vn-verdnaturachat/ios/Pods/boost-for-react-native/boost/intrusive/detail/math.hpp

296 lines
8.1 KiB
C++

/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2014-2014
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTRUSIVE_DETAIL_MATH_HPP
#define BOOST_INTRUSIVE_DETAIL_MATH_HPP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
#include <cstddef>
#include <climits>
#include <boost/intrusive/detail/mpl.hpp>
namespace boost {
namespace intrusive {
namespace detail {
///////////////////////////
// floor_log2 Dispatcher
////////////////////////////
#if defined(_MSC_VER) && (_MSC_VER >= 1300)
}}} //namespace boost::intrusive::detail
//Use _BitScanReverseXX intrinsics
#if defined(_M_X64) || defined(_M_AMD64) || defined(_M_IA64) //64 bit target
#define BOOST_INTRUSIVE_BSR_INTRINSIC_64_BIT
#endif
#ifndef __INTRIN_H_ // Avoid including any windows system header
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
#if defined(BOOST_INTRUSIVE_BSR_INTRINSIC_64_BIT) //64 bit target
unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask);
#pragma intrinsic(_BitScanReverse64)
#else //32 bit target
unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
#pragma intrinsic(_BitScanReverse)
#endif
#ifdef __cplusplus
}
#endif // __cplusplus
#endif // __INTRIN_H_
#ifdef BOOST_INTRUSIVE_BSR_INTRINSIC_64_BIT
#define BOOST_INTRUSIVE_BSR_INTRINSIC _BitScanReverse64
#undef BOOST_INTRUSIVE_BSR_INTRINSIC_64_BIT
#else
#define BOOST_INTRUSIVE_BSR_INTRINSIC _BitScanReverse
#endif
namespace boost {
namespace intrusive {
namespace detail {
inline std::size_t floor_log2 (std::size_t x)
{
unsigned long log2;
BOOST_INTRUSIVE_BSR_INTRINSIC( &log2, (unsigned long)x );
return log2;
}
#undef BOOST_INTRUSIVE_BSR_INTRINSIC
#elif defined(__GNUC__) && ((__GNUC__ >= 4) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) //GCC >=3.4
//Compile-time error in case of missing specialization
template<class Uint>
struct builtin_clz_dispatch;
#if defined(BOOST_HAS_LONG_LONG)
template<>
struct builtin_clz_dispatch< ::boost::ulong_long_type >
{
static ::boost::ulong_long_type call(::boost::ulong_long_type n)
{ return __builtin_clzll(n); }
};
#endif
template<>
struct builtin_clz_dispatch<unsigned long>
{
static unsigned long call(unsigned long n)
{ return __builtin_clzl(n); }
};
template<>
struct builtin_clz_dispatch<unsigned int>
{
static unsigned int call(unsigned int n)
{ return __builtin_clz(n); }
};
inline std::size_t floor_log2(std::size_t n)
{
return sizeof(std::size_t)*CHAR_BIT - std::size_t(1) - builtin_clz_dispatch<std::size_t>::call(n);
}
#else //Portable methods
////////////////////////////
// Generic method
////////////////////////////
inline std::size_t floor_log2_get_shift(std::size_t n, true_ )//power of two size_t
{ return n >> 1; }
inline std::size_t floor_log2_get_shift(std::size_t n, false_ )//non-power of two size_t
{ return (n >> 1) + ((n & 1u) & (n != 1)); }
template<std::size_t N>
inline std::size_t floor_log2 (std::size_t x, integral_constant<std::size_t, N>)
{
const std::size_t Bits = N;
const bool Size_t_Bits_Power_2= !(Bits & (Bits-1));
std::size_t n = x;
std::size_t log2 = 0;
std::size_t remaining_bits = Bits;
std::size_t shift = floor_log2_get_shift(remaining_bits, bool_<Size_t_Bits_Power_2>());
while(shift){
std::size_t tmp = n >> shift;
if (tmp){
log2 += shift, n = tmp;
}
shift = floor_log2_get_shift(shift, bool_<Size_t_Bits_Power_2>());
}
return log2;
}
////////////////////////////
// DeBruijn method
////////////////////////////
//Taken from:
//http://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
//Thanks to Desmond Hume
inline std::size_t floor_log2 (std::size_t v, integral_constant<std::size_t, 32>)
{
static const int MultiplyDeBruijnBitPosition[32] =
{
0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30,
8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31
};
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return MultiplyDeBruijnBitPosition[(std::size_t)(v * 0x07C4ACDDU) >> 27];
}
inline std::size_t floor_log2 (std::size_t v, integral_constant<std::size_t, 64>)
{
static const std::size_t MultiplyDeBruijnBitPosition[64] = {
63, 0, 58, 1, 59, 47, 53, 2,
60, 39, 48, 27, 54, 33, 42, 3,
61, 51, 37, 40, 49, 18, 28, 20,
55, 30, 34, 11, 43, 14, 22, 4,
62, 57, 46, 52, 38, 26, 32, 41,
50, 36, 17, 19, 29, 10, 13, 21,
56, 45, 25, 31, 35, 16, 9, 12,
44, 24, 15, 8, 23, 7, 6, 5};
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v |= v >> 32;
return MultiplyDeBruijnBitPosition[((std::size_t)((v - (v >> 1))*0x07EDD5E59A4E28C2ULL)) >> 58];
}
inline std::size_t floor_log2 (std::size_t x)
{
const std::size_t Bits = sizeof(std::size_t)*CHAR_BIT;
return floor_log2(x, integral_constant<std::size_t, Bits>());
}
#endif
//Thanks to Laurent de Soras in
//http://www.flipcode.com/archives/Fast_log_Function.shtml
inline float fast_log2 (float val)
{
union caster_t
{
unsigned x;
float val;
} caster;
caster.val = val;
unsigned x = caster.x;
const int log_2 = int((x >> 23) & 255) - 128;
x &= ~(unsigned(255u) << 23u);
x += unsigned(127) << 23u;
caster.x = x;
val = caster.val;
//1+log2(m), m ranging from 1 to 2
//3rd degree polynomial keeping first derivate continuity.
//For less precision the line can be commented out
val = ((-1.f/3.f) * val + 2.f) * val - (2.f/3.f);
return val + static_cast<float>(log_2);
}
inline bool is_pow2(std::size_t x)
{ return (x & (x-1)) == 0; }
template<std::size_t N>
struct static_is_pow2
{
static const bool value = (N & (N-1)) == 0;
};
inline std::size_t ceil_log2 (std::size_t x)
{
return static_cast<std::size_t>(!(is_pow2)(x)) + floor_log2(x);
}
inline std::size_t ceil_pow2 (std::size_t x)
{
return std::size_t(1u) << (ceil_log2)(x);
}
inline std::size_t previous_or_equal_pow2(std::size_t x)
{
return std::size_t(1u) << floor_log2(x);
}
template<class SizeType, std::size_t N>
struct numbits_eq
{
static const bool value = sizeof(SizeType)*CHAR_BIT == N;
};
template<class SizeType, class Enabler = void >
struct sqrt2_pow_max;
template <class SizeType>
struct sqrt2_pow_max<SizeType, typename enable_if< numbits_eq<SizeType, 32> >::type>
{
static const SizeType value = 0xb504f334;
static const std::size_t pow = 31;
};
#ifndef BOOST_NO_INT64_T
template <class SizeType>
struct sqrt2_pow_max<SizeType, typename enable_if< numbits_eq<SizeType, 64> >::type>
{
static const SizeType value = 0xb504f333f9de6484ull;
static const std::size_t pow = 63;
};
#endif //BOOST_NO_INT64_T
// Returns floor(pow(sqrt(2), x * 2 + 1)).
// Defined for X from 0 up to the number of bits in size_t minus 1.
inline std::size_t sqrt2_pow_2xplus1 (std::size_t x)
{
const std::size_t value = (std::size_t)sqrt2_pow_max<std::size_t>::value;
const std::size_t pow = (std::size_t)sqrt2_pow_max<std::size_t>::pow;
return (value >> (pow - x)) + 1;
}
} //namespace detail
} //namespace intrusive
} //namespace boost
#endif //BOOST_INTRUSIVE_DETAIL_MATH_HPP