/*! @file Forward declares `boost::hana::Applicative`. @copyright Louis Dionne 2013-2016 Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt) */ #ifndef BOOST_HANA_FWD_CONCEPT_APPLICATIVE_HPP #define BOOST_HANA_FWD_CONCEPT_APPLICATIVE_HPP #include BOOST_HANA_NAMESPACE_BEGIN //! @ingroup group-concepts //! @defgroup group-Applicative Applicative //! The `Applicative` concept represents `Functor`s with the ability //! to lift values and combine computations. //! //! A `Functor` can only take a normal function and map it over a //! structure containing values to obtain a new structure containing //! values. Intuitively, an `Applicative` can also take a value and //! lift it into the structure. In addition, an `Applicative` can take //! a structure containing functions and apply it to a structure //! containing values to obtain a new structure containing values. //! By currying the function(s) inside the structure, it is then //! also possible to apply n-ary functions to n structures containing //! values. //! //! @note //! This documentation does not go into much details about the nature //! of applicatives. However, the [Typeclassopedia][1] is a nice //! Haskell-oriented resource where such information can be found. //! //! //! Minimal complete definition //! --------------------------- //! `lift` and `ap` satisfying the laws below. An `Applicative` must //! also be a `Functor`. //! //! //! Laws //! ---- //! Given an `Applicative` `F`, the following laws must be satisfied: //! 1. Identity\n //! For all objects `xs` of tag `F(A)`, //! @code //! ap(lift(id), xs) == xs //! @endcode //! //! 2. Composition\n //! For all objects `xs` of tag `F(A)` and functions-in-an-applicative //! @f$ fs : F(B \to C) @f$, //! @f$ gs : F(A \to B) @f$, //! @code //! ap(ap(lift(compose), fs, gs), xs) == ap(fs, ap(gs, xs)) //! @endcode //! //! 3. Homomorphism\n //! For all objects `x` of tag `A` and functions @f$ f : A \to B @f$, //! @code //! ap(lift(f), lift(x)) == lift(f(x)) //! @endcode //! //! 4. Interchange\n //! For all objects `x` of tag `A` and functions-in-an-applicative //! @f$ fs : F(A \to B) @f$, //! @code //! ap(fs, lift(x)) == ap(lift(apply(-, x)), fs) //! @endcode //! where `apply(-, x)` denotes the partial application of the `apply` //! function from the @ref group-functional module to the `x` argument. //! //! As a consequence of these laws, the model of `Functor` for `F` will //! satisfy the following for all objects `xs` of tag `F(A)` and functions //! @f$ f : A \to B @f$: //! @code //! transform(xs, f) == ap(lift(f), xs) //! @endcode //! //! //! Refined concept //! --------------- //! 1. `Functor` (free model)\n //! As a consequence of the laws, any `Applicative F` can be made a //! `Functor` by setting //! @code //! transform(xs, f) = ap(lift(f), xs) //! @endcode //! //! //! Concrete models //! --------------- //! `hana::lazy`, `hana::optional`, `hana::tuple` //! //! //! @anchor applicative-transformation //! Structure-preserving functions //! ------------------------------ //! An _applicative transformation_ is a function @f$ t : F(X) \to G(X) @f$ //! between two Applicatives `F` and `G`, where `X` can be any tag, and //! which preserves the operations of an Applicative. In other words, for //! all objects `x` of tag `X`, functions-in-an-applicative //! @f$ fs : F(X \to Y) @f$ and objects `xs` of tag `F(X)`, //! @code //! t(lift(x)) == lift(x) //! t(ap(fs, xs)) == ap(t(fs), t(xs)) //! @endcode //! //! [1]: https://wiki.haskell.org/Typeclassopedia#Applicative template struct Applicative; BOOST_HANA_NAMESPACE_END #endif // !BOOST_HANA_FWD_CONCEPT_APPLICATIVE_HPP