vn-verdnaturachat/ios/Pods/boost-for-react-native/boost/geometry/strategies/spherical/intersection.hpp

702 lines
26 KiB
C++

// Boost.Geometry
// Copyright (c) 2016, Oracle and/or its affiliates.
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP
#define BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP
#include <algorithm>
#include <boost/geometry/core/cs.hpp>
#include <boost/geometry/core/access.hpp>
#include <boost/geometry/core/radian_access.hpp>
#include <boost/geometry/core/tags.hpp>
#include <boost/geometry/algorithms/detail/assign_values.hpp>
#include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
#include <boost/geometry/algorithms/detail/equals/point_point.hpp>
#include <boost/geometry/algorithms/detail/recalculate.hpp>
#include <boost/geometry/arithmetic/arithmetic.hpp>
#include <boost/geometry/arithmetic/cross_product.hpp>
#include <boost/geometry/arithmetic/dot_product.hpp>
#include <boost/geometry/formulas/spherical.hpp>
#include <boost/geometry/geometries/concepts/point_concept.hpp>
#include <boost/geometry/geometries/concepts/segment_concept.hpp>
#include <boost/geometry/policies/robustness/segment_ratio.hpp>
#include <boost/geometry/strategies/side_info.hpp>
#include <boost/geometry/strategies/intersection.hpp>
#include <boost/geometry/strategies/intersection_result.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
namespace boost { namespace geometry
{
namespace strategy { namespace intersection
{
// NOTE:
// The coordinates of crossing IP may be calculated with small precision in some cases.
// For double, near the equator noticed error ~1e-9 so far greater than
// machine epsilon which is ~1e-16. This error is ~0.04m.
// E.g. consider two cases, one near the origin and the second one rotated by 90 deg around Z or SN axis.
// After the conversion from spherical degrees to cartesian 3d the following coordinates
// are calculated:
// for sph (-1 -1, 1 1) deg cart3d ys are -0.017449748351250485 and 0.017449748351250485
// for sph (89 -1, 91 1) deg cart3d xs are 0.017449748351250571 and -0.017449748351250450
// During the conversion degrees must first be converted to radians and then radians
// are passed into trigonometric functions. The error may have several causes:
// 1. Radians cannot represent exactly the same angles as degrees.
// 2. Different longitudes are passed into sin() for x, corresponding to cos() for y,
// and for different angle the error of the result may be different.
// 3. These non-corresponding cartesian coordinates are used in calculation,
// e.g. multiplied several times in cross and dot products.
// If it was a problem this strategy could e.g. "normalize" longitudes before the conversion using the source units
// by rotating the globe around Z axis, so moving longitudes always the same way towards the origin,
// assuming this could help which is not clear.
// For now, intersection points near the endpoints are checked explicitly if needed (if the IP is near the endpoint)
// to generate precise result for them. Only the crossing (i) case may suffer from lower precision.
template <typename Policy, typename CalculationType = void>
struct relate_spherical_segments
{
typedef typename Policy::return_type return_type;
enum intersection_point_flag { ipi_inters = 0, ipi_at_a1, ipi_at_a2, ipi_at_b1, ipi_at_b2 };
template <typename CoordinateType, typename SegmentRatio, typename Vector3d>
struct segment_intersection_info
{
typedef typename select_most_precise
<
CoordinateType, double
>::type promoted_type;
promoted_type comparable_length_a() const
{
return robust_ra.denominator();
}
promoted_type comparable_length_b() const
{
return robust_rb.denominator();
}
template <typename Point, typename Segment1, typename Segment2>
void assign_a(Point& point, Segment1 const& a, Segment2 const& b) const
{
assign(point, a, b);
}
template <typename Point, typename Segment1, typename Segment2>
void assign_b(Point& point, Segment1 const& a, Segment2 const& b) const
{
assign(point, a, b);
}
template <typename Point, typename Segment1, typename Segment2>
void assign(Point& point, Segment1 const& a, Segment2 const& b) const
{
if (ip_flag == ipi_inters)
{
// TODO: assign the rest of coordinates
point = formula::cart3d_to_sph<Point>(intersection_point);
}
else if (ip_flag == ipi_at_a1)
{
detail::assign_point_from_index<0>(a, point);
}
else if (ip_flag == ipi_at_a2)
{
detail::assign_point_from_index<1>(a, point);
}
else if (ip_flag == ipi_at_b1)
{
detail::assign_point_from_index<0>(b, point);
}
else // ip_flag == ipi_at_b2
{
detail::assign_point_from_index<1>(b, point);
}
}
Vector3d intersection_point;
SegmentRatio robust_ra;
SegmentRatio robust_rb;
intersection_point_flag ip_flag;
};
// Relate segments a and b
template <typename Segment1, typename Segment2, typename RobustPolicy>
static inline return_type apply(Segment1 const& a, Segment2 const& b,
RobustPolicy const& robust_policy)
{
typedef typename point_type<Segment1>::type point1_t;
typedef typename point_type<Segment2>::type point2_t;
point1_t a1, a2;
point2_t b1, b2;
// TODO: use indexed_point_view if possible?
detail::assign_point_from_index<0>(a, a1);
detail::assign_point_from_index<1>(a, a2);
detail::assign_point_from_index<0>(b, b1);
detail::assign_point_from_index<1>(b, b2);
return apply(a, b, robust_policy, a1, a2, b1, b2);
}
// Relate segments a and b
template <typename Segment1, typename Segment2, typename RobustPolicy, typename Point1, typename Point2>
static inline return_type apply(Segment1 const& a, Segment2 const& b,
RobustPolicy const&,
Point1 const& a1, Point1 const& a2, Point2 const& b1, Point2 const& b2)
{
BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment1>) );
BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment2>) );
// TODO: check only 2 first coordinates here?
using geometry::detail::equals::equals_point_point;
bool a_is_point = equals_point_point(a1, a2);
bool b_is_point = equals_point_point(b1, b2);
if(a_is_point && b_is_point)
{
return equals_point_point(a1, b2)
? Policy::degenerate(a, true)
: Policy::disjoint()
;
}
typedef typename select_calculation_type
<Segment1, Segment2, CalculationType>::type calc_t;
calc_t const c0 = 0;
calc_t const c1 = 1;
typedef model::point<calc_t, 3, cs::cartesian> vec3d_t;
using namespace formula;
vec3d_t const a1v = sph_to_cart3d<vec3d_t>(a1);
vec3d_t const a2v = sph_to_cart3d<vec3d_t>(a2);
vec3d_t const b1v = sph_to_cart3d<vec3d_t>(b1);
vec3d_t const b2v = sph_to_cart3d<vec3d_t>(b2);
vec3d_t norm1 = cross_product(a1v, a2v);
vec3d_t norm2 = cross_product(b1v, b2v);
side_info sides;
// not normalized normals, the same as in SSF
sides.set<0>(sph_side_value(norm2, a1v), sph_side_value(norm2, a2v));
if (sides.same<0>())
{
// Both points are at same side of other segment, we can leave
return Policy::disjoint();
}
// not normalized normals, the same as in SSF
sides.set<1>(sph_side_value(norm1, b1v), sph_side_value(norm1, b2v));
if (sides.same<1>())
{
// Both points are at same side of other segment, we can leave
return Policy::disjoint();
}
// NOTE: at this point the segments may still be disjoint
bool collinear = sides.collinear();
calc_t const len1 = math::sqrt(dot_product(norm1, norm1));
calc_t const len2 = math::sqrt(dot_product(norm2, norm2));
// point or opposite sides of a sphere, assume point
if (math::equals(len1, c0))
{
a_is_point = true;
if (sides.get<0, 0>() == 0 || sides.get<0, 1>() == 0)
{
sides.set<0>(0, 0);
}
}
else
{
// normalize
divide_value(norm1, len1);
}
if (math::equals(len2, c0))
{
b_is_point = true;
if (sides.get<1, 0>() == 0 || sides.get<1, 1>() == 0)
{
sides.set<1>(0, 0);
}
}
else
{
// normalize
divide_value(norm2, len2);
}
// check both degenerated once more
if (a_is_point && b_is_point)
{
return equals_point_point(a1, b2)
? Policy::degenerate(a, true)
: Policy::disjoint()
;
}
// NOTE: at this point one of the segments may be degenerated
// and the segments may still be disjoint
calc_t dot_n1n2 = dot_product(norm1, norm2);
// NOTE: this is technically not needed since theoretically above sides
// are calculated, but just in case check the normals.
// Have in mind that SSF side strategy doesn't check this.
// collinear if normals are equal or opposite: cos(a) in {-1, 1}
if (!collinear && math::equals(math::abs(dot_n1n2), c1))
{
collinear = true;
sides.set<0>(0, 0);
sides.set<1>(0, 0);
}
if (collinear)
{
if (a_is_point)
{
return collinear_one_degenerted<calc_t>(a, true, b1, b2, a1, a2, b1v, b2v, norm2, a1v);
}
else if (b_is_point)
{
// b2 used to be consistent with (degenerated) checks above (is it needed?)
return collinear_one_degenerted<calc_t>(b, false, a1, a2, b1, b2, a1v, a2v, norm1, b1v);
}
else
{
calc_t dist_a1_a2, dist_a1_b1, dist_a1_b2;
calc_t dist_b1_b2, dist_b1_a1, dist_b1_a2;
// use shorter segment
if (len1 <= len2)
{
calculate_collinear_data(a1, a2, b1, b2, a1v, a2v, norm1, b1v, dist_a1_a2, dist_a1_b1);
calculate_collinear_data(a1, a2, b1, b2, a1v, a2v, norm1, b2v, dist_a1_a2, dist_a1_b2);
dist_b1_b2 = dist_a1_b2 - dist_a1_b1;
dist_b1_a1 = -dist_a1_b1;
dist_b1_a2 = dist_a1_a2 - dist_a1_b1;
}
else
{
calculate_collinear_data(b1, b2, a1, a2, b1v, b2v, norm2, a1v, dist_b1_b2, dist_b1_a1);
calculate_collinear_data(b1, b2, a1, a2, b1v, b2v, norm2, a2v, dist_b1_b2, dist_b1_a2);
dist_a1_a2 = dist_b1_a2 - dist_b1_a1;
dist_a1_b1 = -dist_b1_a1;
dist_a1_b2 = dist_b1_b2 - dist_b1_a1;
}
segment_ratio<calc_t> ra_from(dist_b1_a1, dist_b1_b2);
segment_ratio<calc_t> ra_to(dist_b1_a2, dist_b1_b2);
segment_ratio<calc_t> rb_from(dist_a1_b1, dist_a1_a2);
segment_ratio<calc_t> rb_to(dist_a1_b2, dist_a1_a2);
// NOTE: this is probably not needed
int const a1_wrt_b = position_value(c0, dist_a1_b1, dist_a1_b2);
int const a2_wrt_b = position_value(dist_a1_a2, dist_a1_b1, dist_a1_b2);
int const b1_wrt_a = position_value(c0, dist_b1_a1, dist_b1_a2);
int const b2_wrt_a = position_value(dist_b1_b2, dist_b1_a1, dist_b1_a2);
if (a1_wrt_b == 1)
{
ra_from.assign(0, dist_b1_b2);
rb_from.assign(0, dist_a1_a2);
}
else if (a1_wrt_b == 3)
{
ra_from.assign(dist_b1_b2, dist_b1_b2);
rb_to.assign(0, dist_a1_a2);
}
if (a2_wrt_b == 1)
{
ra_to.assign(0, dist_b1_b2);
rb_from.assign(dist_a1_a2, dist_a1_a2);
}
else if (a2_wrt_b == 3)
{
ra_to.assign(dist_b1_b2, dist_b1_b2);
rb_to.assign(dist_a1_a2, dist_a1_a2);
}
if ((a1_wrt_b < 1 && a2_wrt_b < 1) || (a1_wrt_b > 3 && a2_wrt_b > 3))
{
return Policy::disjoint();
}
bool const opposite = dot_n1n2 < c0;
return Policy::segments_collinear(a, b, opposite,
a1_wrt_b, a2_wrt_b, b1_wrt_a, b2_wrt_a,
ra_from, ra_to, rb_from, rb_to);
}
}
else // crossing
{
if (a_is_point || b_is_point)
{
return Policy::disjoint();
}
vec3d_t i1;
intersection_point_flag ip_flag;
calc_t dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1;
if (calculate_ip_data(a1, a2, b1, b2, a1v, a2v, b1v, b2v, norm1, norm2, sides,
i1, dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1, ip_flag))
{
// intersects
segment_intersection_info
<
calc_t,
segment_ratio<calc_t>,
vec3d_t
> sinfo;
sinfo.robust_ra.assign(dist_a1_i1, dist_a1_a2);
sinfo.robust_rb.assign(dist_b1_i1, dist_b1_b2);
sinfo.intersection_point = i1;
sinfo.ip_flag = ip_flag;
return Policy::segments_crosses(sides, sinfo, a, b);
}
else
{
return Policy::disjoint();
}
}
}
private:
template <typename CalcT, typename Segment, typename Point1, typename Point2, typename Vec3d>
static inline return_type collinear_one_degenerted(Segment const& segment, bool degenerated_a,
Point1 const& a1, Point1 const& a2,
Point2 const& b1, Point2 const& b2,
Vec3d const& v1, Vec3d const& v2, Vec3d const& norm,
Vec3d const& vother)
{
CalcT dist_1_2, dist_1_o;
return ! calculate_collinear_data(a1, a2, b1, b2, v1, v2, norm, vother, dist_1_2, dist_1_o)
? Policy::disjoint()
: Policy::one_degenerate(segment, segment_ratio<CalcT>(dist_1_o, dist_1_2), degenerated_a);
}
template <typename Point1, typename Point2, typename Vec3d, typename CalcT>
static inline bool calculate_collinear_data(Point1 const& a1, Point1 const& a2,
Point2 const& b1, Point2 const& b2,
Vec3d const& a1v, // in
Vec3d const& a2v, // in
Vec3d const& norm1, // in
Vec3d const& b1v_or_b2v, // in
CalcT& dist_a1_a2, CalcT& dist_a1_i1) // out
{
// calculate dist_a1_a2 and dist_a1_i1
calculate_dists(a1v, a2v, norm1, b1v_or_b2v, dist_a1_a2, dist_a1_i1);
// if i1 is close to a1 and b1 or b2 is equal to a1
if (is_endpoint_equal(dist_a1_i1, a1, b1, b2))
{
dist_a1_i1 = 0;
return true;
}
// or i1 is close to a2 and b1 or b2 is equal to a2
else if (is_endpoint_equal(dist_a1_a2 - dist_a1_i1, a2, b1, b2))
{
dist_a1_i1 = dist_a1_a2;
return true;
}
// or i1 is on b
return segment_ratio<CalcT>(dist_a1_i1, dist_a1_a2).on_segment();
}
template <typename Point1, typename Point2, typename Vec3d, typename CalcT>
static inline bool calculate_ip_data(Point1 const& a1, Point1 const& a2, // in
Point2 const& b1, Point2 const& b2, // in
Vec3d const& a1v, Vec3d const& a2v, // in
Vec3d const& b1v, Vec3d const& b2v, // in
Vec3d const& norm1, Vec3d const& norm2, // in
side_info const& sides, // in
Vec3d & i1, // in-out
CalcT& dist_a1_a2, CalcT& dist_a1_i1, // out
CalcT& dist_b1_b2, CalcT& dist_b1_i1, // out
intersection_point_flag& ip_flag) // out
{
// great circles intersections
i1 = cross_product(norm1, norm2);
// NOTE: the length should be greater than 0 at this point
// if the normals were not normalized and their dot product
// not checked before this function is called the length
// should be checked here (math::equals(len, c0))
CalcT const len = math::sqrt(dot_product(i1, i1));
divide_value(i1, len); // normalize i1
calculate_dists(a1v, a2v, norm1, i1, dist_a1_a2, dist_a1_i1);
// choose the opposite side of the globe if the distance is shorter
{
CalcT const d = abs_distance(dist_a1_a2, dist_a1_i1);
if (d > CalcT(0))
{
CalcT const dist_a1_i2 = dist_of_i2(dist_a1_i1);
CalcT const d2 = abs_distance(dist_a1_a2, dist_a1_i2);
if (d2 < d)
{
dist_a1_i1 = dist_a1_i2;
multiply_value(i1, CalcT(-1)); // the opposite intersection
}
}
}
bool is_on_a = false, is_near_a1 = false, is_near_a2 = false;
if (! is_potentially_crossing(dist_a1_a2, dist_a1_i1, is_on_a, is_near_a1, is_near_a2))
{
return false;
}
calculate_dists(b1v, b2v, norm2, i1, dist_b1_b2, dist_b1_i1);
bool is_on_b = false, is_near_b1 = false, is_near_b2 = false;
if (! is_potentially_crossing(dist_b1_b2, dist_b1_i1, is_on_b, is_near_b1, is_near_b2))
{
return false;
}
// reassign the IP if some endpoints overlap
using geometry::detail::equals::equals_point_point;
if (is_near_a1)
{
if (is_near_b1 && equals_point_point(a1, b1))
{
dist_a1_i1 = 0;
dist_b1_i1 = 0;
//i1 = a1v;
ip_flag = ipi_at_a1;
return true;
}
if (is_near_b2 && equals_point_point(a1, b2))
{
dist_a1_i1 = 0;
dist_b1_i1 = dist_b1_b2;
//i1 = a1v;
ip_flag = ipi_at_a1;
return true;
}
}
if (is_near_a2)
{
if (is_near_b1 && equals_point_point(a2, b1))
{
dist_a1_i1 = dist_a1_a2;
dist_b1_i1 = 0;
//i1 = a2v;
ip_flag = ipi_at_a2;
return true;
}
if (is_near_b2 && equals_point_point(a2, b2))
{
dist_a1_i1 = dist_a1_a2;
dist_b1_i1 = dist_b1_b2;
//i1 = a2v;
ip_flag = ipi_at_a2;
return true;
}
}
// at this point we know that the endpoints doesn't overlap
// reassign IP and distance if the IP is on a segment and one of
// the endpoints of the other segment lies on the former segment
if (is_on_a)
{
if (is_near_b1 && sides.template get<1, 0>() == 0) // b1 wrt a
{
dist_b1_i1 = 0;
//i1 = b1v;
ip_flag = ipi_at_b1;
return true;
}
if (is_near_b2 && sides.template get<1, 1>() == 0) // b2 wrt a
{
dist_b1_i1 = dist_b1_b2;
//i1 = b2v;
ip_flag = ipi_at_b2;
return true;
}
}
if (is_on_b)
{
if (is_near_a1 && sides.template get<0, 0>() == 0) // a1 wrt b
{
dist_a1_i1 = 0;
//i1 = a1v;
ip_flag = ipi_at_a1;
return true;
}
if (is_near_a2 && sides.template get<0, 1>() == 0) // a2 wrt b
{
dist_a1_i1 = dist_a1_a2;
//i1 = a2v;
ip_flag = ipi_at_a2;
return true;
}
}
ip_flag = ipi_inters;
return is_on_a && is_on_b;
}
template <typename Vec3d, typename CalcT>
static inline void calculate_dists(Vec3d const& a1v, // in
Vec3d const& a2v, // in
Vec3d const& norm1, // in
Vec3d const& i1, // in
CalcT& dist_a1_a2, CalcT& dist_a1_i1) // out
{
CalcT const c0 = 0;
CalcT const c1 = 1;
CalcT const c2 = 2;
CalcT const c4 = 4;
CalcT cos_a1_a2 = dot_product(a1v, a2v);
dist_a1_a2 = -cos_a1_a2 + c1; // [1, -1] -> [0, 2] representing [0, pi]
CalcT cos_a1_i1 = dot_product(a1v, i1);
dist_a1_i1 = -cos_a1_i1 + c1; // [0, 2] representing [0, pi]
if (dot_product(norm1, cross_product(a1v, i1)) < c0) // left or right of a1 on a
{
dist_a1_i1 = -dist_a1_i1; // [0, 2] -> [0, -2] representing [0, -pi]
}
if (dist_a1_i1 <= -c2) // <= -pi
{
dist_a1_i1 += c4; // += 2pi
}
}
// the dist of the ip on the other side of the sphere
template <typename CalcT>
static inline CalcT dist_of_i2(CalcT const& dist_a1_i1)
{
CalcT const c2 = 2;
CalcT const c4 = 4;
CalcT dist_a1_i2 = dist_a1_i1 - c2; // dist_a1_i2 = dist_a1_i1 - pi;
if (dist_a1_i2 <= -c2) // <= -pi
{
dist_a1_i2 += c4; // += 2pi;
}
return dist_a1_i2;
}
template <typename CalcT>
static inline CalcT abs_distance(CalcT const& dist_a1_a2, CalcT const& dist_a1_i1)
{
if (dist_a1_i1 < CalcT(0))
return -dist_a1_i1;
else if (dist_a1_i1 > dist_a1_a2)
return dist_a1_i1 - dist_a1_a2;
else
return CalcT(0);
}
template <typename CalcT>
static inline bool is_potentially_crossing(CalcT const& dist_a1_a2, CalcT const& dist_a1_i1, // in
bool& is_on_a, bool& is_near_a1, bool& is_near_a2) // out
{
is_on_a = segment_ratio<CalcT>(dist_a1_i1, dist_a1_a2).on_segment();
is_near_a1 = is_near(dist_a1_i1);
is_near_a2 = is_near(dist_a1_a2 - dist_a1_i1);
return is_on_a || is_near_a1 || is_near_a2;
}
template <typename CalcT, typename P1, typename P2>
static inline bool is_endpoint_equal(CalcT const& dist,
P1 const& ai, P2 const& b1, P2 const& b2)
{
using geometry::detail::equals::equals_point_point;
return is_near(dist) && (equals_point_point(ai, b1) || equals_point_point(ai, b2));
}
template <typename CalcT>
static inline bool is_near(CalcT const& dist)
{
CalcT const small_number = CalcT(boost::is_same<CalcT, float>::value ? 0.0001 : 0.00000001);
return math::abs(dist) <= small_number;
}
template <typename ProjCoord1, typename ProjCoord2>
static inline int position_value(ProjCoord1 const& ca1,
ProjCoord2 const& cb1,
ProjCoord2 const& cb2)
{
// S1x 0 1 2 3 4
// S2 |---------->
return math::equals(ca1, cb1) ? 1
: math::equals(ca1, cb2) ? 3
: cb1 < cb2 ?
( ca1 < cb1 ? 0
: ca1 > cb2 ? 4
: 2 )
: ( ca1 > cb1 ? 0
: ca1 < cb2 ? 4
: 2 );
}
};
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
namespace services
{
/*template <typename Policy, typename CalculationType>
struct default_strategy<spherical_polar_tag, Policy, CalculationType>
{
typedef relate_spherical_segments<Policy, CalculationType> type;
};*/
template <typename Policy, typename CalculationType>
struct default_strategy<spherical_equatorial_tag, Policy, CalculationType>
{
typedef relate_spherical_segments<Policy, CalculationType> type;
};
template <typename Policy, typename CalculationType>
struct default_strategy<geographic_tag, Policy, CalculationType>
{
typedef relate_spherical_segments<Policy, CalculationType> type;
};
} // namespace services
#endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
}} // namespace strategy::intersection
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP