702 lines
26 KiB
C++
702 lines
26 KiB
C++
// Boost.Geometry
|
|
|
|
// Copyright (c) 2016, Oracle and/or its affiliates.
|
|
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
|
|
|
|
// Use, modification and distribution is subject to the Boost Software License,
|
|
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP
|
|
#define BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP
|
|
|
|
#include <algorithm>
|
|
|
|
#include <boost/geometry/core/cs.hpp>
|
|
#include <boost/geometry/core/access.hpp>
|
|
#include <boost/geometry/core/radian_access.hpp>
|
|
#include <boost/geometry/core/tags.hpp>
|
|
|
|
#include <boost/geometry/algorithms/detail/assign_values.hpp>
|
|
#include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
|
|
#include <boost/geometry/algorithms/detail/equals/point_point.hpp>
|
|
#include <boost/geometry/algorithms/detail/recalculate.hpp>
|
|
|
|
#include <boost/geometry/arithmetic/arithmetic.hpp>
|
|
#include <boost/geometry/arithmetic/cross_product.hpp>
|
|
#include <boost/geometry/arithmetic/dot_product.hpp>
|
|
#include <boost/geometry/formulas/spherical.hpp>
|
|
|
|
#include <boost/geometry/geometries/concepts/point_concept.hpp>
|
|
#include <boost/geometry/geometries/concepts/segment_concept.hpp>
|
|
|
|
#include <boost/geometry/policies/robustness/segment_ratio.hpp>
|
|
|
|
#include <boost/geometry/strategies/side_info.hpp>
|
|
#include <boost/geometry/strategies/intersection.hpp>
|
|
#include <boost/geometry/strategies/intersection_result.hpp>
|
|
|
|
#include <boost/geometry/util/math.hpp>
|
|
#include <boost/geometry/util/select_calculation_type.hpp>
|
|
|
|
|
|
namespace boost { namespace geometry
|
|
{
|
|
|
|
namespace strategy { namespace intersection
|
|
{
|
|
|
|
// NOTE:
|
|
// The coordinates of crossing IP may be calculated with small precision in some cases.
|
|
// For double, near the equator noticed error ~1e-9 so far greater than
|
|
// machine epsilon which is ~1e-16. This error is ~0.04m.
|
|
// E.g. consider two cases, one near the origin and the second one rotated by 90 deg around Z or SN axis.
|
|
// After the conversion from spherical degrees to cartesian 3d the following coordinates
|
|
// are calculated:
|
|
// for sph (-1 -1, 1 1) deg cart3d ys are -0.017449748351250485 and 0.017449748351250485
|
|
// for sph (89 -1, 91 1) deg cart3d xs are 0.017449748351250571 and -0.017449748351250450
|
|
// During the conversion degrees must first be converted to radians and then radians
|
|
// are passed into trigonometric functions. The error may have several causes:
|
|
// 1. Radians cannot represent exactly the same angles as degrees.
|
|
// 2. Different longitudes are passed into sin() for x, corresponding to cos() for y,
|
|
// and for different angle the error of the result may be different.
|
|
// 3. These non-corresponding cartesian coordinates are used in calculation,
|
|
// e.g. multiplied several times in cross and dot products.
|
|
// If it was a problem this strategy could e.g. "normalize" longitudes before the conversion using the source units
|
|
// by rotating the globe around Z axis, so moving longitudes always the same way towards the origin,
|
|
// assuming this could help which is not clear.
|
|
// For now, intersection points near the endpoints are checked explicitly if needed (if the IP is near the endpoint)
|
|
// to generate precise result for them. Only the crossing (i) case may suffer from lower precision.
|
|
|
|
template <typename Policy, typename CalculationType = void>
|
|
struct relate_spherical_segments
|
|
{
|
|
typedef typename Policy::return_type return_type;
|
|
|
|
enum intersection_point_flag { ipi_inters = 0, ipi_at_a1, ipi_at_a2, ipi_at_b1, ipi_at_b2 };
|
|
|
|
template <typename CoordinateType, typename SegmentRatio, typename Vector3d>
|
|
struct segment_intersection_info
|
|
{
|
|
typedef typename select_most_precise
|
|
<
|
|
CoordinateType, double
|
|
>::type promoted_type;
|
|
|
|
promoted_type comparable_length_a() const
|
|
{
|
|
return robust_ra.denominator();
|
|
}
|
|
|
|
promoted_type comparable_length_b() const
|
|
{
|
|
return robust_rb.denominator();
|
|
}
|
|
|
|
template <typename Point, typename Segment1, typename Segment2>
|
|
void assign_a(Point& point, Segment1 const& a, Segment2 const& b) const
|
|
{
|
|
assign(point, a, b);
|
|
}
|
|
template <typename Point, typename Segment1, typename Segment2>
|
|
void assign_b(Point& point, Segment1 const& a, Segment2 const& b) const
|
|
{
|
|
assign(point, a, b);
|
|
}
|
|
|
|
template <typename Point, typename Segment1, typename Segment2>
|
|
void assign(Point& point, Segment1 const& a, Segment2 const& b) const
|
|
{
|
|
if (ip_flag == ipi_inters)
|
|
{
|
|
// TODO: assign the rest of coordinates
|
|
point = formula::cart3d_to_sph<Point>(intersection_point);
|
|
}
|
|
else if (ip_flag == ipi_at_a1)
|
|
{
|
|
detail::assign_point_from_index<0>(a, point);
|
|
}
|
|
else if (ip_flag == ipi_at_a2)
|
|
{
|
|
detail::assign_point_from_index<1>(a, point);
|
|
}
|
|
else if (ip_flag == ipi_at_b1)
|
|
{
|
|
detail::assign_point_from_index<0>(b, point);
|
|
}
|
|
else // ip_flag == ipi_at_b2
|
|
{
|
|
detail::assign_point_from_index<1>(b, point);
|
|
}
|
|
}
|
|
|
|
Vector3d intersection_point;
|
|
SegmentRatio robust_ra;
|
|
SegmentRatio robust_rb;
|
|
intersection_point_flag ip_flag;
|
|
};
|
|
|
|
// Relate segments a and b
|
|
template <typename Segment1, typename Segment2, typename RobustPolicy>
|
|
static inline return_type apply(Segment1 const& a, Segment2 const& b,
|
|
RobustPolicy const& robust_policy)
|
|
{
|
|
typedef typename point_type<Segment1>::type point1_t;
|
|
typedef typename point_type<Segment2>::type point2_t;
|
|
point1_t a1, a2;
|
|
point2_t b1, b2;
|
|
|
|
// TODO: use indexed_point_view if possible?
|
|
detail::assign_point_from_index<0>(a, a1);
|
|
detail::assign_point_from_index<1>(a, a2);
|
|
detail::assign_point_from_index<0>(b, b1);
|
|
detail::assign_point_from_index<1>(b, b2);
|
|
|
|
return apply(a, b, robust_policy, a1, a2, b1, b2);
|
|
}
|
|
|
|
// Relate segments a and b
|
|
template <typename Segment1, typename Segment2, typename RobustPolicy, typename Point1, typename Point2>
|
|
static inline return_type apply(Segment1 const& a, Segment2 const& b,
|
|
RobustPolicy const&,
|
|
Point1 const& a1, Point1 const& a2, Point2 const& b1, Point2 const& b2)
|
|
{
|
|
BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment1>) );
|
|
BOOST_CONCEPT_ASSERT( (concepts::ConstSegment<Segment2>) );
|
|
|
|
// TODO: check only 2 first coordinates here?
|
|
using geometry::detail::equals::equals_point_point;
|
|
bool a_is_point = equals_point_point(a1, a2);
|
|
bool b_is_point = equals_point_point(b1, b2);
|
|
|
|
if(a_is_point && b_is_point)
|
|
{
|
|
return equals_point_point(a1, b2)
|
|
? Policy::degenerate(a, true)
|
|
: Policy::disjoint()
|
|
;
|
|
}
|
|
|
|
typedef typename select_calculation_type
|
|
<Segment1, Segment2, CalculationType>::type calc_t;
|
|
|
|
calc_t const c0 = 0;
|
|
calc_t const c1 = 1;
|
|
|
|
typedef model::point<calc_t, 3, cs::cartesian> vec3d_t;
|
|
|
|
using namespace formula;
|
|
vec3d_t const a1v = sph_to_cart3d<vec3d_t>(a1);
|
|
vec3d_t const a2v = sph_to_cart3d<vec3d_t>(a2);
|
|
vec3d_t const b1v = sph_to_cart3d<vec3d_t>(b1);
|
|
vec3d_t const b2v = sph_to_cart3d<vec3d_t>(b2);
|
|
|
|
vec3d_t norm1 = cross_product(a1v, a2v);
|
|
vec3d_t norm2 = cross_product(b1v, b2v);
|
|
|
|
side_info sides;
|
|
// not normalized normals, the same as in SSF
|
|
sides.set<0>(sph_side_value(norm2, a1v), sph_side_value(norm2, a2v));
|
|
if (sides.same<0>())
|
|
{
|
|
// Both points are at same side of other segment, we can leave
|
|
return Policy::disjoint();
|
|
}
|
|
// not normalized normals, the same as in SSF
|
|
sides.set<1>(sph_side_value(norm1, b1v), sph_side_value(norm1, b2v));
|
|
if (sides.same<1>())
|
|
{
|
|
// Both points are at same side of other segment, we can leave
|
|
return Policy::disjoint();
|
|
}
|
|
|
|
// NOTE: at this point the segments may still be disjoint
|
|
|
|
bool collinear = sides.collinear();
|
|
|
|
calc_t const len1 = math::sqrt(dot_product(norm1, norm1));
|
|
calc_t const len2 = math::sqrt(dot_product(norm2, norm2));
|
|
|
|
// point or opposite sides of a sphere, assume point
|
|
if (math::equals(len1, c0))
|
|
{
|
|
a_is_point = true;
|
|
if (sides.get<0, 0>() == 0 || sides.get<0, 1>() == 0)
|
|
{
|
|
sides.set<0>(0, 0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// normalize
|
|
divide_value(norm1, len1);
|
|
}
|
|
|
|
if (math::equals(len2, c0))
|
|
{
|
|
b_is_point = true;
|
|
if (sides.get<1, 0>() == 0 || sides.get<1, 1>() == 0)
|
|
{
|
|
sides.set<1>(0, 0);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// normalize
|
|
divide_value(norm2, len2);
|
|
}
|
|
|
|
// check both degenerated once more
|
|
if (a_is_point && b_is_point)
|
|
{
|
|
return equals_point_point(a1, b2)
|
|
? Policy::degenerate(a, true)
|
|
: Policy::disjoint()
|
|
;
|
|
}
|
|
|
|
// NOTE: at this point one of the segments may be degenerated
|
|
// and the segments may still be disjoint
|
|
|
|
calc_t dot_n1n2 = dot_product(norm1, norm2);
|
|
|
|
// NOTE: this is technically not needed since theoretically above sides
|
|
// are calculated, but just in case check the normals.
|
|
// Have in mind that SSF side strategy doesn't check this.
|
|
// collinear if normals are equal or opposite: cos(a) in {-1, 1}
|
|
if (!collinear && math::equals(math::abs(dot_n1n2), c1))
|
|
{
|
|
collinear = true;
|
|
sides.set<0>(0, 0);
|
|
sides.set<1>(0, 0);
|
|
}
|
|
|
|
if (collinear)
|
|
{
|
|
if (a_is_point)
|
|
{
|
|
return collinear_one_degenerted<calc_t>(a, true, b1, b2, a1, a2, b1v, b2v, norm2, a1v);
|
|
}
|
|
else if (b_is_point)
|
|
{
|
|
// b2 used to be consistent with (degenerated) checks above (is it needed?)
|
|
return collinear_one_degenerted<calc_t>(b, false, a1, a2, b1, b2, a1v, a2v, norm1, b1v);
|
|
}
|
|
else
|
|
{
|
|
calc_t dist_a1_a2, dist_a1_b1, dist_a1_b2;
|
|
calc_t dist_b1_b2, dist_b1_a1, dist_b1_a2;
|
|
// use shorter segment
|
|
if (len1 <= len2)
|
|
{
|
|
calculate_collinear_data(a1, a2, b1, b2, a1v, a2v, norm1, b1v, dist_a1_a2, dist_a1_b1);
|
|
calculate_collinear_data(a1, a2, b1, b2, a1v, a2v, norm1, b2v, dist_a1_a2, dist_a1_b2);
|
|
dist_b1_b2 = dist_a1_b2 - dist_a1_b1;
|
|
dist_b1_a1 = -dist_a1_b1;
|
|
dist_b1_a2 = dist_a1_a2 - dist_a1_b1;
|
|
}
|
|
else
|
|
{
|
|
calculate_collinear_data(b1, b2, a1, a2, b1v, b2v, norm2, a1v, dist_b1_b2, dist_b1_a1);
|
|
calculate_collinear_data(b1, b2, a1, a2, b1v, b2v, norm2, a2v, dist_b1_b2, dist_b1_a2);
|
|
dist_a1_a2 = dist_b1_a2 - dist_b1_a1;
|
|
dist_a1_b1 = -dist_b1_a1;
|
|
dist_a1_b2 = dist_b1_b2 - dist_b1_a1;
|
|
}
|
|
|
|
segment_ratio<calc_t> ra_from(dist_b1_a1, dist_b1_b2);
|
|
segment_ratio<calc_t> ra_to(dist_b1_a2, dist_b1_b2);
|
|
segment_ratio<calc_t> rb_from(dist_a1_b1, dist_a1_a2);
|
|
segment_ratio<calc_t> rb_to(dist_a1_b2, dist_a1_a2);
|
|
|
|
// NOTE: this is probably not needed
|
|
int const a1_wrt_b = position_value(c0, dist_a1_b1, dist_a1_b2);
|
|
int const a2_wrt_b = position_value(dist_a1_a2, dist_a1_b1, dist_a1_b2);
|
|
int const b1_wrt_a = position_value(c0, dist_b1_a1, dist_b1_a2);
|
|
int const b2_wrt_a = position_value(dist_b1_b2, dist_b1_a1, dist_b1_a2);
|
|
|
|
if (a1_wrt_b == 1)
|
|
{
|
|
ra_from.assign(0, dist_b1_b2);
|
|
rb_from.assign(0, dist_a1_a2);
|
|
}
|
|
else if (a1_wrt_b == 3)
|
|
{
|
|
ra_from.assign(dist_b1_b2, dist_b1_b2);
|
|
rb_to.assign(0, dist_a1_a2);
|
|
}
|
|
|
|
if (a2_wrt_b == 1)
|
|
{
|
|
ra_to.assign(0, dist_b1_b2);
|
|
rb_from.assign(dist_a1_a2, dist_a1_a2);
|
|
}
|
|
else if (a2_wrt_b == 3)
|
|
{
|
|
ra_to.assign(dist_b1_b2, dist_b1_b2);
|
|
rb_to.assign(dist_a1_a2, dist_a1_a2);
|
|
}
|
|
|
|
if ((a1_wrt_b < 1 && a2_wrt_b < 1) || (a1_wrt_b > 3 && a2_wrt_b > 3))
|
|
{
|
|
return Policy::disjoint();
|
|
}
|
|
|
|
bool const opposite = dot_n1n2 < c0;
|
|
|
|
return Policy::segments_collinear(a, b, opposite,
|
|
a1_wrt_b, a2_wrt_b, b1_wrt_a, b2_wrt_a,
|
|
ra_from, ra_to, rb_from, rb_to);
|
|
}
|
|
}
|
|
else // crossing
|
|
{
|
|
if (a_is_point || b_is_point)
|
|
{
|
|
return Policy::disjoint();
|
|
}
|
|
|
|
vec3d_t i1;
|
|
intersection_point_flag ip_flag;
|
|
calc_t dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1;
|
|
if (calculate_ip_data(a1, a2, b1, b2, a1v, a2v, b1v, b2v, norm1, norm2, sides,
|
|
i1, dist_a1_a2, dist_a1_i1, dist_b1_b2, dist_b1_i1, ip_flag))
|
|
{
|
|
// intersects
|
|
segment_intersection_info
|
|
<
|
|
calc_t,
|
|
segment_ratio<calc_t>,
|
|
vec3d_t
|
|
> sinfo;
|
|
|
|
sinfo.robust_ra.assign(dist_a1_i1, dist_a1_a2);
|
|
sinfo.robust_rb.assign(dist_b1_i1, dist_b1_b2);
|
|
sinfo.intersection_point = i1;
|
|
sinfo.ip_flag = ip_flag;
|
|
|
|
return Policy::segments_crosses(sides, sinfo, a, b);
|
|
}
|
|
else
|
|
{
|
|
return Policy::disjoint();
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
template <typename CalcT, typename Segment, typename Point1, typename Point2, typename Vec3d>
|
|
static inline return_type collinear_one_degenerted(Segment const& segment, bool degenerated_a,
|
|
Point1 const& a1, Point1 const& a2,
|
|
Point2 const& b1, Point2 const& b2,
|
|
Vec3d const& v1, Vec3d const& v2, Vec3d const& norm,
|
|
Vec3d const& vother)
|
|
{
|
|
CalcT dist_1_2, dist_1_o;
|
|
return ! calculate_collinear_data(a1, a2, b1, b2, v1, v2, norm, vother, dist_1_2, dist_1_o)
|
|
? Policy::disjoint()
|
|
: Policy::one_degenerate(segment, segment_ratio<CalcT>(dist_1_o, dist_1_2), degenerated_a);
|
|
}
|
|
|
|
template <typename Point1, typename Point2, typename Vec3d, typename CalcT>
|
|
static inline bool calculate_collinear_data(Point1 const& a1, Point1 const& a2,
|
|
Point2 const& b1, Point2 const& b2,
|
|
Vec3d const& a1v, // in
|
|
Vec3d const& a2v, // in
|
|
Vec3d const& norm1, // in
|
|
Vec3d const& b1v_or_b2v, // in
|
|
CalcT& dist_a1_a2, CalcT& dist_a1_i1) // out
|
|
{
|
|
// calculate dist_a1_a2 and dist_a1_i1
|
|
calculate_dists(a1v, a2v, norm1, b1v_or_b2v, dist_a1_a2, dist_a1_i1);
|
|
|
|
// if i1 is close to a1 and b1 or b2 is equal to a1
|
|
if (is_endpoint_equal(dist_a1_i1, a1, b1, b2))
|
|
{
|
|
dist_a1_i1 = 0;
|
|
return true;
|
|
}
|
|
// or i1 is close to a2 and b1 or b2 is equal to a2
|
|
else if (is_endpoint_equal(dist_a1_a2 - dist_a1_i1, a2, b1, b2))
|
|
{
|
|
dist_a1_i1 = dist_a1_a2;
|
|
return true;
|
|
}
|
|
|
|
// or i1 is on b
|
|
return segment_ratio<CalcT>(dist_a1_i1, dist_a1_a2).on_segment();
|
|
}
|
|
|
|
template <typename Point1, typename Point2, typename Vec3d, typename CalcT>
|
|
static inline bool calculate_ip_data(Point1 const& a1, Point1 const& a2, // in
|
|
Point2 const& b1, Point2 const& b2, // in
|
|
Vec3d const& a1v, Vec3d const& a2v, // in
|
|
Vec3d const& b1v, Vec3d const& b2v, // in
|
|
Vec3d const& norm1, Vec3d const& norm2, // in
|
|
side_info const& sides, // in
|
|
Vec3d & i1, // in-out
|
|
CalcT& dist_a1_a2, CalcT& dist_a1_i1, // out
|
|
CalcT& dist_b1_b2, CalcT& dist_b1_i1, // out
|
|
intersection_point_flag& ip_flag) // out
|
|
{
|
|
// great circles intersections
|
|
i1 = cross_product(norm1, norm2);
|
|
// NOTE: the length should be greater than 0 at this point
|
|
// if the normals were not normalized and their dot product
|
|
// not checked before this function is called the length
|
|
// should be checked here (math::equals(len, c0))
|
|
CalcT const len = math::sqrt(dot_product(i1, i1));
|
|
divide_value(i1, len); // normalize i1
|
|
|
|
calculate_dists(a1v, a2v, norm1, i1, dist_a1_a2, dist_a1_i1);
|
|
|
|
// choose the opposite side of the globe if the distance is shorter
|
|
{
|
|
CalcT const d = abs_distance(dist_a1_a2, dist_a1_i1);
|
|
if (d > CalcT(0))
|
|
{
|
|
CalcT const dist_a1_i2 = dist_of_i2(dist_a1_i1);
|
|
CalcT const d2 = abs_distance(dist_a1_a2, dist_a1_i2);
|
|
if (d2 < d)
|
|
{
|
|
dist_a1_i1 = dist_a1_i2;
|
|
multiply_value(i1, CalcT(-1)); // the opposite intersection
|
|
}
|
|
}
|
|
}
|
|
|
|
bool is_on_a = false, is_near_a1 = false, is_near_a2 = false;
|
|
if (! is_potentially_crossing(dist_a1_a2, dist_a1_i1, is_on_a, is_near_a1, is_near_a2))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
calculate_dists(b1v, b2v, norm2, i1, dist_b1_b2, dist_b1_i1);
|
|
|
|
bool is_on_b = false, is_near_b1 = false, is_near_b2 = false;
|
|
if (! is_potentially_crossing(dist_b1_b2, dist_b1_i1, is_on_b, is_near_b1, is_near_b2))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
// reassign the IP if some endpoints overlap
|
|
using geometry::detail::equals::equals_point_point;
|
|
if (is_near_a1)
|
|
{
|
|
if (is_near_b1 && equals_point_point(a1, b1))
|
|
{
|
|
dist_a1_i1 = 0;
|
|
dist_b1_i1 = 0;
|
|
//i1 = a1v;
|
|
ip_flag = ipi_at_a1;
|
|
return true;
|
|
}
|
|
|
|
if (is_near_b2 && equals_point_point(a1, b2))
|
|
{
|
|
dist_a1_i1 = 0;
|
|
dist_b1_i1 = dist_b1_b2;
|
|
//i1 = a1v;
|
|
ip_flag = ipi_at_a1;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (is_near_a2)
|
|
{
|
|
if (is_near_b1 && equals_point_point(a2, b1))
|
|
{
|
|
dist_a1_i1 = dist_a1_a2;
|
|
dist_b1_i1 = 0;
|
|
//i1 = a2v;
|
|
ip_flag = ipi_at_a2;
|
|
return true;
|
|
}
|
|
|
|
if (is_near_b2 && equals_point_point(a2, b2))
|
|
{
|
|
dist_a1_i1 = dist_a1_a2;
|
|
dist_b1_i1 = dist_b1_b2;
|
|
//i1 = a2v;
|
|
ip_flag = ipi_at_a2;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// at this point we know that the endpoints doesn't overlap
|
|
// reassign IP and distance if the IP is on a segment and one of
|
|
// the endpoints of the other segment lies on the former segment
|
|
if (is_on_a)
|
|
{
|
|
if (is_near_b1 && sides.template get<1, 0>() == 0) // b1 wrt a
|
|
{
|
|
dist_b1_i1 = 0;
|
|
//i1 = b1v;
|
|
ip_flag = ipi_at_b1;
|
|
return true;
|
|
}
|
|
|
|
if (is_near_b2 && sides.template get<1, 1>() == 0) // b2 wrt a
|
|
{
|
|
dist_b1_i1 = dist_b1_b2;
|
|
//i1 = b2v;
|
|
ip_flag = ipi_at_b2;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (is_on_b)
|
|
{
|
|
if (is_near_a1 && sides.template get<0, 0>() == 0) // a1 wrt b
|
|
{
|
|
dist_a1_i1 = 0;
|
|
//i1 = a1v;
|
|
ip_flag = ipi_at_a1;
|
|
return true;
|
|
}
|
|
|
|
if (is_near_a2 && sides.template get<0, 1>() == 0) // a2 wrt b
|
|
{
|
|
dist_a1_i1 = dist_a1_a2;
|
|
//i1 = a2v;
|
|
ip_flag = ipi_at_a2;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
ip_flag = ipi_inters;
|
|
|
|
return is_on_a && is_on_b;
|
|
}
|
|
|
|
template <typename Vec3d, typename CalcT>
|
|
static inline void calculate_dists(Vec3d const& a1v, // in
|
|
Vec3d const& a2v, // in
|
|
Vec3d const& norm1, // in
|
|
Vec3d const& i1, // in
|
|
CalcT& dist_a1_a2, CalcT& dist_a1_i1) // out
|
|
{
|
|
CalcT const c0 = 0;
|
|
CalcT const c1 = 1;
|
|
CalcT const c2 = 2;
|
|
CalcT const c4 = 4;
|
|
|
|
CalcT cos_a1_a2 = dot_product(a1v, a2v);
|
|
dist_a1_a2 = -cos_a1_a2 + c1; // [1, -1] -> [0, 2] representing [0, pi]
|
|
|
|
CalcT cos_a1_i1 = dot_product(a1v, i1);
|
|
dist_a1_i1 = -cos_a1_i1 + c1; // [0, 2] representing [0, pi]
|
|
if (dot_product(norm1, cross_product(a1v, i1)) < c0) // left or right of a1 on a
|
|
{
|
|
dist_a1_i1 = -dist_a1_i1; // [0, 2] -> [0, -2] representing [0, -pi]
|
|
}
|
|
if (dist_a1_i1 <= -c2) // <= -pi
|
|
{
|
|
dist_a1_i1 += c4; // += 2pi
|
|
}
|
|
}
|
|
|
|
// the dist of the ip on the other side of the sphere
|
|
template <typename CalcT>
|
|
static inline CalcT dist_of_i2(CalcT const& dist_a1_i1)
|
|
{
|
|
CalcT const c2 = 2;
|
|
CalcT const c4 = 4;
|
|
|
|
CalcT dist_a1_i2 = dist_a1_i1 - c2; // dist_a1_i2 = dist_a1_i1 - pi;
|
|
if (dist_a1_i2 <= -c2) // <= -pi
|
|
{
|
|
dist_a1_i2 += c4; // += 2pi;
|
|
}
|
|
return dist_a1_i2;
|
|
}
|
|
|
|
template <typename CalcT>
|
|
static inline CalcT abs_distance(CalcT const& dist_a1_a2, CalcT const& dist_a1_i1)
|
|
{
|
|
if (dist_a1_i1 < CalcT(0))
|
|
return -dist_a1_i1;
|
|
else if (dist_a1_i1 > dist_a1_a2)
|
|
return dist_a1_i1 - dist_a1_a2;
|
|
else
|
|
return CalcT(0);
|
|
}
|
|
|
|
template <typename CalcT>
|
|
static inline bool is_potentially_crossing(CalcT const& dist_a1_a2, CalcT const& dist_a1_i1, // in
|
|
bool& is_on_a, bool& is_near_a1, bool& is_near_a2) // out
|
|
{
|
|
is_on_a = segment_ratio<CalcT>(dist_a1_i1, dist_a1_a2).on_segment();
|
|
is_near_a1 = is_near(dist_a1_i1);
|
|
is_near_a2 = is_near(dist_a1_a2 - dist_a1_i1);
|
|
return is_on_a || is_near_a1 || is_near_a2;
|
|
}
|
|
|
|
template <typename CalcT, typename P1, typename P2>
|
|
static inline bool is_endpoint_equal(CalcT const& dist,
|
|
P1 const& ai, P2 const& b1, P2 const& b2)
|
|
{
|
|
using geometry::detail::equals::equals_point_point;
|
|
return is_near(dist) && (equals_point_point(ai, b1) || equals_point_point(ai, b2));
|
|
}
|
|
|
|
template <typename CalcT>
|
|
static inline bool is_near(CalcT const& dist)
|
|
{
|
|
CalcT const small_number = CalcT(boost::is_same<CalcT, float>::value ? 0.0001 : 0.00000001);
|
|
return math::abs(dist) <= small_number;
|
|
}
|
|
|
|
template <typename ProjCoord1, typename ProjCoord2>
|
|
static inline int position_value(ProjCoord1 const& ca1,
|
|
ProjCoord2 const& cb1,
|
|
ProjCoord2 const& cb2)
|
|
{
|
|
// S1x 0 1 2 3 4
|
|
// S2 |---------->
|
|
return math::equals(ca1, cb1) ? 1
|
|
: math::equals(ca1, cb2) ? 3
|
|
: cb1 < cb2 ?
|
|
( ca1 < cb1 ? 0
|
|
: ca1 > cb2 ? 4
|
|
: 2 )
|
|
: ( ca1 > cb1 ? 0
|
|
: ca1 < cb2 ? 4
|
|
: 2 );
|
|
}
|
|
};
|
|
|
|
|
|
#ifndef DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
|
|
namespace services
|
|
{
|
|
|
|
/*template <typename Policy, typename CalculationType>
|
|
struct default_strategy<spherical_polar_tag, Policy, CalculationType>
|
|
{
|
|
typedef relate_spherical_segments<Policy, CalculationType> type;
|
|
};*/
|
|
|
|
template <typename Policy, typename CalculationType>
|
|
struct default_strategy<spherical_equatorial_tag, Policy, CalculationType>
|
|
{
|
|
typedef relate_spherical_segments<Policy, CalculationType> type;
|
|
};
|
|
|
|
template <typename Policy, typename CalculationType>
|
|
struct default_strategy<geographic_tag, Policy, CalculationType>
|
|
{
|
|
typedef relate_spherical_segments<Policy, CalculationType> type;
|
|
};
|
|
|
|
} // namespace services
|
|
#endif // DOXYGEN_NO_STRATEGY_SPECIALIZATIONS
|
|
|
|
|
|
}} // namespace strategy::intersection
|
|
|
|
}} // namespace boost::geometry
|
|
|
|
|
|
#endif // BOOST_GEOMETRY_STRATEGIES_SPHERICAL_INTERSECTION_HPP
|