vn-verdnaturachat/ios/Pods/boost-for-react-native/boost/proto/fusion.hpp

721 lines
21 KiB
C++

///////////////////////////////////////////////////////////////////////////////
/// \file fusion.hpp
/// Make any Proto expression a valid Fusion sequence
//
// Copyright 2008 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_PROTO_FUSION_HPP_EAN_11_04_2006
#define BOOST_PROTO_FUSION_HPP_EAN_11_04_2006
#include <boost/config.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/bool.hpp>
#include <boost/mpl/long.hpp>
#include <boost/mpl/sequence_tag_fwd.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/fusion/include/is_view.hpp>
#include <boost/fusion/include/tag_of_fwd.hpp>
#include <boost/fusion/include/category_of.hpp>
#include <boost/fusion/include/iterator_base.hpp>
#include <boost/fusion/include/intrinsic.hpp>
#include <boost/fusion/include/single_view.hpp>
#include <boost/fusion/include/transform.hpp>
#include <boost/fusion/include/as_list.hpp>
#include <boost/fusion/include/is_segmented.hpp>
#include <boost/fusion/sequence/comparison/enable_comparison.hpp>
#include <boost/proto/proto_fwd.hpp>
#include <boost/proto/traits.hpp>
#include <boost/proto/eval.hpp>
#include <boost/proto/make_expr.hpp>
#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable : 4510) // default constructor could not be generated
#pragma warning(disable : 4512) // assignment operator could not be generated
#pragma warning(disable : 4610) // can never be instantiated - user defined constructor required
#endif
namespace boost { namespace proto
{
namespace detail
{
template<typename Expr, long Pos>
struct expr_iterator
: fusion::iterator_base<expr_iterator<Expr, Pos> >
{
typedef Expr expr_type;
static const long index = Pos;
typedef fusion::random_access_traversal_tag category;
typedef
tag::proto_expr_iterator<
typename Expr::proto_tag
, typename Expr::proto_domain
>
fusion_tag;
explicit expr_iterator(Expr &e)
: expr(e)
{}
Expr &expr;
};
template<typename Tag>
struct as_element
{
template<typename Sig>
struct result;
template<typename This, typename Expr>
struct result<This(Expr)>
: result<This(Expr const &)>
{};
template<typename This, typename Expr>
struct result<This(Expr &)>
: mpl::if_c<
is_same<Tag, typename Expr::proto_tag>::value
, flat_view<Expr>
, fusion::single_view<Expr &>
>
{};
template<typename Expr>
typename result<as_element(Expr &)>::type const
operator ()(Expr &e) const
{
return typename result<as_element(Expr &)>::type(e);
}
template<typename Expr>
typename result<as_element(Expr const &)>::type const
operator ()(Expr const &e) const
{
return typename result<as_element(Expr const &)>::type(e);
}
};
template<typename Expr>
struct flat_view
: fusion::sequence_base<flat_view<Expr> >
{
typedef fusion::forward_traversal_tag category;
typedef
tag::proto_flat_view<
typename Expr::proto_tag
, typename Expr::proto_domain
>
fusion_tag;
typedef
typename fusion::result_of::as_list<
typename fusion::result_of::transform<
Expr
, as_element<typename Expr::proto_tag>
>::type
>::type
segments_type;
explicit flat_view(Expr &e)
: segs_(fusion::as_list(fusion::transform(e, as_element<typename Expr::proto_tag>())))
{}
segments_type segs_;
};
}
namespace result_of
{
template<typename Expr>
struct flatten
: flatten<Expr const &>
{};
template<typename Expr>
struct flatten<Expr &>
{
typedef detail::flat_view<Expr> type;
};
}
namespace functional
{
/// \brief A PolymorphicFunctionObject type that returns a "flattened"
/// view of a Proto expression tree.
///
/// A PolymorphicFunctionObject type that returns a "flattened"
/// view of a Proto expression tree. For a tree with a top-most node
/// tag of type \c T, the elements of the flattened sequence are
/// determined by recursing into each child node with the same
/// tag type and returning those nodes of different type. So for
/// instance, the Proto expression tree corresponding to the
/// expression <tt>a | b | c</tt> has a flattened view with elements
/// [a, b, c], even though the tree is grouped as
/// <tt>((a | b) | c)</tt>.
struct flatten
{
BOOST_PROTO_CALLABLE()
template<typename Sig>
struct result;
template<typename This, typename Expr>
struct result<This(Expr)>
: result<This(Expr const &)>
{};
template<typename This, typename Expr>
struct result<This(Expr &)>
{
typedef proto::detail::flat_view<Expr> type;
};
template<typename Expr>
proto::detail::flat_view<Expr> const
operator ()(Expr &e) const
{
return proto::detail::flat_view<Expr>(e);
}
template<typename Expr>
proto::detail::flat_view<Expr const> const
operator ()(Expr const &e) const
{
return proto::detail::flat_view<Expr const>(e);
}
};
}
/// \brief A function that returns a "flattened"
/// view of a Proto expression tree.
///
/// For a tree with a top-most node
/// tag of type \c T, the elements of the flattened sequence are
/// determined by recursing into each child node with the same
/// tag type and returning those nodes of different type. So for
/// instance, the Proto expression tree corresponding to the
/// expression <tt>a | b | c</tt> has a flattened view with elements
/// [a, b, c], even though the tree is grouped as
/// <tt>((a | b) | c)</tt>.
template<typename Expr>
proto::detail::flat_view<Expr> const
flatten(Expr &e)
{
return proto::detail::flat_view<Expr>(e);
}
/// \overload
///
template<typename Expr>
proto::detail::flat_view<Expr const> const
flatten(Expr const &e)
{
return proto::detail::flat_view<Expr const>(e);
}
/// INTERNAL ONLY
///
template<typename Context>
struct eval_fun
: proto::callable
{
explicit eval_fun(Context &ctx)
: ctx_(ctx)
{}
template<typename Sig>
struct result;
template<typename This, typename Expr>
struct result<This(Expr)>
: result<This(Expr const &)>
{};
template<typename This, typename Expr>
struct result<This(Expr &)>
: proto::result_of::eval<Expr, Context>
{};
template<typename Expr>
typename proto::result_of::eval<Expr, Context>::type
operator ()(Expr &e) const
{
return proto::eval(e, this->ctx_);
}
template<typename Expr>
typename proto::result_of::eval<Expr const, Context>::type
operator ()(Expr const &e) const
{
return proto::eval(e, this->ctx_);
}
private:
Context &ctx_;
};
/// INTERNAL ONLY
///
template<typename Context>
struct is_callable<eval_fun<Context> >
: mpl::true_
{};
}}
namespace boost { namespace fusion
{
namespace extension
{
template<typename Tag>
struct is_sequence_impl;
template<typename Tag, typename Domain>
struct is_sequence_impl<proto::tag::proto_flat_view<Tag, Domain> >
{
template<typename Sequence>
struct apply
: mpl::true_
{};
};
template<typename Tag, typename Domain>
struct is_sequence_impl<proto::tag::proto_expr<Tag, Domain> >
{
template<typename Sequence>
struct apply
: mpl::true_
{};
};
template<typename Tag>
struct is_view_impl;
template<typename Tag, typename Domain>
struct is_view_impl<proto::tag::proto_flat_view<Tag, Domain> >
{
template<typename Sequence>
struct apply
: mpl::true_
{};
};
template<typename Tag, typename Domain>
struct is_view_impl<proto::tag::proto_expr<Tag, Domain> >
{
template<typename Sequence>
struct apply
: mpl::false_
{};
};
template<typename Tag>
struct value_of_impl;
template<typename Tag, typename Domain>
struct value_of_impl<proto::tag::proto_expr_iterator<Tag, Domain> >
{
template<
typename Iterator
, long Arity = proto::arity_of<typename Iterator::expr_type>::value
>
struct apply
{
typedef
typename proto::result_of::child_c<
typename Iterator::expr_type
, Iterator::index
>::value_type
type;
};
template<typename Iterator>
struct apply<Iterator, 0>
{
typedef
typename proto::result_of::value<
typename Iterator::expr_type
>::value_type
type;
};
};
template<typename Tag>
struct deref_impl;
template<typename Tag, typename Domain>
struct deref_impl<proto::tag::proto_expr_iterator<Tag, Domain> >
{
template<
typename Iterator
, long Arity = proto::arity_of<typename Iterator::expr_type>::value
>
struct apply
{
typedef
typename proto::result_of::child_c<
typename Iterator::expr_type &
, Iterator::index
>::type
type;
static type call(Iterator const &iter)
{
return proto::child_c<Iterator::index>(iter.expr);
}
};
template<typename Iterator>
struct apply<Iterator, 0>
{
typedef
typename proto::result_of::value<
typename Iterator::expr_type &
>::type
type;
static type call(Iterator const &iter)
{
return proto::value(iter.expr);
}
};
};
template<typename Tag>
struct advance_impl;
template<typename Tag, typename Domain>
struct advance_impl<proto::tag::proto_expr_iterator<Tag, Domain> >
{
template<typename Iterator, typename N>
struct apply
{
typedef
proto::detail::expr_iterator<
typename Iterator::expr_type
, Iterator::index + N::value
>
type;
static type call(Iterator const &iter)
{
return type(iter.expr);
}
};
};
template<typename Tag>
struct distance_impl;
template<typename Tag, typename Domain>
struct distance_impl<proto::tag::proto_expr_iterator<Tag, Domain> >
{
template<typename IteratorFrom, typename IteratorTo>
struct apply
: mpl::long_<IteratorTo::index - IteratorFrom::index>
{};
};
template<typename Tag>
struct next_impl;
template<typename Tag, typename Domain>
struct next_impl<proto::tag::proto_expr_iterator<Tag, Domain> >
{
template<typename Iterator>
struct apply
: advance_impl<proto::tag::proto_expr_iterator<Tag, Domain> >::template apply<Iterator, mpl::long_<1> >
{};
};
template<typename Tag>
struct prior_impl;
template<typename Tag, typename Domain>
struct prior_impl<proto::tag::proto_expr_iterator<Tag, Domain> >
{
template<typename Iterator>
struct apply
: advance_impl<proto::tag::proto_expr_iterator<Tag, Domain> >::template apply<Iterator, mpl::long_<-1> >
{};
};
template<typename Tag>
struct category_of_impl;
template<typename Tag, typename Domain>
struct category_of_impl<proto::tag::proto_expr<Tag, Domain> >
{
template<typename Sequence>
struct apply
{
typedef random_access_traversal_tag type;
};
};
template<typename Tag>
struct size_impl;
template<typename Tag, typename Domain>
struct size_impl<proto::tag::proto_expr<Tag, Domain> >
{
template<typename Sequence>
struct apply
: mpl::long_<0 == Sequence::proto_arity_c ? 1 : Sequence::proto_arity_c>
{};
};
template<typename Tag>
struct begin_impl;
template<typename Tag, typename Domain>
struct begin_impl<proto::tag::proto_expr<Tag, Domain> >
{
template<typename Sequence>
struct apply
{
typedef proto::detail::expr_iterator<Sequence, 0> type;
static type call(Sequence &seq)
{
return type(seq);
}
};
};
template<typename Tag>
struct end_impl;
template<typename Tag, typename Domain>
struct end_impl<proto::tag::proto_expr<Tag, Domain> >
{
template<typename Sequence>
struct apply
{
typedef
proto::detail::expr_iterator<
Sequence
, 0 == Sequence::proto_arity_c ? 1 : Sequence::proto_arity_c
>
type;
static type call(Sequence &seq)
{
return type(seq);
}
};
};
template<typename Tag>
struct value_at_impl;
template<typename Tag, typename Domain>
struct value_at_impl<proto::tag::proto_expr<Tag, Domain> >
{
template<
typename Sequence
, typename Index
, long Arity = proto::arity_of<Sequence>::value
>
struct apply
{
typedef
typename proto::result_of::child_c<
Sequence
, Index::value
>::value_type
type;
};
template<typename Sequence, typename Index>
struct apply<Sequence, Index, 0>
{
typedef
typename proto::result_of::value<
Sequence
>::value_type
type;
};
};
template<typename Tag>
struct at_impl;
template<typename Tag, typename Domain>
struct at_impl<proto::tag::proto_expr<Tag, Domain> >
{
template<
typename Sequence
, typename Index
, long Arity = proto::arity_of<Sequence>::value
>
struct apply
{
typedef
typename proto::result_of::child_c<
Sequence &
, Index::value
>::type
type;
static type call(Sequence &seq)
{
return proto::child_c<Index::value>(seq);
}
};
template<typename Sequence, typename Index>
struct apply<Sequence, Index, 0>
{
typedef
typename proto::result_of::value<
Sequence &
>::type
type;
static type call(Sequence &seq)
{
return proto::value(seq);
}
};
};
template<typename Tag>
struct convert_impl;
template<typename Tag, typename Domain>
struct convert_impl<proto::tag::proto_expr<Tag, Domain> >
{
template<typename Sequence>
struct apply
{
typedef
typename proto::result_of::unpack_expr<
Tag
, Domain
, Sequence
>::type
type;
static type call(Sequence& seq)
{
return proto::unpack_expr<Tag, Domain>(seq);
}
};
};
template<typename Tag, typename Domain>
struct convert_impl<proto::tag::proto_flat_view<Tag, Domain> >
{
template<typename Sequence>
struct apply
{
typedef
typename proto::result_of::unpack_expr<
Tag
, Domain
, Sequence
>::type
type;
static type call(Sequence& seq)
{
return proto::unpack_expr<Tag, Domain>(seq);
}
};
};
template<typename Tag>
struct is_segmented_impl;
template<typename Tag, typename Domain>
struct is_segmented_impl<proto::tag::proto_flat_view<Tag, Domain> >
{
template<typename Iterator>
struct apply
: mpl::true_
{};
};
template<typename Tag>
struct segments_impl;
template<typename Tag, typename Domain>
struct segments_impl<proto::tag::proto_flat_view<Tag, Domain> >
{
template<typename Sequence>
struct apply
{
typedef typename Sequence::segments_type const &type;
static type call(Sequence &sequence)
{
return sequence.segs_;
}
};
};
template<typename Tag, typename Domain>
struct category_of_impl<proto::tag::proto_flat_view<Tag, Domain> >
{
template<typename Sequence>
struct apply
{
typedef forward_traversal_tag type;
};
};
}
namespace traits
{
template<typename Seq1, typename Seq2>
struct enable_equality<
Seq1
, Seq2
, typename enable_if_c<
mpl::or_<
proto::is_expr<Seq1>
, proto::is_expr<Seq2>
>::value
>::type
>
: mpl::false_
{};
template<typename Seq1, typename Seq2>
struct enable_comparison<
Seq1
, Seq2
, typename enable_if_c<
mpl::or_<
proto::is_expr<Seq1>
, proto::is_expr<Seq2>
>::value
>::type
>
: mpl::false_
{};
}
}}
namespace boost { namespace mpl
{
template<typename Tag, typename Args, long Arity>
struct sequence_tag< proto::expr<Tag, Args, Arity> >
{
typedef fusion::fusion_sequence_tag type;
};
template<typename Tag, typename Args, long Arity>
struct sequence_tag< proto::basic_expr<Tag, Args, Arity> >
{
typedef fusion::fusion_sequence_tag type;
};
}}
#ifdef BOOST_MSVC
#pragma warning(pop)
#endif
#endif