vn-verdnaturachat/ios/Pods/Flipper-Folly/folly/experimental/FunctionScheduler.h

382 lines
12 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <folly/Function.h>
#include <folly/Range.h>
#include <folly/hash/Hash.h>
#include <chrono>
#include <condition_variable>
#include <mutex>
#include <thread>
#include <unordered_map>
#include <vector>
namespace folly {
/**
* Schedules any number of functions to run at various intervals. E.g.,
*
* FunctionScheduler fs;
*
* fs.addFunction([&] { LOG(INFO) << "tick..."; }, seconds(1), "ticker");
* fs.addFunction(std::bind(&TestClass::doStuff, this), minutes(5), "stuff");
* fs.start();
* ........
* fs.cancelFunction("ticker");
* fs.addFunction([&] { LOG(INFO) << "tock..."; }, minutes(3), "tocker");
* ........
* fs.shutdown();
*
*
* Note: the class uses only one thread - if you want to use more than one
* thread, either use multiple FunctionScheduler objects, or check out
* ThreadedRepeatingFunctionRunner.h for a much simpler contract of
* "run each function periodically in its own thread".
*
* start() schedules the functions, while shutdown() terminates further
* scheduling.
*/
class FunctionScheduler {
public:
FunctionScheduler();
~FunctionScheduler();
/**
* By default steady is false, meaning schedules may lag behind overtime.
* This could be due to long running tasks or time drift because of randomness
* in thread wakeup time.
* By setting steady to true, FunctionScheduler will attempt to catch up.
* i.e. more like a cronjob
*
* NOTE: it's only safe to set this before calling start()
*/
void setSteady(bool steady) {
steady_ = steady;
}
/*
* Parameters to control the function interval.
*
* If isPoisson is true, then use std::poisson_distribution to pick the
* interval between each invocation of the function.
*
* If isPoisson is false, then always use the fixed interval specified to
* addFunction().
*/
struct LatencyDistribution {
bool isPoisson;
double poissonMean;
LatencyDistribution(bool poisson, double mean)
: isPoisson(poisson), poissonMean(mean) {}
};
/**
* Adds a new function to the FunctionScheduler.
*
* Functions will not be run until start() is called. When start() is
* called, each function will be run after its specified startDelay.
* Functions may also be added after start() has been called, in which case
* startDelay is still honored.
*
* Throws an exception on error. In particular, each function must have a
* unique name--two functions cannot be added with the same name.
*/
void addFunction(
Function<void()>&& cb,
std::chrono::milliseconds interval,
StringPiece nameID = StringPiece(),
std::chrono::milliseconds startDelay = std::chrono::milliseconds(0));
/*
* Add a new function to the FunctionScheduler with a specified
* LatencyDistribution
*/
void addFunction(
Function<void()>&& cb,
std::chrono::milliseconds interval,
const LatencyDistribution& latencyDistr,
StringPiece nameID = StringPiece(),
std::chrono::milliseconds startDelay = std::chrono::milliseconds(0));
/**
* Adds a new function to the FunctionScheduler to run only once.
*/
void addFunctionOnce(
Function<void()>&& cb,
StringPiece nameID = StringPiece(),
std::chrono::milliseconds startDelay = std::chrono::milliseconds(0));
/**
* Add a new function to the FunctionScheduler with the time
* interval being distributed uniformly within the given interval
* [minInterval, maxInterval].
*/
void addFunctionUniformDistribution(
Function<void()>&& cb,
std::chrono::milliseconds minInterval,
std::chrono::milliseconds maxInterval,
StringPiece nameID,
std::chrono::milliseconds startDelay);
/**
* Add a new function to the FunctionScheduler whose start times are attempted
* to be scheduled so that they are congruent modulo the interval.
* Note: The scheduling of the next run time happens right before the function
* invocation, so the first time a function takes more time than the interval,
* it will be reinvoked immediately.
*/
void addFunctionConsistentDelay(
Function<void()>&& cb,
std::chrono::milliseconds interval,
StringPiece nameID = StringPiece(),
std::chrono::milliseconds startDelay = std::chrono::milliseconds(0));
/**
* A type alias for function that is called to determine the time
* interval for the next scheduled run.
*/
using IntervalDistributionFunc = Function<std::chrono::milliseconds()>;
/**
* A type alias for function that returns the next run time, given the current
* run time and the current start time.
*/
using NextRunTimeFunc = Function<std::chrono::steady_clock::time_point(
std::chrono::steady_clock::time_point,
std::chrono::steady_clock::time_point)>;
/**
* Add a new function to the FunctionScheduler. The scheduling interval
* is determined by the interval distribution functor, which is called
* every time the next function execution is scheduled. This allows
* for supporting custom interval distribution algorithms in addition
* to built in constant interval; and Poisson and jitter distributions
* (@see FunctionScheduler::addFunction and
* @see FunctionScheduler::addFunctionJitterInterval).
*/
void addFunctionGenericDistribution(
Function<void()>&& cb,
IntervalDistributionFunc&& intervalFunc,
const std::string& nameID,
const std::string& intervalDescr,
std::chrono::milliseconds startDelay);
/**
* Like addFunctionGenericDistribution, adds a new function to the
* FunctionScheduler, but the next run time is determined directly by the
* given functor, rather than by adding an interval.
*/
void addFunctionGenericNextRunTimeFunctor(
Function<void()>&& cb,
NextRunTimeFunc&& fn,
const std::string& nameID,
const std::string& intervalDescr,
std::chrono::milliseconds startDelay);
/**
* Cancels the function with the specified name, so it will no longer be run.
*
* Returns false if no function exists with the specified name.
*/
bool cancelFunction(StringPiece nameID);
bool cancelFunctionAndWait(StringPiece nameID);
/**
* All functions registered will be canceled.
*/
void cancelAllFunctions();
void cancelAllFunctionsAndWait();
/**
* Resets the specified function's timer.
* When resetFunctionTimer is called, the specified function's timer will
* be reset with the same parameters it was passed initially, including
* its startDelay. If the startDelay was 0, the function will be invoked
* immediately.
*
* Returns false if no function exists with the specified name.
*/
bool resetFunctionTimer(StringPiece nameID);
/**
* Starts the scheduler.
*
* Returns false if the scheduler was already running.
*/
bool start();
/**
* Stops the FunctionScheduler.
*
* It may be restarted later by calling start() again.
* Returns false if the scheduler was not running.
*/
bool shutdown();
/**
* Set the name of the worker thread.
*/
void setThreadName(StringPiece threadName);
private:
struct RepeatFunc {
Function<void()> cb;
NextRunTimeFunc nextRunTimeFunc;
std::chrono::steady_clock::time_point nextRunTime;
std::string name;
std::chrono::milliseconds startDelay;
std::string intervalDescr;
bool runOnce;
RepeatFunc(
Function<void()>&& cback,
IntervalDistributionFunc&& intervalFn,
const std::string& nameID,
const std::string& intervalDistDescription,
std::chrono::milliseconds delay,
bool once)
: RepeatFunc(
std::move(cback),
getNextRunTimeFunc(std::move(intervalFn)),
nameID,
intervalDistDescription,
delay,
once) {}
RepeatFunc(
Function<void()>&& cback,
NextRunTimeFunc&& nextRunTimeFn,
const std::string& nameID,
const std::string& intervalDistDescription,
std::chrono::milliseconds delay,
bool once)
: cb(std::move(cback)),
nextRunTimeFunc(std::move(nextRunTimeFn)),
nextRunTime(),
name(nameID),
startDelay(delay),
intervalDescr(intervalDistDescription),
runOnce(once) {}
static NextRunTimeFunc getNextRunTimeFunc(
IntervalDistributionFunc&& intervalFn) {
return [intervalFn = std::move(intervalFn)](
std::chrono::steady_clock::time_point /* curNextRunTime */,
std::chrono::steady_clock::time_point curTime) mutable {
return curTime + intervalFn();
};
}
std::chrono::steady_clock::time_point getNextRunTime() const {
return nextRunTime;
}
void setNextRunTimeStrict(std::chrono::steady_clock::time_point curTime) {
nextRunTime = nextRunTimeFunc(nextRunTime, curTime);
}
void setNextRunTimeSteady() {
nextRunTime = nextRunTimeFunc(nextRunTime, nextRunTime);
}
void resetNextRunTime(std::chrono::steady_clock::time_point curTime) {
nextRunTime = curTime + startDelay;
}
void cancel() {
// Simply reset cb to an empty function.
cb = {};
}
bool isValid() const {
return bool(cb);
}
};
struct RunTimeOrder {
bool operator()(
const std::unique_ptr<RepeatFunc>& f1,
const std::unique_ptr<RepeatFunc>& f2) const {
return f1->getNextRunTime() > f2->getNextRunTime();
}
};
typedef std::vector<std::unique_ptr<RepeatFunc>> FunctionHeap;
typedef std::unordered_map<StringPiece, RepeatFunc*, Hash> FunctionMap;
void run();
void runOneFunction(
std::unique_lock<std::mutex>& lock,
std::chrono::steady_clock::time_point now);
void cancelFunction(const std::unique_lock<std::mutex>& lock, RepeatFunc* it);
void addFunctionToHeap(
const std::unique_lock<std::mutex>& lock,
std::unique_ptr<RepeatFunc> func);
template <typename RepeatFuncNextRunTimeFunc>
void addFunctionToHeapChecked(
Function<void()>&& cb,
RepeatFuncNextRunTimeFunc&& fn,
const std::string& nameID,
const std::string& intervalDescr,
std::chrono::milliseconds startDelay,
bool runOnce);
void addFunctionInternal(
Function<void()>&& cb,
NextRunTimeFunc&& fn,
const std::string& nameID,
const std::string& intervalDescr,
std::chrono::milliseconds startDelay,
bool runOnce);
void addFunctionInternal(
Function<void()>&& cb,
IntervalDistributionFunc&& fn,
const std::string& nameID,
const std::string& intervalDescr,
std::chrono::milliseconds startDelay,
bool runOnce);
// Return true if the current function is being canceled
bool cancelAllFunctionsWithLock(std::unique_lock<std::mutex>& lock);
bool cancelFunctionWithLock(
std::unique_lock<std::mutex>& lock,
StringPiece nameID);
std::thread thread_;
// Mutex to protect our member variables.
std::mutex mutex_;
bool running_{false};
// The functions to run.
// This is a heap, ordered by next run time.
FunctionHeap functions_;
FunctionMap functionsMap_;
RunTimeOrder fnCmp_;
// The function currently being invoked by the running thread.
// This is null when the running thread is idle
RepeatFunc* currentFunction_{nullptr};
// Condition variable that is signalled whenever a new function is added
// or when the FunctionScheduler is stopped.
std::condition_variable runningCondvar_;
std::string threadName_;
bool steady_{false};
bool cancellingCurrentFunction_{false};
};
} // namespace folly