vn-verdnaturachat/ios/Pods/boost-for-react-native/boost/graph/distributed/strong_components.hpp

983 lines
40 KiB
C++

// Copyright (C) 2004-2008 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Nick Edmonds
// Douglas Gregor
// Andrew Lumsdaine
#ifndef BOOST_GRAPH_DISTRIBUTED_SCC_HPP
#define BOOST_GRAPH_DISTRIBUTED_SCC_HPP
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
// #define PBGL_SCC_DEBUG
#include <boost/assert.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/property_map/parallel/distributed_property_map.hpp>
#include <boost/property_map/parallel/caching_property_map.hpp>
#include <boost/graph/parallel/algorithm.hpp>
#include <boost/graph/parallel/process_group.hpp>
#include <boost/graph/distributed/queue.hpp>
#include <boost/graph/distributed/filtered_graph.hpp>
#include <boost/pending/indirect_cmp.hpp>
#include <boost/graph/breadth_first_search.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/overloading.hpp>
#include <boost/graph/distributed/concepts.hpp>
#include <boost/graph/distributed/local_subgraph.hpp>
#include <boost/graph/parallel/properties.hpp>
#include <boost/graph/named_function_params.hpp>
#include <boost/graph/random.hpp>
#include <boost/graph/distributed/reverse_graph.hpp>
#include <boost/optional.hpp>
#include <boost/graph/distributed/detail/filtered_queue.hpp>
#include <boost/graph/distributed/adjacency_list.hpp>
#ifdef PBGL_SCC_DEBUG
#include <iostream>
#include <cstdlib>
#include <iomanip>
#include <sys/time.h>
#include <boost/graph/distributed/graphviz.hpp> // for ostringstream
#endif
#include <vector>
#include <map>
#include <boost/graph/parallel/container_traits.hpp>
#ifdef PBGL_SCC_DEBUG
# include <boost/graph/accounting.hpp>
#endif /* PBGL_SCC_DEBUG */
// If your graph is likely to have large numbers of small strongly connected
// components then running the sequential SCC algorithm on the local subgraph
// and filtering components with no remote edges may increase performance
// #define FILTER_LOCAL_COMPONENTS
namespace boost { namespace graph { namespace distributed { namespace detail {
template<typename vertex_descriptor>
struct v_sets{
std::vector<vertex_descriptor> pred, succ, intersect, ps_union;
};
/* Serialize vertex set */
template<typename Graph>
void
marshal_set( std::vector<std::vector<typename graph_traits<Graph>::vertex_descriptor> > in,
std::vector<typename graph_traits<Graph>::vertex_descriptor>& out )
{
for( std::size_t i = 0; i < in.size(); ++i ) {
out.insert( out.end(), graph_traits<Graph>::null_vertex() );
out.insert( out.end(), in[i].begin(), in[i].end() );
}
}
/* Un-serialize vertex set */
template<typename Graph>
void
unmarshal_set( std::vector<typename graph_traits<Graph>::vertex_descriptor> in,
std::vector<std::vector<typename graph_traits<Graph>::vertex_descriptor> >& out )
{
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
while( !in.empty() ) {
typename std::vector<vertex_descriptor>::iterator end
= std::find( in.begin(), in.end(), graph_traits<Graph>::null_vertex() );
if( end == in.begin() )
in.erase( in.begin() );
else {
out.push_back(std::vector<vertex_descriptor>());
out[out.size() - 1].insert( out[out.size() - 1].end(), in.begin(), end );
in.erase( in.begin(), end );
}
}
}
/* Determine if vertex is in subset */
template <typename Set>
struct in_subset {
in_subset() : m_s(0) { }
in_subset(const Set& s) : m_s(&s) { }
template <typename Elt>
bool operator()(const Elt& x) const {
return ((*m_s).find(x) != (*m_s).end());
}
private:
const Set* m_s;
};
template<typename T>
struct vertex_identity_property_map
: public boost::put_get_helper<T, vertex_identity_property_map<T> >
{
typedef T key_type;
typedef T value_type;
typedef T reference;
typedef boost::readable_property_map_tag category;
inline value_type operator[](const key_type& v) const { return v; }
inline void clear() { }
};
template <typename T>
inline void synchronize( vertex_identity_property_map<T> & ) { }
/* BFS visitor for SCC */
template<typename Graph, typename SourceMap>
struct scc_discovery_visitor : bfs_visitor<>
{
scc_discovery_visitor(SourceMap& sourceM)
: sourceM(sourceM) {}
template<typename Edge>
void tree_edge(Edge e, const Graph& g)
{
put(sourceM, target(e,g), get(sourceM, source(e,g)));
}
private:
SourceMap& sourceM;
};
} } } } /* End namespace boost::graph::distributed::detail */
namespace boost { namespace graph { namespace distributed {
enum fhp_message_tags { fhp_edges_size_msg, fhp_add_edges_msg, fhp_pred_size_msg,
fhp_pred_msg, fhp_succ_size_msg, fhp_succ_msg };
template<typename Graph, typename ReverseGraph,
typename VertexComponentMap, typename IsoMapFR, typename IsoMapRF,
typename VertexIndexMap>
void
fleischer_hendrickson_pinar_strong_components(const Graph& g,
VertexComponentMap c,
const ReverseGraph& gr,
IsoMapFR fr, IsoMapRF rf,
VertexIndexMap vertex_index_map)
{
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef typename graph_traits<ReverseGraph>::vertex_iterator rev_vertex_iterator;
typedef typename graph_traits<ReverseGraph>::vertex_descriptor rev_vertex_descriptor;
typedef typename boost::graph::parallel::process_group_type<Graph>::type
process_group_type;
typedef typename process_group_type::process_id_type process_id_type;
typedef iterator_property_map<typename std::vector<vertex_descriptor>::iterator,
VertexIndexMap> ParentMap;
typedef iterator_property_map<typename std::vector<default_color_type>::iterator,
VertexIndexMap> ColorMap;
typedef iterator_property_map<typename std::vector<vertex_descriptor>::iterator,
VertexIndexMap> Rev_ParentMap;
typedef std::vector<std::pair<vertex_descriptor, vertex_descriptor> > VertexPairVec;
typedef typename property_map<Graph, vertex_owner_t>::const_type
OwnerMap;
OwnerMap owner = get(vertex_owner, g);
using boost::graph::parallel::process_group;
process_group_type pg = process_group(g);
process_id_type id = process_id(pg);
int num_procs = num_processes(pg);
int n = 0;
int my_n = num_vertices(g);
all_reduce(pg, &my_n, &my_n+1, &n, std::plus<int>());
//
// Initialization
//
#ifdef PBGL_SCC_DEBUG
accounting::time_type start = accounting::get_time();
#endif
vertex_iterator vstart, vend;
rev_vertex_iterator rev_vstart, rev_vend;
std::vector<std::vector<vertex_descriptor> > vertex_sets, new_vertex_sets;
vertex_sets.push_back(std::vector<vertex_descriptor>());
// Remove vertices that do not have at least one in edge and one out edge
new_vertex_sets.push_back(std::vector<vertex_descriptor>());
for( boost::tie(vstart, vend) = vertices(g); vstart != vend; vstart++ )
if( out_degree( get(fr, *vstart), gr) > 0 && out_degree(*vstart, g) > 0 )
new_vertex_sets[0].push_back( *vstart );
// Perform sequential SCC on local subgraph, filter all components with external
// edges, mark remaining components and remove them from vertex_sets
#ifdef FILTER_LOCAL_COMPONENTS
// This doesn't actually speed up SCC in connected graphs it seems, but it does work
// and may help in the case where there are lots of small strong components.
{
local_subgraph<const Graph> ls(g);
typedef typename property_map<local_subgraph<const Graph>, vertex_index_t>::type
local_index_map_type;
local_index_map_type local_index = get(vertex_index, ls);
std::vector<int> ls_components_vec(num_vertices(ls));
typedef iterator_property_map<std::vector<int>::iterator, local_index_map_type>
ls_components_map_type;
ls_components_map_type ls_component(ls_components_vec.begin(), local_index);
int num_comp = boost::strong_components(ls, ls_component);
// Create map of components
std::map<int, std::vector<vertex_descriptor> > local_comp_map;
typedef typename graph_traits<local_subgraph<const Graph> >::vertex_iterator ls_vertex_iterator;
ls_vertex_iterator vstart, vend;
for( boost::tie(vstart,vend) = vertices(ls); vstart != vend; vstart++ )
local_comp_map[get(ls_component, *vstart)].push_back( *vstart );
// Filter components that have no non-local edges
typedef typename graph_traits<Graph>::adjacency_iterator adjacency_iterator;
typedef typename graph_traits<ReverseGraph>::adjacency_iterator rev_adjacency_iterator;
adjacency_iterator abegin, aend;
rev_adjacency_iterator rev_abegin, rev_aend;
for( std::size_t i = 0; i < num_comp; ++i ) {
bool local = true;
for( std::size_t j = 0; j < local_comp_map[i].size(); j++ ) {
for( boost::tie(abegin,aend) = adjacent_vertices(local_comp_map[i][j], g);
abegin != aend; abegin++ )
if( get(owner, *abegin) != id ) {
local = false;
break;
}
if( local )
for( boost::tie(rev_abegin,rev_aend) = adjacent_vertices(get(fr, local_comp_map[i][j]), gr);
rev_abegin != rev_aend; rev_abegin++ )
if( get(owner, *rev_abegin) != id ) {
local = false;
break;
}
if( !local ) break;
}
if( local ) // Mark and remove from new_vertex_sets
for( std::size_t j = 0; j < local_comp_map[i].size(); j++ ) {
put( c, local_comp_map[i][j], local_comp_map[i][0] );
typename std::vector<vertex_descriptor>::iterator pos =
std::find(new_vertex_sets[0].begin(), new_vertex_sets[0].end(), local_comp_map[i][j]);
if( pos != new_vertex_sets[0].end() )
new_vertex_sets[0].erase(pos);
}
}
}
#endif // FILTER_LOCAL_COMPONENTS
all_gather( pg, new_vertex_sets[0].begin(), new_vertex_sets[0].end(), vertex_sets[0] );
new_vertex_sets.clear();
#ifdef PBGL_SCC_DEBUG
accounting::time_type end = accounting::get_time();
if(id == 0)
std::cerr << "Trim local SCCs time = " << accounting::print_time(end - start) << " seconds.\n";
#endif
if( vertex_sets[0].empty() ) return;
//
// Recursively determine SCCs
//
#ifdef PBGL_SCC_DEBUG
int iterations = 0;
#endif
// Only need to be able to map starting vertices for BFS from now on
fr.clear();
do {
#ifdef PBGL_SCC_DEBUG
if(id == 0) {
printf("\n\nIteration %d:\n\n", iterations++);
if( iterations > 1 ) {
end = accounting::get_time();
std::cerr << "Running main loop destructors time = " << accounting::print_time(end - start) << " seconds.\n";
}
start = accounting::get_time();
}
#endif
// Get forward->reverse mappings for BFS start vertices
for (std::size_t i = 0; i < vertex_sets.size(); ++i)
get(fr, vertex_sets[i][0]);
synchronize(fr);
// Determine local vertices to start BFS from
std::vector<vertex_descriptor> local_start;
for( std::size_t i = id; i < vertex_sets.size(); i += num_procs )
local_start.push_back(vertex_sets[i][0]);
if( local_start.empty() )
local_start.push_back(vertex_sets[0][0]);
// Make filtered graphs
typedef std::set<vertex_descriptor> VertexSet;
typedef std::set<rev_vertex_descriptor> Rev_VertexSet;
VertexSet filter_set_g;
Rev_VertexSet filter_set_gr;
typename VertexSet::iterator fs;
int active_vertices = 0;
for (std::size_t i = 0; i < vertex_sets.size(); i++)
active_vertices += vertex_sets[i].size();
// This is a completely random bound
if ( active_vertices < 0.05*n ) {
// TODO: This set insertion is ridiculously inefficient, make it an in-place-merge?
for (std::size_t i = 0; i < vertex_sets.size(); i++)
filter_set_g.insert(vertex_sets[i].begin(), vertex_sets[i].end());
for (fs = filter_set_g.begin(); fs != filter_set_g.end(); ++fs )
filter_set_gr.insert(get(fr, *fs));
}
filtered_graph<const Graph, keep_all, detail::in_subset<VertexSet> >
fg(g, keep_all(), detail::in_subset<VertexSet>(filter_set_g));
filtered_graph<const ReverseGraph, keep_all, detail::in_subset<VertexSet> >
fgr(gr, keep_all(), detail::in_subset<VertexSet>(filter_set_gr));
// Add additional starting vertices to BFS queue
typedef filtered_queue<queue<vertex_descriptor>, boost::detail::has_not_been_seen<VertexIndexMap> >
local_queue_type;
typedef boost::graph::distributed::distributed_queue<process_group_type, OwnerMap, local_queue_type>
queue_t;
typedef typename property_map<ReverseGraph, vertex_owner_t>::const_type
RevOwnerMap;
typedef filtered_queue<queue<rev_vertex_descriptor>, boost::detail::has_not_been_seen<VertexIndexMap> >
rev_local_queue_type;
typedef boost::graph::distributed::distributed_queue<process_group_type, RevOwnerMap, rev_local_queue_type>
rev_queue_t;
queue_t Q(process_group(g),
owner,
make_filtered_queue(queue<vertex_descriptor>(),
boost::detail::has_not_been_seen<VertexIndexMap>
(num_vertices(g), vertex_index_map)),
false);
rev_queue_t Qr(process_group(gr),
get(vertex_owner, gr),
make_filtered_queue(queue<rev_vertex_descriptor>(),
boost::detail::has_not_been_seen<VertexIndexMap>
(num_vertices(gr), vertex_index_map)),
false);
for( std::size_t i = 1; i < local_start.size(); ++i ) {
Q.push(local_start[i]);
Qr.push(get(fr, local_start[i]));
}
#ifdef PBGL_SCC_DEBUG
end = accounting::get_time();
if(id == 0)
std::cerr << " Initialize BFS time = " << accounting::print_time(end - start) << " seconds.\n";
start = accounting::get_time();
#endif
#ifdef PBGL_SCC_DEBUG
accounting::time_type start2 = accounting::get_time();
#endif
// Forward BFS
std::vector<default_color_type> color_map_s(num_vertices(g));
ColorMap color_map(color_map_s.begin(), vertex_index_map);
std::vector<vertex_descriptor> succ_map_s(num_vertices(g), graph_traits<Graph>::null_vertex());
ParentMap succ_map(succ_map_s.begin(), vertex_index_map);
for( std::size_t i = 0; i < vertex_sets.size(); ++i )
put(succ_map, vertex_sets[i][0], vertex_sets[i][0]);
#ifdef PBGL_SCC_DEBUG
accounting::time_type end2 = accounting::get_time();
if(id == 0)
std::cerr << " Initialize forward BFS time = " << accounting::print_time(end2 - start2) << " seconds.\n";
#endif
if (active_vertices < 0.05*n)
breadth_first_search(fg, local_start[0], Q,
detail::scc_discovery_visitor<filtered_graph<const Graph, keep_all,
detail::in_subset<VertexSet> >, ParentMap>
(succ_map),
color_map);
else
breadth_first_search(g, local_start[0], Q,
detail::scc_discovery_visitor<const Graph, ParentMap>(succ_map),
color_map);
#ifdef PBGL_SCC_DEBUG
start2 = accounting::get_time();
#endif
// Reverse BFS
color_map.clear(); // reuse color map since g and gr have same vertex index
std::vector<vertex_descriptor> pred_map_s(num_vertices(gr), graph_traits<Graph>::null_vertex());
Rev_ParentMap pred_map(pred_map_s.begin(), vertex_index_map);
for( std::size_t i = 0; i < vertex_sets.size(); ++i )
put(pred_map, get(fr, vertex_sets[i][0]), vertex_sets[i][0]);
#ifdef PBGL_SCC_DEBUG
end2 = accounting::get_time();
if(id == 0)
std::cerr << " Initialize reverse BFS time = " << accounting::print_time(end2 - start2) << " seconds.\n";
#endif
if (active_vertices < 0.05*n)
breadth_first_search(fgr, get(fr, local_start[0]),
Qr,
detail::scc_discovery_visitor<filtered_graph<const ReverseGraph, keep_all,
detail::in_subset<Rev_VertexSet> >, Rev_ParentMap>
(pred_map),
color_map);
else
breadth_first_search(gr, get(fr, local_start[0]),
Qr,
detail::scc_discovery_visitor<const ReverseGraph, Rev_ParentMap>(pred_map),
color_map);
#ifdef PBGL_SCC_DEBUG
end = accounting::get_time();
if(id == 0)
std::cerr << " Perform forward and reverse BFS time = " << accounting::print_time(end - start) << " seconds.\n";
start = accounting::get_time();
#endif
// Send predecessors and successors discovered by this proc to the proc responsible for
// this BFS tree
typedef struct detail::v_sets<vertex_descriptor> Vsets;
std::map<vertex_descriptor, Vsets> set_map;
std::map<vertex_descriptor, int> dest_map;
std::vector<VertexPairVec> successors(num_procs);
std::vector<VertexPairVec> predecessors(num_procs);
// Calculate destinations for messages
for (std::size_t i = 0; i < vertex_sets.size(); ++i)
dest_map[vertex_sets[i][0]] = i % num_procs;
for( boost::tie(vstart, vend) = vertices(g); vstart != vend; vstart++ ) {
vertex_descriptor v = get(succ_map, *vstart);
if( v != graph_traits<Graph>::null_vertex() ) {
if (dest_map[v] == id)
set_map[v].succ.push_back(*vstart);
else
successors[dest_map[v]].push_back( std::make_pair(v, *vstart) );
}
}
for( boost::tie(rev_vstart, rev_vend) = vertices(gr); rev_vstart != rev_vend; rev_vstart++ ) {
vertex_descriptor v = get(pred_map, *rev_vstart);
if( v != graph_traits<Graph>::null_vertex() ) {
if (dest_map[v] == id)
set_map[v].pred.push_back(get(rf, *rev_vstart));
else
predecessors[dest_map[v]].push_back( std::make_pair(v, get(rf, *rev_vstart)) );
}
}
// Send predecessor and successor messages
for (process_id_type i = 0; i < num_procs; ++i) {
if (!successors[i].empty()) {
send(pg, i, fhp_succ_size_msg, successors[i].size());
send(pg, i, fhp_succ_msg, &successors[i][0], successors[i].size());
}
if (!predecessors[i].empty()) {
send(pg, i, fhp_pred_size_msg, predecessors[i].size());
send(pg, i, fhp_pred_msg, &predecessors[i][0], predecessors[i].size());
}
}
synchronize(pg);
// Receive predecessor and successor messages and handle them
while (optional<std::pair<process_id_type, int> > m = probe(pg)) {
BOOST_ASSERT(m->second == fhp_succ_size_msg || m->second == fhp_pred_size_msg);
std::size_t num_requests;
receive(pg, m->first, m->second, num_requests);
VertexPairVec requests(num_requests);
if (m->second == fhp_succ_size_msg) {
receive(pg, m->first, fhp_succ_msg, &requests[0],
num_requests);
std::map<vertex_descriptor, int> added;
for (std::size_t i = 0; i < requests.size(); ++i) {
set_map[requests[i].first].succ.push_back(requests[i].second);
added[requests[i].first]++;
}
// If order of vertex traversal in vertices() is std::less<vertex_descriptor>,
// then the successor sets will be in order
for (std::size_t i = 0; i < local_start.size(); ++i)
if (added[local_start[i]] > 0)
std::inplace_merge(set_map[local_start[i]].succ.begin(),
set_map[local_start[i]].succ.end() - added[local_start[i]],
set_map[local_start[i]].succ.end(),
std::less<vertex_descriptor>());
} else {
receive(pg, m->first, fhp_pred_msg, &requests[0],
num_requests);
std::map<vertex_descriptor, int> added;
for (std::size_t i = 0; i < requests.size(); ++i) {
set_map[requests[i].first].pred.push_back(requests[i].second);
added[requests[i].first]++;
}
if (boost::is_same<detail::vertex_identity_property_map<vertex_descriptor>, IsoMapRF>::value)
for (std::size_t i = 0; i < local_start.size(); ++i)
if (added[local_start[i]] > 0)
std::inplace_merge(set_map[local_start[i]].pred.begin(),
set_map[local_start[i]].pred.end() - added[local_start[i]],
set_map[local_start[i]].pred.end(),
std::less<vertex_descriptor>());
}
}
#ifdef PBGL_SCC_DEBUG
end = accounting::get_time();
if(id == 0)
std::cerr << " All gather successors and predecessors time = " << accounting::print_time(end - start) << " seconds.\n";
start = accounting::get_time();
#endif
//
// Filter predecessor and successor sets and perform set arithmetic
//
new_vertex_sets.clear();
if( std::size_t(id) < vertex_sets.size() ) { //If this proc has one or more unique starting points
for( std::size_t i = 0; i < local_start.size(); ++i ) {
vertex_descriptor v = local_start[i];
// Replace this sort with an in-place merges during receive step if possible
if (!boost::is_same<detail::vertex_identity_property_map<vertex_descriptor>, IsoMapRF>::value)
std::sort(set_map[v].pred.begin(), set_map[v].pred.end(), std::less<vertex_descriptor>());
// Limit predecessor and successor sets to members of the original set
std::vector<vertex_descriptor> temp;
std::set_intersection( vertex_sets[id + i*num_procs].begin(), vertex_sets[id + i*num_procs].end(),
set_map[v].pred.begin(), set_map[v].pred.end(),
back_inserter(temp),
std::less<vertex_descriptor>());
set_map[v].pred.clear();
std::swap(set_map[v].pred, temp);
std::set_intersection( vertex_sets[id + i*num_procs].begin(), vertex_sets[id + i*num_procs].end(),
set_map[v].succ.begin(), set_map[v].succ.end(),
back_inserter(temp),
std::less<vertex_descriptor>());
set_map[v].succ.clear();
std::swap(set_map[v].succ, temp);
// Intersection(pred, succ)
std::set_intersection(set_map[v].pred.begin(), set_map[v].pred.end(),
set_map[v].succ.begin(), set_map[v].succ.end(),
back_inserter(set_map[v].intersect),
std::less<vertex_descriptor>());
// Union(pred, succ)
std::set_union(set_map[v].pred.begin(), set_map[v].pred.end(),
set_map[v].succ.begin(), set_map[v].succ.end(),
back_inserter(set_map[v].ps_union),
std::less<vertex_descriptor>());
new_vertex_sets.push_back(std::vector<vertex_descriptor>());
// Original set - Union(pred, succ)
std::set_difference(vertex_sets[id + i*num_procs].begin(), vertex_sets[id + i*num_procs].end(),
set_map[v].ps_union.begin(), set_map[v].ps_union.end(),
back_inserter(new_vertex_sets[new_vertex_sets.size() - 1]),
std::less<vertex_descriptor>());
set_map[v].ps_union.clear();
new_vertex_sets.push_back(std::vector<vertex_descriptor>());
// Pred - Intersect(pred, succ)
std::set_difference(set_map[v].pred.begin(), set_map[v].pred.end(),
set_map[v].intersect.begin(), set_map[v].intersect.end(),
back_inserter(new_vertex_sets[new_vertex_sets.size() - 1]),
std::less<vertex_descriptor>());
set_map[v].pred.clear();
new_vertex_sets.push_back(std::vector<vertex_descriptor>());
// Succ - Intersect(pred, succ)
std::set_difference(set_map[v].succ.begin(), set_map[v].succ.end(),
set_map[v].intersect.begin(), set_map[v].intersect.end(),
back_inserter(new_vertex_sets[new_vertex_sets.size() - 1]),
std::less<vertex_descriptor>());
set_map[v].succ.clear();
// Label SCC just identified with the 'first' vertex in that SCC
for( std::size_t j = 0; j < set_map[v].intersect.size(); j++ )
put(c, set_map[v].intersect[j], set_map[v].intersect[0]);
set_map[v].intersect.clear();
}
}
#ifdef PBGL_SCC_DEBUG
end = accounting::get_time();
if(id == 0)
std::cerr << " Perform set arithemetic time = " << accounting::print_time(end - start) << " seconds.\n";
start = accounting::get_time();
#endif
// Remove sets of size 1 from new_vertex_sets
typename std::vector<std::vector<vertex_descriptor> >::iterator vviter;
for( vviter = new_vertex_sets.begin(); vviter != new_vertex_sets.end(); /*in loop*/ )
if( (*vviter).size() < 2 )
vviter = new_vertex_sets.erase( vviter );
else
vviter++;
// All gather new sets and recur (gotta marshal and unmarshal sets first)
vertex_sets.clear();
std::vector<vertex_descriptor> serial_sets, all_serial_sets;
detail::marshal_set<Graph>( new_vertex_sets, serial_sets );
all_gather( pg, serial_sets.begin(), serial_sets.end(), all_serial_sets );
detail::unmarshal_set<Graph>( all_serial_sets, vertex_sets );
#ifdef PBGL_SCC_DEBUG
end = accounting::get_time();
if(id == 0) {
std::cerr << " Serialize and gather new vertex sets time = " << accounting::print_time(end - start) << " seconds.\n\n\n";
printf("Vertex sets: %d\n", (int)vertex_sets.size() );
for( std::size_t i = 0; i < vertex_sets.size(); ++i )
printf(" %d: %d\n", i, (int)vertex_sets[i].size() );
}
start = accounting::get_time();
#endif
// HACK!?! -- This would be more properly implemented as a topological sort
// Remove vertices without an edge to another vertex in the set and an edge from another
// vertex in the set
typedef typename graph_traits<Graph>::out_edge_iterator out_edge_iterator;
out_edge_iterator estart, eend;
typedef typename graph_traits<ReverseGraph>::out_edge_iterator r_out_edge_iterator;
r_out_edge_iterator restart, reend;
for (std::size_t i = 0; i < vertex_sets.size(); ++i) {
std::vector<vertex_descriptor> new_set;
for (std::size_t j = 0; j < vertex_sets[i].size(); ++j) {
vertex_descriptor v = vertex_sets[i][j];
if (get(owner, v) == id) {
boost::tie(estart, eend) = out_edges(v, g);
while (estart != eend && find(vertex_sets[i].begin(), vertex_sets[i].end(),
target(*estart,g)) == vertex_sets[i].end()) estart++;
if (estart != eend) {
boost::tie(restart, reend) = out_edges(get(fr, v), gr);
while (restart != reend && find(vertex_sets[i].begin(), vertex_sets[i].end(),
get(rf, target(*restart,gr))) == vertex_sets[i].end()) restart++;
if (restart != reend)
new_set.push_back(v);
}
}
}
vertex_sets[i].clear();
all_gather(pg, new_set.begin(), new_set.end(), vertex_sets[i]);
std::sort(vertex_sets[i].begin(), vertex_sets[i].end(), std::less<vertex_descriptor>());
}
#ifdef PBGL_SCC_DEBUG
end = accounting::get_time();
if(id == 0)
std::cerr << " Trim vertex sets time = " << accounting::print_time(end - start) << " seconds.\n\n\n";
start = accounting::get_time();
#endif
} while ( !vertex_sets.empty() );
// Label vertices not in a SCC as their own SCC
for( boost::tie(vstart, vend) = vertices(g); vstart != vend; vstart++ )
if( get(c, *vstart) == graph_traits<Graph>::null_vertex() )
put(c, *vstart, *vstart);
synchronize(c);
}
template<typename Graph, typename ReverseGraph, typename IsoMap>
void
build_reverse_graph( const Graph& g, ReverseGraph& gr, IsoMap& fr, IsoMap& rf )
{
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef typename graph_traits<Graph>::out_edge_iterator out_edge_iterator;
typedef typename boost::graph::parallel::process_group_type<Graph>::type process_group_type;
typedef typename process_group_type::process_id_type process_id_type;
typedef std::vector<std::pair<vertex_descriptor, vertex_descriptor> > VertexPairVec;
typename property_map<Graph, vertex_owner_t>::const_type
owner = get(vertex_owner, g);
process_group_type pg = process_group(g);
process_id_type id = process_id(pg);
int n;
vertex_iterator vstart, vend;
int num_procs = num_processes(pg);
vertex_descriptor v;
out_edge_iterator oestart, oeend;
for( boost::tie(vstart, vend) = vertices(g); vstart != vend; vstart++ )
{
v = add_vertex(gr);
put(fr, *vstart, v);
put(rf, v, *vstart);
}
gr.distribution() = g.distribution();
int my_n = num_vertices(g);
all_reduce(pg, &my_n, &my_n+1, &n, std::plus<int>());
for (int i = 0; i < n; ++i)
get(fr, vertex(i,g));
synchronize(fr);
// Add edges to gr
std::vector<std::pair<vertex_descriptor, vertex_descriptor> > new_edges;
for( boost::tie(vstart, vend) = vertices(g); vstart != vend; vstart++ )
for( boost::tie(oestart, oeend) = out_edges(*vstart, g); oestart != oeend; oestart++ )
new_edges.push_back( std::make_pair(get(fr, target(*oestart,g)), get(fr, source(*oestart, g))) );
std::vector<VertexPairVec> edge_requests(num_procs);
typename std::vector<std::pair<vertex_descriptor, vertex_descriptor> >::iterator iter;
for( iter = new_edges.begin(); iter != new_edges.end(); iter++ ) {
std::pair<vertex_descriptor, vertex_descriptor> p1 = *iter;
if( get(owner, p1.first ) == id )
add_edge( p1.first, p1.second, gr );
else
edge_requests[get(owner, p1.first)].push_back(p1);
}
new_edges.clear();
// Send edge addition requests
for (process_id_type p = 0; p < num_procs; ++p) {
if (!edge_requests[p].empty()) {
VertexPairVec reqs(edge_requests[p].begin(), edge_requests[p].end());
send(pg, p, fhp_edges_size_msg, reqs.size());
send(pg, p, fhp_add_edges_msg, &reqs[0], reqs.size());
}
}
synchronize(pg);
// Receive edge addition requests and handle them
while (optional<std::pair<process_id_type, int> > m = probe(pg)) {
BOOST_ASSERT(m->second == fhp_edges_size_msg);
std::size_t num_requests;
receive(pg, m->first, m->second, num_requests);
VertexPairVec requests(num_requests);
receive(pg, m->first, fhp_add_edges_msg, &requests[0],
num_requests);
for( std::size_t i = 0; i < requests.size(); ++i )
add_edge( requests[i].first, requests[i].second, gr );
}
synchronize(gr);
}
template<typename Graph, typename VertexComponentMap, typename ComponentMap>
typename property_traits<ComponentMap>::value_type
number_components(const Graph& g, VertexComponentMap r, ComponentMap c)
{
typedef typename boost::graph::parallel::process_group_type<Graph>::type process_group_type;
typedef typename graph_traits<Graph>::vertex_iterator vertex_iterator;
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef typename property_traits<ComponentMap>::value_type ComponentMapType;
std::vector<vertex_descriptor> my_roots, all_roots;
vertex_iterator vstart, vend;
for( boost::tie(vstart, vend) = vertices(g); vstart != vend; vstart++ )
if( find( my_roots.begin(), my_roots.end(), get(r, *vstart) ) == my_roots.end() )
my_roots.push_back( get(r, *vstart) );
all_gather( process_group(g), my_roots.begin(), my_roots.end(), all_roots );
/* Number components */
std::map<vertex_descriptor, ComponentMapType> comp_numbers;
ComponentMapType c_num = 0;
// Compute component numbers
for (std::size_t i = 0; i < all_roots.size(); ++i )
if ( comp_numbers.count(all_roots[i]) == 0 )
comp_numbers[all_roots[i]] = c_num++;
// Broadcast component numbers
for( boost::tie(vstart, vend) = vertices(g); vstart != vend; vstart++ )
put( c, *vstart, comp_numbers[get(r,*vstart)] );
// Broadcast number of components
if (process_id(process_group(g)) == 0) {
typedef typename process_group_type::process_size_type
process_size_type;
for (process_size_type dest = 1, n = num_processes(process_group(g));
dest != n; ++dest)
send(process_group(g), dest, 0, c_num);
}
synchronize(process_group(g));
if (process_id(process_group(g)) != 0) receive(process_group(g), 0, 0, c_num);
synchronize(c);
return c_num;
}
template<typename Graph, typename ComponentMap, typename VertexComponentMap,
typename VertexIndexMap>
typename property_traits<ComponentMap>::value_type
fleischer_hendrickson_pinar_strong_components_impl
(const Graph& g,
ComponentMap c,
VertexComponentMap r,
VertexIndexMap vertex_index_map,
incidence_graph_tag)
{
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
typedef iterator_property_map<typename std::vector<vertex_descriptor>::iterator,
VertexIndexMap> IsoMap;
typename boost::graph::parallel::process_group_type<Graph>::type pg = process_group(g);
#ifdef PBGL_SCC_DEBUG
accounting::time_type start = accounting::get_time();
#endif
typedef adjacency_list<listS,
distributedS<typename boost::graph::parallel::process_group_type<Graph>::type, vecS>,
directedS > ReverseGraph;
ReverseGraph gr(0, pg);
std::vector<vertex_descriptor> fr_s(num_vertices(g));
std::vector<vertex_descriptor> rf_s(num_vertices(g));
IsoMap fr(fr_s.begin(), vertex_index_map); // fr = forward->reverse
IsoMap rf(rf_s.begin(), vertex_index_map); // rf = reverse->forward
build_reverse_graph(g, gr, fr, rf);
#ifdef PBGL_SCC_DEBUG
accounting::time_type end = accounting::get_time();
if(process_id(process_group(g)) == 0)
std::cerr << "Reverse graph initialization time = " << accounting::print_time(end - start) << " seconds.\n";
#endif
fleischer_hendrickson_pinar_strong_components(g, r, gr, fr, rf,
vertex_index_map);
typename property_traits<ComponentMap>::value_type c_num = number_components(g, r, c);
return c_num;
}
template<typename Graph, typename ComponentMap, typename VertexComponentMap,
typename VertexIndexMap>
typename property_traits<ComponentMap>::value_type
fleischer_hendrickson_pinar_strong_components_impl
(const Graph& g,
ComponentMap c,
VertexComponentMap r,
VertexIndexMap vertex_index_map,
bidirectional_graph_tag)
{
typedef typename graph_traits<Graph>::vertex_descriptor vertex_descriptor;
reverse_graph<Graph> gr(g);
detail::vertex_identity_property_map<vertex_descriptor> fr, rf;
fleischer_hendrickson_pinar_strong_components(g, r, gr, fr, rf,
vertex_index_map);
typename property_traits<ComponentMap>::value_type c_num
= number_components(g, r, c);
return c_num;
}
template<typename Graph, typename ComponentMap, typename VertexIndexMap>
inline typename property_traits<ComponentMap>::value_type
fleischer_hendrickson_pinar_strong_components
(const Graph& g,
ComponentMap c,
VertexIndexMap vertex_index_map)
{
typedef typename graph_traits<Graph>::vertex_descriptor
vertex_descriptor;
typedef iterator_property_map<typename std::vector<vertex_descriptor>::iterator,
VertexIndexMap> VertexComponentMap;
typename boost::graph::parallel::process_group_type<Graph>::type pg
= process_group(g);
if (num_processes(pg) == 1) {
local_subgraph<const Graph> ls(g);
return boost::strong_components(ls, c);
}
// Create a VertexComponentMap for intermediate labeling of SCCs
std::vector<vertex_descriptor> r_s(num_vertices(g), graph_traits<Graph>::null_vertex());
VertexComponentMap r(r_s.begin(), vertex_index_map);
return fleischer_hendrickson_pinar_strong_components_impl
(g, c, r, vertex_index_map,
typename graph_traits<Graph>::traversal_category());
}
template<typename Graph, typename ComponentMap>
inline typename property_traits<ComponentMap>::value_type
fleischer_hendrickson_pinar_strong_components(const Graph& g,
ComponentMap c)
{
return fleischer_hendrickson_pinar_strong_components(g, c, get(vertex_index, g));
}
} // end namespace distributed
using distributed::fleischer_hendrickson_pinar_strong_components;
} // end namespace graph
template<class Graph, class ComponentMap, class P, class T, class R>
inline typename property_traits<ComponentMap>::value_type
strong_components
(const Graph& g, ComponentMap comp,
const bgl_named_params<P, T, R>&
BOOST_GRAPH_ENABLE_IF_MODELS_PARM(Graph, distributed_graph_tag))
{
return graph::fleischer_hendrickson_pinar_strong_components(g, comp);
}
template<class Graph, class ComponentMap>
inline typename property_traits<ComponentMap>::value_type
strong_components
(const Graph& g, ComponentMap comp
BOOST_GRAPH_ENABLE_IF_MODELS_PARM(Graph, distributed_graph_tag))
{
return graph::fleischer_hendrickson_pinar_strong_components(g, comp);
}
} /* end namespace boost */
#endif // BOOST_GRAPH_DISTRIBUTED_SCC_HPP