vn-verdnaturachat/ios/Pods/boost-for-react-native/boost/units/systems/detail/constants.hpp

270 lines
13 KiB
C++

// Boost.Units - A C++ library for zero-overhead dimensional analysis and
// unit/quantity manipulation and conversion
//
// Copyright (C) 2003-2008 Matthias Christian Schabel
// Copyright (C) 2008 Steven Watanabe
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_UNITS_CONSTANTS_HPP
#define BOOST_UNITS_CONSTANTS_HPP
#include <boost/config/no_tr1/cmath.hpp>
#include <iosfwd>
#include <iomanip>
#include <boost/io/ios_state.hpp>
#include <boost/units/static_constant.hpp>
#include <boost/units/units_fwd.hpp>
#include <boost/units/operators.hpp>
#include <boost/units/static_rational.hpp>
#include <boost/units/detail/one.hpp>
namespace boost {
namespace units {
template<class Base>
struct constant
{
typedef typename Base::value_type value_type;
operator value_type() const { return Base().value(); }
value_type value() const { return Base().value(); }
value_type uncertainty() const { return Base().uncertainty(); }
value_type lower_bound() const { return Base().lower_bound(); }
value_type upper_bound() const { return Base().upper_bound(); }
};
template<class Base>
struct physical_constant
{
typedef typename Base::value_type value_type;
operator value_type() const { return Base().value(); }
value_type value() const { return Base().value(); }
value_type uncertainty() const { return Base().uncertainty(); }
value_type lower_bound() const { return Base().lower_bound(); }
value_type upper_bound() const { return Base().upper_bound(); }
};
#define BOOST_UNITS_DEFINE_HELPER(name, symbol, template_name) \
\
template<class T, class Arg1, class Arg2> \
struct name ## _typeof_helper<constant<T>, template_name<Arg1, Arg2> >\
{ \
typedef typename name ## _typeof_helper<typename T::value_type, template_name<Arg1, Arg2> >::type type;\
}; \
\
template<class T, class Arg1, class Arg2> \
struct name ## _typeof_helper<template_name<Arg1, Arg2>, constant<T> >\
{ \
typedef typename name ## _typeof_helper<template_name<Arg1, Arg2>, typename T::value_type>::type type;\
}; \
\
template<class T, class Arg1, class Arg2> \
typename name ## _typeof_helper<typename T::value_type, template_name<Arg1, Arg2> >::type \
operator symbol(const constant<T>& t, const template_name<Arg1, Arg2>& u)\
{ \
return(t.value() symbol u); \
} \
\
template<class T, class Arg1, class Arg2> \
typename name ## _typeof_helper<template_name<Arg1, Arg2>, typename T::value_type>::type \
operator symbol(const template_name<Arg1, Arg2>& u, const constant<T>& t)\
{ \
return(u symbol t.value()); \
}
BOOST_UNITS_DEFINE_HELPER(add, +, unit)
BOOST_UNITS_DEFINE_HELPER(add, +, quantity)
BOOST_UNITS_DEFINE_HELPER(subtract, -, unit)
BOOST_UNITS_DEFINE_HELPER(subtract, -, quantity)
BOOST_UNITS_DEFINE_HELPER(multiply, *, unit)
BOOST_UNITS_DEFINE_HELPER(multiply, *, quantity)
BOOST_UNITS_DEFINE_HELPER(divide, /, unit)
BOOST_UNITS_DEFINE_HELPER(divide, /, quantity)
#undef BOOST_UNITS_DEFINE_HELPER
#define BOOST_UNITS_DEFINE_HELPER(name, symbol) \
\
template<class T1, class T2> \
struct name ## _typeof_helper<constant<T1>, constant<T2> > \
{ \
typedef typename name ## _typeof_helper<typename T1::value_type, typename T2::value_type>::type type;\
}; \
\
template<class T1, class T2> \
typename name ## _typeof_helper<typename T1::value_type, typename T2::value_type>::type \
operator symbol(const constant<T1>& t, const constant<T2>& u) \
{ \
return(t.value() symbol u.value()); \
} \
\
template<class T1, class T2> \
struct name ## _typeof_helper<constant<T1>, T2> \
{ \
typedef typename name ## _typeof_helper<typename T1::value_type, T2>::type type;\
}; \
\
template<class T1, class T2> \
struct name ## _typeof_helper<T1, constant<T2> > \
{ \
typedef typename name ## _typeof_helper<T1, typename T2::value_type>::type type;\
}; \
\
template<class T1, class T2> \
typename name ## _typeof_helper<typename T1::value_type, T2>::type \
operator symbol(const constant<T1>& t, const T2& u) \
{ \
return(t.value() symbol u); \
} \
\
template<class T1, class T2> \
typename name ## _typeof_helper<T1, typename T2::value_type>::type \
operator symbol(const T1& t, const constant<T2>& u) \
{ \
return(t symbol u.value()); \
}
BOOST_UNITS_DEFINE_HELPER(add, +)
BOOST_UNITS_DEFINE_HELPER(subtract, -)
BOOST_UNITS_DEFINE_HELPER(multiply, *)
BOOST_UNITS_DEFINE_HELPER(divide, /)
#undef BOOST_UNITS_DEFINE_HELPER
#define BOOST_UNITS_DEFINE_HELPER(name, symbol) \
\
template<class T1> \
struct name ## _typeof_helper<constant<T1>, one> \
{ \
typedef typename name ## _typeof_helper<typename T1::value_type, one>::type type;\
}; \
\
template<class T2> \
struct name ## _typeof_helper<one, constant<T2> > \
{ \
typedef typename name ## _typeof_helper<one, typename T2::value_type>::type type;\
}; \
\
template<class T1> \
typename name ## _typeof_helper<typename T1::value_type, one>::type \
operator symbol(const constant<T1>& t, const one& u) \
{ \
return(t.value() symbol u); \
} \
\
template<class T2> \
typename name ## _typeof_helper<one, typename T2::value_type>::type \
operator symbol(const one& t, const constant<T2>& u) \
{ \
return(t symbol u.value()); \
}
BOOST_UNITS_DEFINE_HELPER(multiply, *)
BOOST_UNITS_DEFINE_HELPER(divide, /)
#undef BOOST_UNITS_DEFINE_HELPER
template<class T1, long N, long D>
struct power_typeof_helper<constant<T1>, static_rational<N,D> >
{
typedef power_typeof_helper<typename T1::value_type, static_rational<N,D> > base;
typedef typename base::type type;
static type value(const constant<T1>& arg)
{
return base::value(arg.value());
}
};
#define BOOST_UNITS_DEFINE_HELPER(name, symbol) \
\
template<class T1, class E> \
struct name ## _typeof_helper<constant<T1> > \
{ \
typedef typename name ## _typeof_helper<typename T1::value_type, E>::type type;\
}; \
\
template<class T1> \
typename name ## _typeof_helper<typename T1::value_type, one>::type \
operator symbol(const constant<T1>& t, const one& u) \
{ \
return(t.value() symbol u); \
} \
\
template<class T2> \
typename name ## _typeof_helper<one, typename T2::value_type>::type \
operator symbol(const one& t, const constant<T2>& u) \
{ \
return(t symbol u.value()); \
}
#define BOOST_UNITS_PHYSICAL_CONSTANT(name, type, value_, uncertainty_) \
struct name ## _t { \
typedef type value_type; \
operator value_type() const { return value_; } \
value_type value() const { return value_; } \
value_type uncertainty() const { return uncertainty_; } \
value_type lower_bound() const { return value_-uncertainty_; } \
value_type upper_bound() const { return value_+uncertainty_; } \
}; \
BOOST_UNITS_STATIC_CONSTANT(name, boost::units::constant<boost::units::physical_constant<name ## _t> >) = { }
// stream output
template<class Char, class Traits, class Y>
inline
std::basic_ostream<Char,Traits>& operator<<(std::basic_ostream<Char,Traits>& os,const physical_constant<Y>& val)
{
boost::io::ios_precision_saver precision_saver(os);
//boost::io::ios_width_saver width_saver(os);
boost::io::ios_flags_saver flags_saver(os);
//os << std::setw(21);
typedef typename Y::value_type value_type;
if (val.uncertainty() > value_type())
{
const double relative_uncertainty = std::abs(val.uncertainty()/val.value());
const double exponent = std::log10(relative_uncertainty);
const long digits_of_precision = static_cast<long>(std::ceil(std::abs(exponent)))+3;
// should try to replicate NIST CODATA syntax
os << std::setprecision(digits_of_precision)
//<< std::setw(digits_of_precision+8)
//<< std::scientific
<< val.value();
// << long(10*(relative_uncertainty/std::pow(Y(10),Y(exponent))));
os << " (rel. unc. = "
<< std::setprecision(1)
//<< std::setw(7)
<< std::scientific
<< relative_uncertainty << ")";
}
else
{
os << val.value() << " (exact)";
}
return os;
}
// stream output
template<class Char, class Traits, class Y>
inline
std::basic_ostream<Char,Traits>& operator<<(std::basic_ostream<Char,Traits>& os,const constant<Y>&)
{
os << Y();
return os;
}
} // namespace units
} // namespace boost
#endif // BOOST_UNITS_CONSTANTS_HPP