vn-verdnaturachat/ios/Pods/Flipper-Folly/folly/gen/Core-inl.h

379 lines
12 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FOLLY_GEN_CORE_H_
#error This file may only be included from folly/gen/Core.h
#endif
#include <type_traits>
#include <utility>
#include <folly/Portability.h>
// Ignore shadowing warnings within this file, so includers can use -Wshadow.
FOLLY_PUSH_WARNING
FOLLY_GNU_DISABLE_WARNING("-Wshadow")
namespace folly {
namespace gen {
/**
* IsCompatibleSignature - Trait type for testing whether a given Functor
* matches an expected signature.
*
* Usage:
* IsCompatibleSignature<FunctorType, bool(int, float)>::value
*/
template <class Candidate, class Expected>
class IsCompatibleSignature {
static constexpr bool value = false;
};
template <class Candidate, class ExpectedReturn, class... ArgTypes>
class IsCompatibleSignature<Candidate, ExpectedReturn(ArgTypes...)> {
template <
class F,
class ActualReturn =
decltype(std::declval<F>()(std::declval<ArgTypes>()...)),
bool good = std::is_same<ExpectedReturn, ActualReturn>::value>
static constexpr bool testArgs(int*) {
return good;
}
template <class F>
static constexpr bool testArgs(...) {
return false;
}
public:
static constexpr bool value = testArgs<Candidate>(nullptr);
};
/**
* FBounded - Helper type for the curiously recurring template pattern, used
* heavily here to enable inlining and obviate virtual functions
*/
template <class Self>
struct FBounded {
const Self& self() const {
return *static_cast<const Self*>(this);
}
Self& self() {
return *static_cast<Self*>(this);
}
};
/**
* Operator - Core abstraction of an operation which may be applied to a
* generator. All operators implement a method compose(), which takes a
* generator and produces an output generator.
*/
template <class Self>
class Operator : public FBounded<Self> {
public:
/**
* compose() - Must be implemented by child class to compose a new Generator
* out of a given generator. This function left intentionally unimplemented.
*/
template <class Source, class Value, class ResultGen = void>
ResultGen compose(const GenImpl<Value, Source>& source) const;
protected:
Operator() = default;
Operator(Operator&&) noexcept = default;
Operator(const Operator&) = default;
Operator& operator=(Operator&&) noexcept = default;
Operator& operator=(const Operator&) = default;
};
/**
* operator|() - For composing two operators without binding it to a
* particular generator.
*/
template <
class Left,
class Right,
class Composed = detail::Composed<Left, Right>>
Composed operator|(const Operator<Left>& left, const Operator<Right>& right) {
return Composed(left.self(), right.self());
}
template <
class Left,
class Right,
class Composed = detail::Composed<Left, Right>>
Composed operator|(const Operator<Left>& left, Operator<Right>&& right) {
return Composed(left.self(), std::move(right.self()));
}
template <
class Left,
class Right,
class Composed = detail::Composed<Left, Right>>
Composed operator|(Operator<Left>&& left, const Operator<Right>& right) {
return Composed(std::move(left.self()), right.self());
}
template <
class Left,
class Right,
class Composed = detail::Composed<Left, Right>>
Composed operator|(Operator<Left>&& left, Operator<Right>&& right) {
return Composed(std::move(left.self()), std::move(right.self()));
}
/**
* GenImpl - Core abstraction of a generator, an object which produces values by
* passing them to a given handler lambda. All generator implementations must
* implement apply(). foreach() may also be implemented to special case the
* condition where the entire sequence is consumed.
*/
template <class Value, class Self>
class GenImpl : public FBounded<Self> {
protected:
// To prevent slicing
GenImpl() = default;
GenImpl(GenImpl&&) = default;
GenImpl(const GenImpl&) = default;
GenImpl& operator=(GenImpl&&) = default;
GenImpl& operator=(const GenImpl&) = default;
public:
typedef Value ValueType;
typedef typename std::decay<Value>::type StorageType;
/**
* apply() - Send all values produced by this generator to given handler until
* the handler returns false. Returns false if and only if the handler passed
* in returns false. Note: It should return true even if it completes (without
* the handler returning false), as 'Chain' uses the return value of apply to
* determine if it should process the second object in its chain.
*/
template <class Handler>
bool apply(Handler&& handler) const;
/**
* foreach() - Send all values produced by this generator to given lambda.
*/
template <class Body>
void foreach(Body&& body) const {
this->self().apply([&](Value value) -> bool {
static_assert(!infinite, "Cannot call foreach on infinite GenImpl");
body(std::forward<Value>(value));
return true;
});
}
// Child classes should override if the sequence generated is *definitely*
// infinite. 'infinite' may be false_type for some infinite sequences
// (due the the Halting Problem).
//
// In general, almost all sources are finite (only seq(n) produces an infinite
// source), almost all operators keep the finiteness of the source (only cycle
// makes an infinite generator from a finite one, only until and take make a
// finite generator from an infinite one, and concat needs both the inner and
// outer generators to be finite to make a finite one), and most sinks
// cannot accept and infinite generators (first being the expection).
static constexpr bool infinite = false;
};
template <
class LeftValue,
class Left,
class RightValue,
class Right,
class Chain = detail::Chain<LeftValue, Left, Right>>
Chain operator+(
const GenImpl<LeftValue, Left>& left,
const GenImpl<RightValue, Right>& right) {
static_assert(
std::is_same<LeftValue, RightValue>::value,
"Generators may ony be combined if Values are the exact same type.");
return Chain(left.self(), right.self());
}
template <
class LeftValue,
class Left,
class RightValue,
class Right,
class Chain = detail::Chain<LeftValue, Left, Right>>
Chain operator+(
const GenImpl<LeftValue, Left>& left,
GenImpl<RightValue, Right>&& right) {
static_assert(
std::is_same<LeftValue, RightValue>::value,
"Generators may ony be combined if Values are the exact same type.");
return Chain(left.self(), std::move(right.self()));
}
template <
class LeftValue,
class Left,
class RightValue,
class Right,
class Chain = detail::Chain<LeftValue, Left, Right>>
Chain operator+(
GenImpl<LeftValue, Left>&& left,
const GenImpl<RightValue, Right>& right) {
static_assert(
std::is_same<LeftValue, RightValue>::value,
"Generators may ony be combined if Values are the exact same type.");
return Chain(std::move(left.self()), right.self());
}
template <
class LeftValue,
class Left,
class RightValue,
class Right,
class Chain = detail::Chain<LeftValue, Left, Right>>
Chain operator+(
GenImpl<LeftValue, Left>&& left,
GenImpl<RightValue, Right>&& right) {
static_assert(
std::is_same<LeftValue, RightValue>::value,
"Generators may ony be combined if Values are the exact same type.");
return Chain(std::move(left.self()), std::move(right.self()));
}
/**
* operator|() which enables foreach-like usage:
* gen | [](Value v) -> void {...};
*/
template <class Value, class Gen, class Handler>
typename std::enable_if<
IsCompatibleSignature<Handler, void(Value)>::value>::type
operator|(const GenImpl<Value, Gen>& gen, Handler&& handler) {
static_assert(
!Gen::infinite, "Cannot pull all values from an infinite sequence.");
gen.self().foreach(std::forward<Handler>(handler));
}
/**
* operator|() which enables foreach-like usage with 'break' support:
* gen | [](Value v) -> bool { return shouldContinue(); };
*/
template <class Value, class Gen, class Handler>
typename std::
enable_if<IsCompatibleSignature<Handler, bool(Value)>::value, bool>::type
operator|(const GenImpl<Value, Gen>& gen, Handler&& handler) {
return gen.self().apply(std::forward<Handler>(handler));
}
/**
* operator|() for composing generators with operators, similar to boosts' range
* adaptors:
* gen | map(square) | sum
*/
template <class Value, class Gen, class Op>
auto operator|(const GenImpl<Value, Gen>& gen, const Operator<Op>& op)
-> decltype(op.self().compose(gen.self())) {
return op.self().compose(gen.self());
}
template <class Value, class Gen, class Op>
auto operator|(GenImpl<Value, Gen>&& gen, const Operator<Op>& op)
-> decltype(op.self().compose(std::move(gen.self()))) {
return op.self().compose(std::move(gen.self()));
}
namespace detail {
/**
* Composed - For building up a pipeline of operations to perform, absent any
* particular source generator. Useful for building up custom pipelines.
*
* This type is usually used by just piping two operators together:
*
* auto valuesOf = filter([](Optional<int>& o) { return o.hasValue(); })
* | map([](Optional<int>& o) -> int& { return o.value(); });
*
* auto valuesIncluded = from(optionals) | valuesOf | as<vector>();
*/
template <class First, class Second>
class Composed : public Operator<Composed<First, Second>> {
First first_;
Second second_;
public:
Composed() = default;
Composed(First first, Second second)
: first_(std::move(first)), second_(std::move(second)) {}
template <
class Source,
class Value,
class FirstRet =
decltype(std::declval<First>().compose(std::declval<Source>())),
class SecondRet =
decltype(std::declval<Second>().compose(std::declval<FirstRet>()))>
SecondRet compose(const GenImpl<Value, Source>& source) const {
return second_.compose(first_.compose(source.self()));
}
template <
class Source,
class Value,
class FirstRet =
decltype(std::declval<First>().compose(std::declval<Source>())),
class SecondRet =
decltype(std::declval<Second>().compose(std::declval<FirstRet>()))>
SecondRet compose(GenImpl<Value, Source>&& source) const {
return second_.compose(first_.compose(std::move(source.self())));
}
};
/**
* Chain - For concatenating the values produced by two Generators.
*
* This type is primarily used through using '+' to combine generators, like:
*
* auto nums = seq(1, 10) + seq(20, 30);
* int total = nums | sum;
*/
template <class Value, class First, class Second>
class Chain : public GenImpl<Value, Chain<Value, First, Second>> {
First first_;
Second second_;
public:
explicit Chain(First first, Second second)
: first_(std::move(first)), second_(std::move(second)) {}
template <class Handler>
bool apply(Handler&& handler) const {
return first_.apply(std::forward<Handler>(handler)) &&
second_.apply(std::forward<Handler>(handler));
}
template <class Body>
void foreach(Body&& body) const {
first_.foreach(std::forward<Body>(body));
second_.foreach(std::forward<Body>(body));
}
static constexpr bool infinite = First::infinite || Second::infinite;
};
} // namespace detail
} // namespace gen
} // namespace folly
FOLLY_POP_WARNING