vn-verdnaturachat/ios/Pods/Flipper-Folly/folly/Optional.h

689 lines
18 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
/*
* Optional - For conditional initialization of values, like boost::optional,
* but with support for move semantics and emplacement. Reference type support
* has not been included due to limited use cases and potential confusion with
* semantics of assignment: Assigning to an optional reference could quite
* reasonably copy its value or redirect the reference.
*
* Optional can be useful when a variable might or might not be needed:
*
* Optional<Logger> maybeLogger = ...;
* if (maybeLogger) {
* maybeLogger->log("hello");
* }
*
* Optional enables a 'null' value for types which do not otherwise have
* nullability, especially useful for parameter passing:
*
* void testIterator(const unique_ptr<Iterator>& it,
* initializer_list<int> idsExpected,
* Optional<initializer_list<int>> ranksExpected = none) {
* for (int i = 0; it->next(); ++i) {
* EXPECT_EQ(it->doc().id(), idsExpected[i]);
* if (ranksExpected) {
* EXPECT_EQ(it->doc().rank(), (*ranksExpected)[i]);
* }
* }
* }
*
* Optional models OptionalPointee, so calling 'get_pointer(opt)' will return a
* pointer to nullptr if the 'opt' is empty, and a pointer to the value if it is
* not:
*
* Optional<int> maybeInt = ...;
* if (int* v = get_pointer(maybeInt)) {
* cout << *v << endl;
* }
*/
#include <cstddef>
#include <functional>
#include <new>
#include <stdexcept>
#include <type_traits>
#include <utility>
#include <folly/Portability.h>
#include <folly/Traits.h>
#include <folly/Utility.h>
#include <folly/lang/Exception.h>
namespace folly {
template <class Value>
class Optional;
namespace detail {
template <class Value>
struct OptionalPromiseReturn;
} // namespace detail
struct None {
enum class _secret { _token };
/**
* No default constructor to support both `op = {}` and `op = none`
* as syntax for clearing an Optional, just like std::nullopt_t.
*/
explicit constexpr None(_secret) {}
};
constexpr None none{None::_secret::_token};
class FOLLY_EXPORT OptionalEmptyException : public std::runtime_error {
public:
OptionalEmptyException()
: std::runtime_error("Empty Optional cannot be unwrapped") {}
};
template <class Value>
class Optional {
public:
typedef Value value_type;
static_assert(
!std::is_reference<Value>::value,
"Optional may not be used with reference types");
static_assert(
!std::is_abstract<Value>::value,
"Optional may not be used with abstract types");
constexpr Optional() noexcept {}
Optional(const Optional& src) noexcept(
std::is_nothrow_copy_constructible<Value>::value) {
if (src.hasValue()) {
construct(src.value());
}
}
Optional(Optional&& src) noexcept(
std::is_nothrow_move_constructible<Value>::value) {
if (src.hasValue()) {
construct(std::move(src.value()));
src.reset();
}
}
constexpr /* implicit */ Optional(const None&) noexcept {}
constexpr /* implicit */ Optional(Value&& newValue) noexcept(
std::is_nothrow_move_constructible<Value>::value) {
construct(std::move(newValue));
}
constexpr /* implicit */ Optional(const Value& newValue) noexcept(
std::is_nothrow_copy_constructible<Value>::value) {
construct(newValue);
}
template <typename... Args>
constexpr explicit Optional(in_place_t, Args&&... args) noexcept(
std::is_nothrow_constructible<Value, Args...>::value)
: Optional{PrivateConstructor{}, std::forward<Args>(args)...} {}
template <typename U, typename... Args>
constexpr explicit Optional(
in_place_t,
std::initializer_list<U> il,
Args&&... args) noexcept(std::
is_nothrow_constructible<
Value,
std::initializer_list<U>,
Args...>::value)
: Optional{PrivateConstructor{}, il, std::forward<Args>(args)...} {}
// Used only when an Optional is used with coroutines on MSVC
/* implicit */ Optional(const detail::OptionalPromiseReturn<Value>& p)
: Optional{} {
p.promise_->value_ = this;
}
void assign(const None&) {
reset();
}
void assign(Optional&& src) {
if (this != &src) {
if (src.hasValue()) {
assign(std::move(src.value()));
src.reset();
} else {
reset();
}
}
}
void assign(const Optional& src) {
if (src.hasValue()) {
assign(src.value());
} else {
reset();
}
}
void assign(Value&& newValue) {
if (hasValue()) {
storage_.value = std::move(newValue);
} else {
construct(std::move(newValue));
}
}
void assign(const Value& newValue) {
if (hasValue()) {
storage_.value = newValue;
} else {
construct(newValue);
}
}
Optional& operator=(None) noexcept {
reset();
return *this;
}
template <class Arg>
Optional& operator=(Arg&& arg) {
assign(std::forward<Arg>(arg));
return *this;
}
Optional& operator=(Optional&& other) noexcept(
std::is_nothrow_move_assignable<Value>::value) {
assign(std::move(other));
return *this;
}
Optional& operator=(const Optional& other) noexcept(
std::is_nothrow_copy_assignable<Value>::value) {
assign(other);
return *this;
}
template <class... Args>
Value& emplace(Args&&... args) {
reset();
construct(std::forward<Args>(args)...);
return value();
}
template <class U, class... Args>
typename std::enable_if<
std::is_constructible<Value, std::initializer_list<U>&, Args&&...>::value,
Value&>::type
emplace(std::initializer_list<U> ilist, Args&&... args) {
reset();
construct(ilist, std::forward<Args>(args)...);
return value();
}
void reset() noexcept {
storage_.clear();
}
void clear() noexcept {
reset();
}
void swap(Optional& that) noexcept(IsNothrowSwappable<Value>::value) {
if (hasValue() && that.hasValue()) {
using std::swap;
swap(value(), that.value());
} else if (hasValue()) {
that.emplace(std::move(value()));
reset();
} else if (that.hasValue()) {
emplace(std::move(that.value()));
that.reset();
}
}
constexpr const Value& value() const& {
require_value();
return storage_.value;
}
constexpr Value& value() & {
require_value();
return storage_.value;
}
constexpr Value&& value() && {
require_value();
return std::move(storage_.value);
}
constexpr const Value&& value() const&& {
require_value();
return std::move(storage_.value);
}
const Value* get_pointer() const& {
return storage_.hasValue ? &storage_.value : nullptr;
}
Value* get_pointer() & {
return storage_.hasValue ? &storage_.value : nullptr;
}
Value* get_pointer() && = delete;
constexpr bool has_value() const noexcept {
return storage_.hasValue;
}
constexpr bool hasValue() const noexcept {
return has_value();
}
constexpr explicit operator bool() const noexcept {
return has_value();
}
constexpr const Value& operator*() const& {
return value();
}
constexpr Value& operator*() & {
return value();
}
constexpr const Value&& operator*() const&& {
return std::move(value());
}
constexpr Value&& operator*() && {
return std::move(value());
}
constexpr const Value* operator->() const {
return &value();
}
constexpr Value* operator->() {
return &value();
}
// Return a copy of the value if set, or a given default if not.
template <class U>
constexpr Value value_or(U&& dflt) const& {
if (storage_.hasValue) {
return storage_.value;
}
return std::forward<U>(dflt);
}
template <class U>
constexpr Value value_or(U&& dflt) && {
if (storage_.hasValue) {
return std::move(storage_.value);
}
return std::forward<U>(dflt);
}
private:
template <class T>
friend constexpr Optional<std::decay_t<T>> make_optional(T&&);
template <class T, class... Args>
friend constexpr Optional<T> make_optional(Args&&... args);
template <class T, class U, class... As>
friend constexpr Optional<T> make_optional(std::initializer_list<U>, As&&...);
/**
* Construct the optional in place, this is duplicated as a non-explicit
* constructor to allow returning values that are non-movable from
* make_optional using list initialization.
*
* Until C++17, at which point this will become unnecessary because of
* specified prvalue elision.
*/
struct PrivateConstructor {
explicit PrivateConstructor() = default;
};
template <typename... Args>
constexpr Optional(PrivateConstructor, Args&&... args) noexcept(
std::is_constructible<Value, Args&&...>::value) {
construct(std::forward<Args>(args)...);
}
void require_value() const {
if (!storage_.hasValue) {
throw_exception<OptionalEmptyException>();
}
}
template <class... Args>
void construct(Args&&... args) {
const void* ptr = &storage_.value;
// For supporting const types.
new (const_cast<void*>(ptr)) Value(std::forward<Args>(args)...);
storage_.hasValue = true;
}
struct StorageTriviallyDestructible {
union {
char emptyState;
Value value;
};
bool hasValue;
constexpr StorageTriviallyDestructible()
: emptyState('\0'), hasValue{false} {}
void clear() {
hasValue = false;
}
};
struct StorageNonTriviallyDestructible {
union {
char emptyState;
Value value;
};
bool hasValue;
StorageNonTriviallyDestructible() : hasValue{false} {}
~StorageNonTriviallyDestructible() {
clear();
}
void clear() {
if (hasValue) {
hasValue = false;
value.~Value();
}
}
};
using Storage = typename std::conditional<
std::is_trivially_destructible<Value>::value,
StorageTriviallyDestructible,
StorageNonTriviallyDestructible>::type;
Storage storage_;
};
template <class T>
const T* get_pointer(const Optional<T>& opt) {
return opt.get_pointer();
}
template <class T>
T* get_pointer(Optional<T>& opt) {
return opt.get_pointer();
}
template <class T>
void swap(Optional<T>& a, Optional<T>& b) noexcept(noexcept(a.swap(b))) {
a.swap(b);
}
template <class T>
constexpr Optional<std::decay_t<T>> make_optional(T&& v) {
using PrivateConstructor =
typename folly::Optional<std::decay_t<T>>::PrivateConstructor;
return {PrivateConstructor{}, std::forward<T>(v)};
}
template <class T, class... Args>
constexpr folly::Optional<T> make_optional(Args&&... args) {
using PrivateConstructor = typename folly::Optional<T>::PrivateConstructor;
return {PrivateConstructor{}, std::forward<Args>(args)...};
}
template <class T, class U, class... Args>
constexpr folly::Optional<T> make_optional(
std::initializer_list<U> il,
Args&&... args) {
using PrivateConstructor = typename folly::Optional<T>::PrivateConstructor;
return {PrivateConstructor{}, il, std::forward<Args>(args)...};
}
///////////////////////////////////////////////////////////////////////////////
// Comparisons.
template <class U, class V>
constexpr bool operator==(const Optional<U>& a, const V& b) {
return a.hasValue() && a.value() == b;
}
template <class U, class V>
constexpr bool operator!=(const Optional<U>& a, const V& b) {
return !(a == b);
}
template <class U, class V>
constexpr bool operator==(const U& a, const Optional<V>& b) {
return b.hasValue() && b.value() == a;
}
template <class U, class V>
constexpr bool operator!=(const U& a, const Optional<V>& b) {
return !(a == b);
}
template <class U, class V>
constexpr bool operator==(const Optional<U>& a, const Optional<V>& b) {
if (a.hasValue() != b.hasValue()) {
return false;
}
if (a.hasValue()) {
return a.value() == b.value();
}
return true;
}
template <class U, class V>
constexpr bool operator!=(const Optional<U>& a, const Optional<V>& b) {
return !(a == b);
}
template <class U, class V>
constexpr bool operator<(const Optional<U>& a, const Optional<V>& b) {
if (a.hasValue() != b.hasValue()) {
return a.hasValue() < b.hasValue();
}
if (a.hasValue()) {
return a.value() < b.value();
}
return false;
}
template <class U, class V>
constexpr bool operator>(const Optional<U>& a, const Optional<V>& b) {
return b < a;
}
template <class U, class V>
constexpr bool operator<=(const Optional<U>& a, const Optional<V>& b) {
return !(b < a);
}
template <class U, class V>
constexpr bool operator>=(const Optional<U>& a, const Optional<V>& b) {
return !(a < b);
}
// Suppress comparability of Optional<T> with T, despite implicit conversion.
template <class V>
bool operator<(const Optional<V>&, const V& other) = delete;
template <class V>
bool operator<=(const Optional<V>&, const V& other) = delete;
template <class V>
bool operator>=(const Optional<V>&, const V& other) = delete;
template <class V>
bool operator>(const Optional<V>&, const V& other) = delete;
template <class V>
bool operator<(const V& other, const Optional<V>&) = delete;
template <class V>
bool operator<=(const V& other, const Optional<V>&) = delete;
template <class V>
bool operator>=(const V& other, const Optional<V>&) = delete;
template <class V>
bool operator>(const V& other, const Optional<V>&) = delete;
// Comparisons with none
template <class V>
constexpr bool operator==(const Optional<V>& a, None) noexcept {
return !a.hasValue();
}
template <class V>
constexpr bool operator==(None, const Optional<V>& a) noexcept {
return !a.hasValue();
}
template <class V>
constexpr bool operator<(const Optional<V>&, None) noexcept {
return false;
}
template <class V>
constexpr bool operator<(None, const Optional<V>& a) noexcept {
return a.hasValue();
}
template <class V>
constexpr bool operator>(const Optional<V>& a, None) noexcept {
return a.hasValue();
}
template <class V>
constexpr bool operator>(None, const Optional<V>&) noexcept {
return false;
}
template <class V>
constexpr bool operator<=(None, const Optional<V>&) noexcept {
return true;
}
template <class V>
constexpr bool operator<=(const Optional<V>& a, None) noexcept {
return !a.hasValue();
}
template <class V>
constexpr bool operator>=(const Optional<V>&, None) noexcept {
return true;
}
template <class V>
constexpr bool operator>=(None, const Optional<V>& a) noexcept {
return !a.hasValue();
}
///////////////////////////////////////////////////////////////////////////////
} // namespace folly
// Allow usage of Optional<T> in std::unordered_map and std::unordered_set
FOLLY_NAMESPACE_STD_BEGIN
template <class T>
struct hash<folly::Optional<T>> {
size_t operator()(folly::Optional<T> const& obj) const {
if (!obj.hasValue()) {
return 0;
}
return hash<typename remove_const<T>::type>()(*obj);
}
};
FOLLY_NAMESPACE_STD_END
// Enable the use of folly::Optional with `co_await`
// Inspired by https://github.com/toby-allsopp/coroutine_monad
#if FOLLY_HAS_COROUTINES
#include <experimental/coroutine>
namespace folly {
namespace detail {
template <typename Value>
struct OptionalPromise;
template <typename Value>
struct OptionalPromiseReturn {
Optional<Value> storage_;
OptionalPromise<Value>* promise_;
/* implicit */ OptionalPromiseReturn(OptionalPromise<Value>& promise) noexcept
: promise_(&promise) {
promise.value_ = &storage_;
}
OptionalPromiseReturn(OptionalPromiseReturn&& that) noexcept
: OptionalPromiseReturn{*that.promise_} {}
~OptionalPromiseReturn() {}
/* implicit */ operator Optional<Value>() & {
return std::move(storage_);
}
};
template <typename Value>
struct OptionalPromise {
Optional<Value>* value_ = nullptr;
OptionalPromise() = default;
OptionalPromise(OptionalPromise const&) = delete;
// This should work regardless of whether the compiler generates:
// folly::Optional<Value> retobj{ p.get_return_object(); } // MSVC
// or:
// auto retobj = p.get_return_object(); // clang
OptionalPromiseReturn<Value> get_return_object() noexcept {
return *this;
}
std::experimental::suspend_never initial_suspend() const noexcept {
return {};
}
std::experimental::suspend_never final_suspend() const {
return {};
}
template <typename U>
void return_value(U&& u) {
*value_ = static_cast<U&&>(u);
}
void unhandled_exception() {
// Technically, throwing from unhandled_exception is underspecified:
// https://github.com/GorNishanov/CoroutineWording/issues/17
throw;
}
};
template <typename Value>
struct OptionalAwaitable {
Optional<Value> o_;
bool await_ready() const noexcept {
return o_.hasValue();
}
Value await_resume() {
return std::move(o_.value());
}
// Explicitly only allow suspension into an OptionalPromise
template <typename U>
void await_suspend(
std::experimental::coroutine_handle<OptionalPromise<U>> h) const {
// Abort the rest of the coroutine. resume() is not going to be called
h.destroy();
}
};
} // namespace detail
template <typename Value>
detail::OptionalAwaitable<Value>
/* implicit */ operator co_await(Optional<Value> o) {
return {std::move(o)};
}
} // namespace folly
// This makes folly::Optional<Value> useable as a coroutine return type..
namespace std {
namespace experimental {
template <typename Value, typename... Args>
struct coroutine_traits<folly::Optional<Value>, Args...> {
using promise_type = folly::detail::OptionalPromise<Value>;
};
} // namespace experimental
} // namespace std
#endif // FOLLY_HAS_COROUTINES