221 lines
7.0 KiB
C++
221 lines
7.0 KiB
C++
/* boost random/negative_binomial_distribution.hpp header file
|
|
*
|
|
* Copyright Steven Watanabe 2010
|
|
* Distributed under the Boost Software License, Version 1.0. (See
|
|
* accompanying file LICENSE_1_0.txt or copy at
|
|
* http://www.boost.org/LICENSE_1_0.txt)
|
|
*
|
|
* See http://www.boost.org for most recent version including documentation.
|
|
*
|
|
* $Id$
|
|
*/
|
|
|
|
#ifndef BOOST_RANDOM_NEGATIVE_BINOMIAL_DISTRIBUTION_HPP_INCLUDED
|
|
#define BOOST_RANDOM_NEGATIVE_BINOMIAL_DISTRIBUTION_HPP_INCLUDED
|
|
|
|
#include <iosfwd>
|
|
|
|
#include <boost/limits.hpp>
|
|
#include <boost/random/detail/config.hpp>
|
|
#include <boost/random/gamma_distribution.hpp>
|
|
#include <boost/random/poisson_distribution.hpp>
|
|
|
|
namespace boost {
|
|
namespace random {
|
|
|
|
/**
|
|
* The negative binomial distribution is an integer valued
|
|
* distribution with two parameters, @c k and @c p. The
|
|
* distribution produces non-negative values.
|
|
*
|
|
* The distribution function is
|
|
* \f$\displaystyle P(i) = {k+i-1\choose i}p^k(1-p)^i\f$.
|
|
*
|
|
* This implementation uses a gamma-poisson mixture.
|
|
*/
|
|
template<class IntType = int, class RealType = double>
|
|
class negative_binomial_distribution {
|
|
public:
|
|
typedef IntType result_type;
|
|
typedef RealType input_type;
|
|
|
|
class param_type {
|
|
public:
|
|
typedef negative_binomial_distribution distribution_type;
|
|
/**
|
|
* Construct a param_type object. @c k and @c p
|
|
* are the parameters of the distribution.
|
|
*
|
|
* Requires: k >=0 && 0 <= p <= 1
|
|
*/
|
|
explicit param_type(IntType k_arg = 1, RealType p_arg = RealType (0.5))
|
|
: _k(k_arg), _p(p_arg)
|
|
{}
|
|
/** Returns the @c k parameter of the distribution. */
|
|
IntType k() const { return _k; }
|
|
/** Returns the @c p parameter of the distribution. */
|
|
RealType p() const { return _p; }
|
|
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
|
|
/** Writes the parameters of the distribution to a @c std::ostream. */
|
|
template<class CharT, class Traits>
|
|
friend std::basic_ostream<CharT,Traits>&
|
|
operator<<(std::basic_ostream<CharT,Traits>& os,
|
|
const param_type& parm)
|
|
{
|
|
os << parm._p << " " << parm._k;
|
|
return os;
|
|
}
|
|
|
|
/** Reads the parameters of the distribution from a @c std::istream. */
|
|
template<class CharT, class Traits>
|
|
friend std::basic_istream<CharT,Traits>&
|
|
operator>>(std::basic_istream<CharT,Traits>& is, param_type& parm)
|
|
{
|
|
is >> parm._p >> std::ws >> parm._k;
|
|
return is;
|
|
}
|
|
#endif
|
|
/** Returns true if the parameters have the same values. */
|
|
friend bool operator==(const param_type& lhs, const param_type& rhs)
|
|
{
|
|
return lhs._k == rhs._k && lhs._p == rhs._p;
|
|
}
|
|
/** Returns true if the parameters have different values. */
|
|
friend bool operator!=(const param_type& lhs, const param_type& rhs)
|
|
{
|
|
return !(lhs == rhs);
|
|
}
|
|
private:
|
|
IntType _k;
|
|
RealType _p;
|
|
};
|
|
|
|
/**
|
|
* Construct a @c negative_binomial_distribution object. @c k and @c p
|
|
* are the parameters of the distribution.
|
|
*
|
|
* Requires: k >=0 && 0 <= p <= 1
|
|
*/
|
|
explicit negative_binomial_distribution(IntType k_arg = 1,
|
|
RealType p_arg = RealType(0.5))
|
|
: _k(k_arg), _p(p_arg)
|
|
{}
|
|
|
|
/**
|
|
* Construct an @c negative_binomial_distribution object from the
|
|
* parameters.
|
|
*/
|
|
explicit negative_binomial_distribution(const param_type& parm)
|
|
: _k(parm.k()), _p(parm.p())
|
|
{}
|
|
|
|
/**
|
|
* Returns a random variate distributed according to the
|
|
* negative binomial distribution.
|
|
*/
|
|
template<class URNG>
|
|
IntType operator()(URNG& urng) const
|
|
{
|
|
gamma_distribution<RealType> gamma(_k, (1-_p)/_p);
|
|
poisson_distribution<IntType, RealType> poisson(gamma(urng));
|
|
return poisson(urng);
|
|
}
|
|
|
|
/**
|
|
* Returns a random variate distributed according to the negative
|
|
* binomial distribution with parameters specified by @c param.
|
|
*/
|
|
template<class URNG>
|
|
IntType operator()(URNG& urng, const param_type& parm) const
|
|
{
|
|
return negative_binomial_distribution(parm)(urng);
|
|
}
|
|
|
|
/** Returns the @c k parameter of the distribution. */
|
|
IntType k() const { return _k; }
|
|
/** Returns the @c p parameter of the distribution. */
|
|
RealType p() const { return _p; }
|
|
|
|
/** Returns the smallest value that the distribution can produce. */
|
|
IntType min BOOST_PREVENT_MACRO_SUBSTITUTION() const { return 0; }
|
|
/** Returns the largest value that the distribution can produce. */
|
|
IntType max BOOST_PREVENT_MACRO_SUBSTITUTION() const
|
|
{ return (std::numeric_limits<IntType>::max)(); }
|
|
|
|
/** Returns the parameters of the distribution. */
|
|
param_type param() const { return param_type(_k, _p); }
|
|
/** Sets parameters of the distribution. */
|
|
void param(const param_type& parm)
|
|
{
|
|
_k = parm.k();
|
|
_p = parm.p();
|
|
}
|
|
|
|
/**
|
|
* Effects: Subsequent uses of the distribution do not depend
|
|
* on values produced by any engine prior to invoking reset.
|
|
*/
|
|
void reset() { }
|
|
|
|
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
|
|
/** Writes the parameters of the distribution to a @c std::ostream. */
|
|
template<class CharT, class Traits>
|
|
friend std::basic_ostream<CharT,Traits>&
|
|
operator<<(std::basic_ostream<CharT,Traits>& os,
|
|
const negative_binomial_distribution& bd)
|
|
{
|
|
os << bd.param();
|
|
return os;
|
|
}
|
|
|
|
/** Reads the parameters of the distribution from a @c std::istream. */
|
|
template<class CharT, class Traits>
|
|
friend std::basic_istream<CharT,Traits>&
|
|
operator>>(std::basic_istream<CharT,Traits>& is,
|
|
negative_binomial_distribution& bd)
|
|
{
|
|
bd.read(is);
|
|
return is;
|
|
}
|
|
#endif
|
|
|
|
/** Returns true if the two distributions will produce the same
|
|
sequence of values, given equal generators. */
|
|
friend bool operator==(const negative_binomial_distribution& lhs,
|
|
const negative_binomial_distribution& rhs)
|
|
{
|
|
return lhs._k == rhs._k && lhs._p == rhs._p;
|
|
}
|
|
/** Returns true if the two distributions could produce different
|
|
sequences of values, given equal generators. */
|
|
friend bool operator!=(const negative_binomial_distribution& lhs,
|
|
const negative_binomial_distribution& rhs)
|
|
{
|
|
return !(lhs == rhs);
|
|
}
|
|
|
|
private:
|
|
|
|
/// @cond \show_private
|
|
|
|
template<class CharT, class Traits>
|
|
void read(std::basic_istream<CharT, Traits>& is) {
|
|
param_type parm;
|
|
if(is >> parm) {
|
|
param(parm);
|
|
}
|
|
}
|
|
|
|
// parameters
|
|
IntType _k;
|
|
RealType _p;
|
|
|
|
/// @endcond
|
|
};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|