(real_concept a) { return std::tan(a.value()); } inline real_concept pow(real_concept a, real_concept b) { return std::pow(a.value(), b.value()); } #if !defined(__SUNPRO_CC) inline real_concept pow(real_concept a, int b) { return std::pow(a.value(), b); } #else inline real_concept pow(real_concept a, int b) { return std::pow(a.value(), static_cast(b)); } #endif inline real_concept sin(real_concept a) { return std::sin(a.value()); } inline real_concept sinh(real_concept a) { return std::sinh(a.value()); } inline real_concept sqrt(real_concept a) { return std::sqrt(a.value()); } inline real_concept tanh(real_concept a) { return std::tanh(a.value()); } // // Conversion and truncation routines: // template inline int iround(const concepts::real_concept& v, const Policy& pol) { return boost::math::iround(v.value(), pol); } inline int iround(const concepts::real_concept& v) { return boost::math::iround(v.value(), policies::policy<>()); } template inline long lround(const concepts::real_concept& v, const Policy& pol) { return boost::math::lround(v.value(), pol); } inline long lround(const concepts::real_concept& v) { return boost::math::lround(v.value(), policies::policy<>()); } #ifdef BOOST_HAS_LONG_LONG template inline boost::long_long_type llround(const concepts::real_concept& v, const Policy& pol) { return boost::math::llround(v.value(), pol); } inline boost::long_long_type llround(const concepts::real_concept& v) { return boost::math::llround(v.value(), policies::policy<>()); } #endif template inline int itrunc(const concepts::real_concept& v, const Policy& pol) { return boost::math::itrunc(v.value(), pol); } inline int itrunc(const concepts::real_concept& v) { return boost::math::itrunc(v.value(), policies::policy<>()); } template inline long ltrunc(const concepts::real_concept& v, const Policy& pol) { return boost::math::ltrunc(v.value(), pol); } inline long ltrunc(const concepts::real_concept& v) { return boost::math::ltrunc(v.value(), policies::policy<>()); } #ifdef BOOST_HAS_LONG_LONG template inline boost::long_long_type lltrunc(const concepts::real_concept& v, const Policy& pol) { return boost::math::lltrunc(v.value(), pol); } inline boost::long_long_type lltrunc(const concepts::real_concept& v) { return boost::math::lltrunc(v.value(), policies::policy<>()); } #endif // Streaming: template inline std::basic_ostream& operator<<(std::basic_ostream& os, const real_concept& a) { return os << a.value(); } template inline std::basic_istream& operator>>(std::basic_istream& is, real_concept& a) { #if defined(BOOST_MSVC) && defined(__SGI_STL_PORT) // // STLPort 5.1.4 has a problem reading long doubles from strings, // see http://sourceforge.net/tracker/index.php?func=detail&aid=1811043&group_id=146814&atid=766244 // double v; is >> v; a = v; return is; #elif defined(__SGI_STL_PORT) || defined(_RWSTD_VER) || defined(__LIBCOMO__) || defined(_LIBCPP_VERSION) std::string s; real_concept_base_type d; is >> s; std::sscanf(s.c_str(), "%Lf", &d); a = d; return is; #else real_concept_base_type v; is >> v; a = v; return is; #endif } } // namespace concepts namespace tools { template <> inline concepts::real_concept make_big_value(boost::math::tools::largest_float val, const char* , mpl::false_ const&, mpl::false_ const&) { return val; // Can't use lexical_cast here, sometimes it fails.... } template <> inline concepts::real_concept max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept)) { return max_value(); } template <> inline concepts::real_concept min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept)) { return min_value(); } template <> inline concepts::real_concept log_max_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept)) { return log_max_value(); } template <> inline concepts::real_concept log_min_value(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept)) { return log_min_value(); } template <> inline concepts::real_concept epsilon(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept)) { #ifdef __SUNPRO_CC return std::numeric_limits::epsilon(); #else return tools::epsilon(); #endif } template <> inline BOOST_MATH_CONSTEXPR int digits(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(concepts::real_concept)) BOOST_NOEXCEPT { // Assume number of significand bits is same as real_concept_base_type, // unless std::numeric_limits::is_specialized to provide digits. return tools::digits(); // Note that if numeric_limits real concept is NOT specialized to provide digits10 // (or max_digits10) then the default precision of 6 decimal digits will be used // by Boost test (giving misleading error messages like // "difference between {9.79796} and {9.79796} exceeds 5.42101e-19%" // and by Boost lexical cast and serialization causing loss of accuracy. } } // namespace tools /* namespace policies { namespace detail { template inline concepts::real_concept raise_rounding_error( const char*, const char*, const T& val, const concepts::real_concept&, const ::boost::math::policies::rounding_error< ::boost::math::policies::errno_on_error>&) BOOST_MATH_NOEXCEPT(T) { errno = ERANGE; // This may or may not do the right thing, but the user asked for the error // to be silent so here we go anyway: return val > 0 ? boost::math::tools::max_value() : -boost::math::tools::max_value(); } } }*/ #if defined(__SGI_STL_PORT) || defined(BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS) // // We shouldn't really need these type casts any more, but there are some // STLport iostream bugs we work around by using them.... // namespace tools { // real_cast converts from T to integer and narrower floating-point types. // Convert from T to integer types. template <> inline unsigned int real_cast(concepts::real_concept r) { return static_cast(r.value()); } template <> inline int real_cast(concepts::real_concept r) { return static_cast(r.value()); } template <> inline long real_cast(concepts::real_concept r) { return static_cast(r.value()); } // Converts from T to narrower floating-point types, float, double & long double. template <> inline float real_cast(concepts::real_concept r) { return static_cast(r.value()); } template <> inline double real_cast(concepts::real_concept r) { return static_cast(r.value()); } template <> inline long double real_cast(concepts::real_concept r) { return r.value(); } } // STLPort #endif #if BOOST_WORKAROUND(BOOST_MSVC, <= 1310) // // For some strange reason ADL sometimes fails to find the // correct overloads, unless we bring these declarations into scope: // using concepts::itrunc; using concepts::iround; #endif } // namespace math } // namespace boost #endif // BOOST_MATH_REAL_CONCEPT_HPP