vn-verdnaturachat/ios/Pods/boost-for-react-native/boost/graph/dominator_tree.hpp

495 lines
18 KiB
C++

//=======================================================================
// Copyright (C) 2005-2009 Jongsoo Park <jongsoo.park -at- gmail.com>
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_GRAPH_DOMINATOR_HPP
#define BOOST_GRAPH_DOMINATOR_HPP
#include <boost/config.hpp>
#include <deque>
#include <set>
#include <boost/graph/depth_first_search.hpp>
#include <boost/concept/assert.hpp>
// Dominator tree computation
namespace boost {
namespace detail {
/**
* An extended time_stamper which also records vertices for each dfs number
*/
template<class TimeMap, class VertexVector, class TimeT, class Tag>
class time_stamper_with_vertex_vector
: public base_visitor<
time_stamper_with_vertex_vector<TimeMap, VertexVector, TimeT, Tag> >
{
public :
typedef Tag event_filter;
time_stamper_with_vertex_vector(TimeMap timeMap, VertexVector& v,
TimeT& t)
: timeStamper_(timeMap, t), v_(v) { }
template<class Graph>
void
operator()(const typename property_traits<TimeMap>::key_type& v,
const Graph& g)
{
timeStamper_(v, g);
v_[timeStamper_.m_time] = v;
}
private :
time_stamper<TimeMap, TimeT, Tag> timeStamper_;
VertexVector& v_;
};
/**
* A convenient way to create a time_stamper_with_vertex_vector
*/
template<class TimeMap, class VertexVector, class TimeT, class Tag>
time_stamper_with_vertex_vector<TimeMap, VertexVector, TimeT, Tag>
stamp_times_with_vertex_vector(TimeMap timeMap, VertexVector& v, TimeT& t,
Tag)
{
return time_stamper_with_vertex_vector<TimeMap, VertexVector, TimeT,
Tag>(timeMap, v, t);
}
template<class Graph, class IndexMap, class TimeMap, class PredMap,
class DomTreePredMap>
class dominator_visitor
{
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::vertices_size_type VerticesSizeType;
public :
/**
* @param g [in] the target graph of the dominator tree
* @param entry [in] the entry node of g
* @param indexMap [in] the vertex index map for g
* @param domTreePredMap [out] the immediate dominator map
* (parent map in dominator tree)
*/
dominator_visitor(const Graph& g, const Vertex& entry,
const IndexMap& indexMap,
DomTreePredMap domTreePredMap)
: semi_(num_vertices(g)),
ancestor_(num_vertices(g), graph_traits<Graph>::null_vertex()),
samedom_(ancestor_),
best_(semi_),
semiMap_(make_iterator_property_map(semi_.begin(),
indexMap)),
ancestorMap_(make_iterator_property_map(ancestor_.begin(),
indexMap)),
bestMap_(make_iterator_property_map(best_.begin(),
indexMap)),
buckets_(num_vertices(g)),
bucketMap_(make_iterator_property_map(buckets_.begin(),
indexMap)),
entry_(entry),
domTreePredMap_(domTreePredMap),
numOfVertices_(num_vertices(g)),
samedomMap(make_iterator_property_map(samedom_.begin(),
indexMap))
{
}
void
operator()(const Vertex& n, const TimeMap& dfnumMap,
const PredMap& parentMap, const Graph& g)
{
if (n == entry_) return;
const Vertex p(get(parentMap, n));
Vertex s(p);
// 1. Calculate the semidominator of n,
// based on the semidominator thm.
// * Semidominator thm. : To find the semidominator of a node n,
// consider all predecessors v of n in the CFG (Control Flow Graph).
// - If v is a proper ancestor of n in the spanning tree
// (so dfnum(v) < dfnum(n)), then v is a candidate for semi(n)
// - If v is a non-ancestor of n (so dfnum(v) > dfnum(n))
// then for each u that is an ancestor of v (or u = v),
// Let semi(u) be a candidate for semi(n)
// of all these candidates, the one with lowest dfnum is
// the semidominator of n.
// For each predecessor of n
typename graph_traits<Graph>::in_edge_iterator inItr, inEnd;
for (boost::tie(inItr, inEnd) = in_edges(n, g); inItr != inEnd; ++inItr)
{
const Vertex v = source(*inItr, g);
// To deal with unreachable nodes
if (get(dfnumMap, v) < 0 || get(dfnumMap, v) >= numOfVertices_)
continue;
Vertex s2;
if (get(dfnumMap, v) <= get(dfnumMap, n))
s2 = v;
else
s2 = get(semiMap_, ancestor_with_lowest_semi_(v, dfnumMap));
if (get(dfnumMap, s2) < get(dfnumMap, s))
s = s2;
}
put(semiMap_, n, s);
// 2. Calculation of n's dominator is deferred until
// the path from s to n has been linked into the forest
get(bucketMap_, s).push_back(n);
get(ancestorMap_, n) = p;
get(bestMap_, n) = n;
// 3. Now that the path from p to v has been linked into
// the spanning forest, these lines calculate the dominator of v,
// based on the dominator thm., or else defer the calculation
// until y's dominator is known
// * Dominator thm. : On the spanning-tree path below semi(n) and
// above or including n, let y be the node
// with the smallest-numbered semidominator. Then,
//
// idom(n) = semi(n) if semi(y)=semi(n) or
// idom(y) if semi(y) != semi(n)
typename std::deque<Vertex>::iterator buckItr;
for (buckItr = get(bucketMap_, p).begin();
buckItr != get(bucketMap_, p).end();
++buckItr)
{
const Vertex v(*buckItr);
const Vertex y(ancestor_with_lowest_semi_(v, dfnumMap));
if (get(semiMap_, y) == get(semiMap_, v))
put(domTreePredMap_, v, p);
else
put(samedomMap, v, y);
}
get(bucketMap_, p).clear();
}
protected :
/**
* Evaluate function in Tarjan's path compression
*/
const Vertex
ancestor_with_lowest_semi_(const Vertex& v, const TimeMap& dfnumMap)
{
const Vertex a(get(ancestorMap_, v));
if (get(ancestorMap_, a) != graph_traits<Graph>::null_vertex())
{
const Vertex b(ancestor_with_lowest_semi_(a, dfnumMap));
put(ancestorMap_, v, get(ancestorMap_, a));
if (get(dfnumMap, get(semiMap_, b)) <
get(dfnumMap, get(semiMap_, get(bestMap_, v))))
put(bestMap_, v, b);
}
return get(bestMap_, v);
}
std::vector<Vertex> semi_, ancestor_, samedom_, best_;
PredMap semiMap_, ancestorMap_, bestMap_;
std::vector< std::deque<Vertex> > buckets_;
iterator_property_map<typename std::vector<std::deque<Vertex> >::iterator,
IndexMap> bucketMap_;
const Vertex& entry_;
DomTreePredMap domTreePredMap_;
const VerticesSizeType numOfVertices_;
public :
PredMap samedomMap;
};
} // namespace detail
/**
* @brief Build dominator tree using Lengauer-Tarjan algorithm.
* It takes O((V+E)log(V+E)) time.
*
* @pre dfnumMap, parentMap and verticesByDFNum have dfs results corresponding
* indexMap.
* If dfs has already run before,
* this function would be good for saving computations.
* @pre Unreachable nodes must be masked as
* graph_traits<Graph>::null_vertex in parentMap.
* @pre Unreachable nodes must be masked as
* (std::numeric_limits<VerticesSizeType>::max)() in dfnumMap.
*
* @param domTreePredMap [out] : immediate dominator map (parent map
* in dom. tree)
*
* @note reference Appel. p. 452~453. algorithm 19.9, 19.10.
*
* @todo : Optimization in Finding Dominators in Practice, Loukas Georgiadis
*/
template<class Graph, class IndexMap, class TimeMap, class PredMap,
class VertexVector, class DomTreePredMap>
void
lengauer_tarjan_dominator_tree_without_dfs
(const Graph& g,
const typename graph_traits<Graph>::vertex_descriptor& entry,
const IndexMap& indexMap,
TimeMap dfnumMap, PredMap parentMap, VertexVector& verticesByDFNum,
DomTreePredMap domTreePredMap)
{
// Typedefs and concept check
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::vertices_size_type VerticesSizeType;
BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<Graph> ));
const VerticesSizeType numOfVertices = num_vertices(g);
if (numOfVertices == 0) return;
// 1. Visit each vertex in reverse post order and calculate sdom.
detail::dominator_visitor<Graph, IndexMap, TimeMap, PredMap, DomTreePredMap>
visitor(g, entry, indexMap, domTreePredMap);
VerticesSizeType i;
for (i = 0; i < numOfVertices; ++i)
{
const Vertex u(verticesByDFNum[numOfVertices - 1 - i]);
if (u != graph_traits<Graph>::null_vertex())
visitor(u, dfnumMap, parentMap, g);
}
// 2. Now all the deferred dominator calculations,
// based on the second clause of the dominator thm., are performed
for (i = 0; i < numOfVertices; ++i)
{
const Vertex n(verticesByDFNum[i]);
if (n == entry || n == graph_traits<Graph>::null_vertex())
continue;
Vertex u = get(visitor.samedomMap, n);
if (u != graph_traits<Graph>::null_vertex())
{
put(domTreePredMap, n, get(domTreePredMap, u));
}
}
}
/**
* Unlike lengauer_tarjan_dominator_tree_without_dfs,
* dfs is run in this function and
* the result is written to dfnumMap, parentMap, vertices.
*
* If the result of dfs required after this algorithm,
* this function can eliminate the need of rerunning dfs.
*/
template<class Graph, class IndexMap, class TimeMap, class PredMap,
class VertexVector, class DomTreePredMap>
void
lengauer_tarjan_dominator_tree
(const Graph& g,
const typename graph_traits<Graph>::vertex_descriptor& entry,
const IndexMap& indexMap,
TimeMap dfnumMap, PredMap parentMap, VertexVector& verticesByDFNum,
DomTreePredMap domTreePredMap)
{
// Typedefs and concept check
typedef typename graph_traits<Graph>::vertices_size_type VerticesSizeType;
BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<Graph> ));
// 1. Depth first visit
const VerticesSizeType numOfVertices = num_vertices(g);
if (numOfVertices == 0) return;
VerticesSizeType time =
(std::numeric_limits<VerticesSizeType>::max)();
std::vector<default_color_type>
colors(numOfVertices, color_traits<default_color_type>::white());
depth_first_visit
(g, entry,
make_dfs_visitor
(make_pair(record_predecessors(parentMap, on_tree_edge()),
detail::stamp_times_with_vertex_vector
(dfnumMap, verticesByDFNum, time, on_discover_vertex()))),
make_iterator_property_map(colors.begin(), indexMap));
// 2. Run main algorithm.
lengauer_tarjan_dominator_tree_without_dfs(g, entry, indexMap, dfnumMap,
parentMap, verticesByDFNum,
domTreePredMap);
}
/**
* Use vertex_index as IndexMap and make dfnumMap, parentMap, verticesByDFNum
* internally.
* If we don't need the result of dfs (dfnumMap, parentMap, verticesByDFNum),
* this function would be more convenient one.
*/
template<class Graph, class DomTreePredMap>
void
lengauer_tarjan_dominator_tree
(const Graph& g,
const typename graph_traits<Graph>::vertex_descriptor& entry,
DomTreePredMap domTreePredMap)
{
// typedefs
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::vertices_size_type VerticesSizeType;
typedef typename property_map<Graph, vertex_index_t>::const_type IndexMap;
typedef
iterator_property_map<typename std::vector<VerticesSizeType>::iterator,
IndexMap> TimeMap;
typedef
iterator_property_map<typename std::vector<Vertex>::iterator, IndexMap>
PredMap;
// Make property maps
const VerticesSizeType numOfVertices = num_vertices(g);
if (numOfVertices == 0) return;
const IndexMap indexMap = get(vertex_index, g);
std::vector<VerticesSizeType> dfnum(numOfVertices, 0);
TimeMap dfnumMap(make_iterator_property_map(dfnum.begin(), indexMap));
std::vector<Vertex> parent(numOfVertices,
graph_traits<Graph>::null_vertex());
PredMap parentMap(make_iterator_property_map(parent.begin(), indexMap));
std::vector<Vertex> verticesByDFNum(parent);
// Run main algorithm
lengauer_tarjan_dominator_tree(g, entry,
indexMap, dfnumMap, parentMap,
verticesByDFNum, domTreePredMap);
}
/**
* Muchnick. p. 182, 184
*
* using iterative bit vector analysis
*/
template<class Graph, class IndexMap, class DomTreePredMap>
void
iterative_bit_vector_dominator_tree
(const Graph& g,
const typename graph_traits<Graph>::vertex_descriptor& entry,
const IndexMap& indexMap,
DomTreePredMap domTreePredMap)
{
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::vertex_iterator vertexItr;
typedef typename graph_traits<Graph>::vertices_size_type VerticesSizeType;
typedef
iterator_property_map<typename std::vector< std::set<Vertex> >::iterator,
IndexMap> vertexSetMap;
BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<Graph> ));
// 1. Finding dominator
// 1.1. Initialize
const VerticesSizeType numOfVertices = num_vertices(g);
if (numOfVertices == 0) return;
vertexItr vi, viend;
boost::tie(vi, viend) = vertices(g);
const std::set<Vertex> N(vi, viend);
bool change = true;
std::vector< std::set<Vertex> > dom(numOfVertices, N);
vertexSetMap domMap(make_iterator_property_map(dom.begin(), indexMap));
get(domMap, entry).clear();
get(domMap, entry).insert(entry);
while (change)
{
change = false;
for (boost::tie(vi, viend) = vertices(g); vi != viend; ++vi)
{
if (*vi == entry) continue;
std::set<Vertex> T(N);
typename graph_traits<Graph>::in_edge_iterator inItr, inEnd;
for (boost::tie(inItr, inEnd) = in_edges(*vi, g); inItr != inEnd; ++inItr)
{
const Vertex p = source(*inItr, g);
std::set<Vertex> tempSet;
std::set_intersection(T.begin(), T.end(),
get(domMap, p).begin(),
get(domMap, p).end(),
std::inserter(tempSet, tempSet.begin()));
T.swap(tempSet);
}
T.insert(*vi);
if (T != get(domMap, *vi))
{
change = true;
get(domMap, *vi).swap(T);
}
} // end of for (boost::tie(vi, viend) = vertices(g)
} // end of while(change)
// 2. Build dominator tree
for (boost::tie(vi, viend) = vertices(g); vi != viend; ++vi)
get(domMap, *vi).erase(*vi);
Graph domTree(numOfVertices);
for (boost::tie(vi, viend) = vertices(g); vi != viend; ++vi)
{
if (*vi == entry) continue;
// We have to iterate through copied dominator set
const std::set<Vertex> tempSet(get(domMap, *vi));
typename std::set<Vertex>::const_iterator s;
for (s = tempSet.begin(); s != tempSet.end(); ++s)
{
typename std::set<Vertex>::iterator t;
for (t = get(domMap, *vi).begin(); t != get(domMap, *vi).end(); )
{
typename std::set<Vertex>::iterator old_t = t;
++t; // Done early because t may become invalid
if (*old_t == *s) continue;
if (get(domMap, *s).find(*old_t) != get(domMap, *s).end())
get(domMap, *vi).erase(old_t);
}
}
}
for (boost::tie(vi, viend) = vertices(g); vi != viend; ++vi)
{
if (*vi != entry && get(domMap, *vi).size() == 1)
{
Vertex temp = *get(domMap, *vi).begin();
put(domTreePredMap, *vi, temp);
}
}
}
template<class Graph, class DomTreePredMap>
void
iterative_bit_vector_dominator_tree
(const Graph& g,
const typename graph_traits<Graph>::vertex_descriptor& entry,
DomTreePredMap domTreePredMap)
{
typename property_map<Graph, vertex_index_t>::const_type
indexMap = get(vertex_index, g);
iterative_bit_vector_dominator_tree(g, entry, indexMap, domTreePredMap);
}
} // namespace boost
#endif // BOOST_GRAPH_DOMINATOR_HPP