vn-verdnaturachat/ios/Pods/boost-for-react-native/boost/compute/container/vector.hpp

780 lines
23 KiB
C++

//---------------------------------------------------------------------------//
// Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_CONTAINER_VECTOR_HPP
#define BOOST_COMPUTE_CONTAINER_VECTOR_HPP
#include <vector>
#include <cstddef>
#include <iterator>
#include <exception>
#include <boost/throw_exception.hpp>
#include <boost/compute/config.hpp>
#ifndef BOOST_COMPUTE_NO_HDR_INITIALIZER_LIST
#include <initializer_list>
#endif
#include <boost/compute/buffer.hpp>
#include <boost/compute/device.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/context.hpp>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/algorithm/copy.hpp>
#include <boost/compute/algorithm/copy_n.hpp>
#include <boost/compute/algorithm/fill_n.hpp>
#include <boost/compute/allocator/buffer_allocator.hpp>
#include <boost/compute/iterator/buffer_iterator.hpp>
#include <boost/compute/type_traits/detail/capture_traits.hpp>
#include <boost/compute/detail/buffer_value.hpp>
#include <boost/compute/detail/iterator_range_size.hpp>
namespace boost {
namespace compute {
/// \class vector
/// \brief A resizable array of values.
///
/// The vector<T> class stores a dynamic array of values. Internally, the data
/// is stored in an OpenCL buffer object.
///
/// The vector class is the prefered container for storing and accessing data
/// on a compute device. In most cases it should be used instead of directly
/// dealing with buffer objects. If the undelying buffer is needed, it can be
/// accessed with the get_buffer() method.
///
/// The internal storage is allocated in a specific OpenCL context which is
/// passed as an argument to the constructor when the vector is created.
///
/// For example, to create a vector on the device containing space for ten
/// \c int values:
/// \code
/// boost::compute::vector<int> vec(10, context);
/// \endcode
///
/// Allocation and data transfer can also be performed in a single step:
/// \code
/// // values on the host
/// int data[] = { 1, 2, 3, 4 };
///
/// // create a vector of size four and copy the values from data
/// boost::compute::vector<int> vec(data, data + 4, queue);
/// \endcode
///
/// The Boost.Compute \c vector class provides a STL-like API and is modeled
/// after the \c std::vector class from the C++ standard library. It can be
/// used with any of the STL-like algorithms provided by Boost.Compute
/// including \c copy(), \c transform(), and \c sort() (among many others).
///
/// For example:
/// \code
/// // a vector on a compute device
/// boost::compute::vector<float> vec = ...
///
/// // copy data to the vector from a host std:vector
/// boost::compute::copy(host_vec.begin(), host_vec.end(), vec.begin(), queue);
///
/// // copy data from the vector to a host std::vector
/// boost::compute::copy(vec.begin(), vec.end(), host_vec.begin(), queue);
///
/// // sort the values in the vector
/// boost::compute::sort(vec.begin(), vec.end(), queue);
///
/// // calculate the sum of the values in the vector (also see reduce())
/// float sum = boost::compute::accumulate(vec.begin(), vec.end(), 0, queue);
///
/// // reverse the values in the vector
/// boost::compute::reverse(vec.begin(), vec.end(), queue);
///
/// // fill the vector with ones
/// boost::compute::fill(vec.begin(), vec.end(), 1, queue);
/// \endcode
///
/// \see \ref array "array<T, N>", buffer
template<class T, class Alloc = buffer_allocator<T> >
class vector
{
public:
typedef T value_type;
typedef Alloc allocator_type;
typedef typename allocator_type::size_type size_type;
typedef typename allocator_type::difference_type difference_type;
typedef detail::buffer_value<T> reference;
typedef const detail::buffer_value<T> const_reference;
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef buffer_iterator<T> iterator;
typedef buffer_iterator<T> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
/// Creates an empty vector in \p context.
explicit vector(const context &context = system::default_context())
: m_size(0),
m_allocator(context)
{
m_data = m_allocator.allocate(_minimum_capacity());
}
/// Creates a vector with space for \p count elements in \p context.
///
/// Note that unlike \c std::vector's constructor, this will not initialize
/// the values in the container. Either call the vector constructor which
/// takes a value to initialize with or use the fill() algorithm to set
/// the initial values.
///
/// For example:
/// \code
/// // create a vector on the device with space for ten ints
/// boost::compute::vector<int> vec(10, context);
/// \endcode
explicit vector(size_type count,
const context &context = system::default_context())
: m_size(count),
m_allocator(context)
{
m_data = m_allocator.allocate((std::max)(count, _minimum_capacity()));
}
/// Creates a vector with space for \p count elements and sets each equal
/// to \p value.
///
/// For example:
/// \code
/// // creates a vector with four values set to nine (e.g. [9, 9, 9, 9]).
/// boost::compute::vector<int> vec(4, 9, queue);
/// \endcode
vector(size_type count,
const T &value,
command_queue &queue = system::default_queue())
: m_size(count),
m_allocator(queue.get_context())
{
m_data = m_allocator.allocate((std::max)(count, _minimum_capacity()));
::boost::compute::fill_n(begin(), count, value, queue);
}
/// Creates a vector with space for the values in the range [\p first,
/// \p last) and copies them into the vector with \p queue.
///
/// For example:
/// \code
/// // values on the host
/// int data[] = { 1, 2, 3, 4 };
///
/// // create a vector of size four and copy the values from data
/// boost::compute::vector<int> vec(data, data + 4, queue);
/// \endcode
template<class InputIterator>
vector(InputIterator first,
InputIterator last,
command_queue &queue = system::default_queue())
: m_size(detail::iterator_range_size(first, last)),
m_allocator(queue.get_context())
{
m_data = m_allocator.allocate((std::max)(m_size, _minimum_capacity()));
::boost::compute::copy(first, last, begin(), queue);
}
/// Creates a new vector and copies the values from \p other.
vector(const vector &other,
command_queue &queue = system::default_queue())
: m_size(other.m_size),
m_allocator(other.m_allocator)
{
m_data = m_allocator.allocate((std::max)(m_size, _minimum_capacity()));
if(!other.empty()){
if(other.get_buffer().get_context() != queue.get_context()){
command_queue other_queue = other.default_queue();
::boost::compute::copy(other.begin(), other.end(), begin(), other_queue);
other_queue.finish();
}
else {
::boost::compute::copy(other.begin(), other.end(), begin(), queue);
queue.finish();
}
}
}
/// Creates a new vector and copies the values from \p other.
template<class OtherAlloc>
vector(const vector<T, OtherAlloc> &other,
command_queue &queue = system::default_queue())
: m_size(other.size()),
m_allocator(queue.get_context())
{
m_data = m_allocator.allocate((std::max)(m_size, _minimum_capacity()));
if(!other.empty()){
::boost::compute::copy(other.begin(), other.end(), begin(), queue);
queue.finish();
}
}
/// Creates a new vector and copies the values from \p vector.
template<class OtherAlloc>
vector(const std::vector<T, OtherAlloc> &vector,
command_queue &queue = system::default_queue())
: m_size(vector.size()),
m_allocator(queue.get_context())
{
m_data = m_allocator.allocate((std::max)(m_size, _minimum_capacity()));
::boost::compute::copy(vector.begin(), vector.end(), begin(), queue);
}
#ifndef BOOST_COMPUTE_NO_HDR_INITIALIZER_LIST
vector(std::initializer_list<T> list,
command_queue &queue = system::default_queue())
: m_size(list.size()),
m_allocator(queue.get_context())
{
m_data = m_allocator.allocate((std::max)(m_size, _minimum_capacity()));
::boost::compute::copy(list.begin(), list.end(), begin(), queue);
}
#endif // BOOST_COMPUTE_NO_HDR_INITIALIZER_LIST
vector& operator=(const vector &other)
{
if(this != &other){
command_queue queue = default_queue();
resize(other.size(), queue);
::boost::compute::copy(other.begin(), other.end(), begin(), queue);
queue.finish();
}
return *this;
}
template<class OtherAlloc>
vector& operator=(const vector<T, OtherAlloc> &other)
{
command_queue queue = default_queue();
resize(other.size(), queue);
::boost::compute::copy(other.begin(), other.end(), begin(), queue);
queue.finish();
return *this;
}
template<class OtherAlloc>
vector& operator=(const std::vector<T, OtherAlloc> &vector)
{
command_queue queue = default_queue();
resize(vector.size(), queue);
::boost::compute::copy(vector.begin(), vector.end(), begin(), queue);
queue.finish();
return *this;
}
#ifndef BOOST_COMPUTE_NO_RVALUE_REFERENCES
/// Move-constructs a new vector from \p other.
vector(vector&& other)
: m_data(std::move(other.m_data)),
m_size(other.m_size),
m_allocator(std::move(other.m_allocator))
{
other.m_size = 0;
}
/// Move-assigns the data from \p other to \c *this.
vector& operator=(vector&& other)
{
if(m_size){
m_allocator.deallocate(m_data, m_size);
}
m_data = std::move(other.m_data);
m_size = other.m_size;
m_allocator = std::move(other.m_allocator);
other.m_size = 0;
return *this;
}
#endif // BOOST_COMPUTE_NO_RVALUE_REFERENCES
/// Destroys the vector object.
~vector()
{
if(m_size){
m_allocator.deallocate(m_data, m_size);
}
}
iterator begin()
{
return ::boost::compute::make_buffer_iterator<T>(m_data.get_buffer(), 0);
}
const_iterator begin() const
{
return ::boost::compute::make_buffer_iterator<T>(m_data.get_buffer(), 0);
}
const_iterator cbegin() const
{
return begin();
}
iterator end()
{
return ::boost::compute::make_buffer_iterator<T>(m_data.get_buffer(), m_size);
}
const_iterator end() const
{
return ::boost::compute::make_buffer_iterator<T>(m_data.get_buffer(), m_size);
}
const_iterator cend() const
{
return end();
}
reverse_iterator rbegin()
{
return reverse_iterator(end() - 1);
}
const_reverse_iterator rbegin() const
{
return reverse_iterator(end() - 1);
}
const_reverse_iterator crbegin() const
{
return rbegin();
}
reverse_iterator rend()
{
return reverse_iterator(begin() - 1);
}
const_reverse_iterator rend() const
{
return reverse_iterator(begin() - 1);
}
const_reverse_iterator crend() const
{
return rend();
}
/// Returns the number of elements in the vector.
size_type size() const
{
return m_size;
}
size_type max_size() const
{
return m_allocator.max_size();
}
/// Resizes the vector to \p size.
void resize(size_type size, command_queue &queue)
{
if(size <= capacity()){
m_size = size;
}
else {
// allocate new buffer
pointer new_data =
m_allocator.allocate(
static_cast<size_type>(
static_cast<float>(size) * _growth_factor()
)
);
// copy old values to the new buffer
::boost::compute::copy(m_data, m_data + m_size, new_data, queue);
// free old memory
m_allocator.deallocate(m_data, m_size);
// set new data and size
m_data = new_data;
m_size = size;
}
}
/// \overload
void resize(size_type size)
{
command_queue queue = default_queue();
resize(size, queue);
queue.finish();
}
/// Returns \c true if the vector is empty.
bool empty() const
{
return m_size == 0;
}
/// Returns the capacity of the vector.
size_type capacity() const
{
return m_data.get_buffer().size() / sizeof(T);
}
void reserve(size_type size, command_queue &queue)
{
(void) size;
(void) queue;
}
void reserve(size_type size)
{
command_queue queue = default_queue();
reserve(size, queue);
queue.finish();
}
void shrink_to_fit(command_queue &queue)
{
(void) queue;
}
void shrink_to_fit()
{
command_queue queue = default_queue();
shrink_to_fit(queue);
queue.finish();
}
reference operator[](size_type index)
{
return *(begin() + static_cast<difference_type>(index));
}
const_reference operator[](size_type index) const
{
return *(begin() + static_cast<difference_type>(index));
}
reference at(size_type index)
{
if(index >= size()){
BOOST_THROW_EXCEPTION(std::out_of_range("index out of range"));
}
return operator[](index);
}
const_reference at(size_type index) const
{
if(index >= size()){
BOOST_THROW_EXCEPTION(std::out_of_range("index out of range"));
}
return operator[](index);
}
reference front()
{
return *begin();
}
const_reference front() const
{
return *begin();
}
reference back()
{
return *(end() - static_cast<difference_type>(1));
}
const_reference back() const
{
return *(end() - static_cast<difference_type>(1));
}
template<class InputIterator>
void assign(InputIterator first,
InputIterator last,
command_queue &queue)
{
// resize vector for new contents
resize(detail::iterator_range_size(first, last), queue);
// copy values into the vector
::boost::compute::copy(first, last, begin(), queue);
}
template<class InputIterator>
void assign(InputIterator first, InputIterator last)
{
command_queue queue = default_queue();
assign(first, last, queue);
queue.finish();
}
void assign(size_type n, const T &value, command_queue &queue)
{
// resize vector for new contents
resize(n, queue);
// fill vector with value
::boost::compute::fill_n(begin(), n, value, queue);
}
void assign(size_type n, const T &value)
{
command_queue queue = default_queue();
assign(n, value, queue);
queue.finish();
}
/// Inserts \p value at the end of the vector (resizing if neccessary).
///
/// Note that calling \c push_back() to insert data values one at a time
/// is inefficient as there is a non-trivial overhead in performing a data
/// transfer to the device. It is usually better to store a set of values
/// on the host (for example, in a \c std::vector) and then transfer them
/// in bulk using the \c insert() method or the copy() algorithm.
void push_back(const T &value, command_queue &queue)
{
insert(end(), value, queue);
}
/// \overload
void push_back(const T &value)
{
command_queue queue = default_queue();
push_back(value, queue);
queue.finish();
}
void pop_back(command_queue &queue)
{
resize(size() - 1, queue);
}
void pop_back()
{
command_queue queue = default_queue();
pop_back(queue);
queue.finish();
}
iterator insert(iterator position, const T &value, command_queue &queue)
{
if(position == end()){
resize(m_size + 1, queue);
position = begin() + position.get_index();
::boost::compute::copy_n(&value, 1, position, queue);
}
else {
::boost::compute::vector<T, Alloc> tmp(position, end(), queue);
resize(m_size + 1, queue);
position = begin() + position.get_index();
::boost::compute::copy_n(&value, 1, position, queue);
::boost::compute::copy(tmp.begin(), tmp.end(), position + 1, queue);
}
return position + 1;
}
iterator insert(iterator position, const T &value)
{
command_queue queue = default_queue();
iterator iter = insert(position, value, queue);
queue.finish();
return iter;
}
void insert(iterator position,
size_type count,
const T &value,
command_queue &queue)
{
::boost::compute::vector<T, Alloc> tmp(position, end(), queue);
resize(size() + count, queue);
position = begin() + position.get_index();
::boost::compute::fill_n(position, count, value, queue);
::boost::compute::copy(
tmp.begin(),
tmp.end(),
position + static_cast<difference_type>(count),
queue
);
}
void insert(iterator position, size_type count, const T &value)
{
command_queue queue = default_queue();
insert(position, count, value, queue);
queue.finish();
}
/// Inserts the values in the range [\p first, \p last) into the vector at
/// \p position using \p queue.
template<class InputIterator>
void insert(iterator position,
InputIterator first,
InputIterator last,
command_queue &queue)
{
::boost::compute::vector<T, Alloc> tmp(position, end(), queue);
size_type count = detail::iterator_range_size(first, last);
resize(size() + count, queue);
position = begin() + position.get_index();
::boost::compute::copy(first, last, position, queue);
::boost::compute::copy(
tmp.begin(),
tmp.end(),
position + static_cast<difference_type>(count),
queue
);
}
/// \overload
template<class InputIterator>
void insert(iterator position, InputIterator first, InputIterator last)
{
command_queue queue = default_queue();
insert(position, first, last, queue);
queue.finish();
}
iterator erase(iterator position, command_queue &queue)
{
return erase(position, position + 1, queue);
}
iterator erase(iterator position)
{
command_queue queue = default_queue();
iterator iter = erase(position, queue);
queue.finish();
return iter;
}
iterator erase(iterator first, iterator last, command_queue &queue)
{
if(last != end()){
::boost::compute::vector<T, Alloc> tmp(last, end(), queue);
::boost::compute::copy(tmp.begin(), tmp.end(), first, queue);
}
difference_type count = std::distance(first, last);
resize(size() - static_cast<size_type>(count), queue);
return begin() + first.get_index() + count;
}
iterator erase(iterator first, iterator last)
{
command_queue queue = default_queue();
iterator iter = erase(first, last, queue);
queue.finish();
return iter;
}
/// Swaps the contents of \c *this with \p other.
void swap(vector &other)
{
std::swap(m_data, other.m_data);
std::swap(m_size, other.m_size);
std::swap(m_allocator, other.m_allocator);
}
/// Removes all elements from the vector.
void clear()
{
m_size = 0;
}
allocator_type get_allocator() const
{
return m_allocator;
}
/// Returns the underlying buffer.
const buffer& get_buffer() const
{
return m_data.get_buffer();
}
/// \internal_
///
/// Returns a command queue usable to issue commands for the vector's
/// memory buffer. This is used when a member function is called without
/// specifying an existing command queue to use.
command_queue default_queue() const
{
const context &context = m_allocator.get_context();
command_queue queue(context, context.get_device());
return queue;
}
private:
/// \internal_
BOOST_CONSTEXPR size_type _minimum_capacity() const { return 4; }
/// \internal_
BOOST_CONSTEXPR float _growth_factor() const { return 1.5; }
private:
pointer m_data;
size_type m_size;
allocator_type m_allocator;
};
namespace detail {
// set_kernel_arg specialization for vector<T>
template<class T, class Alloc>
struct set_kernel_arg<vector<T, Alloc> >
{
void operator()(kernel &kernel_, size_t index, const vector<T, Alloc> &vector)
{
kernel_.set_arg(index, vector.get_buffer());
}
};
// for capturing vector<T> with BOOST_COMPUTE_CLOSURE()
template<class T, class Alloc>
struct capture_traits<vector<T, Alloc> >
{
static std::string type_name()
{
return std::string("__global ") + ::boost::compute::type_name<T>() + "*";
}
};
// meta_kernel streaming operator for vector<T>
template<class T, class Alloc>
meta_kernel& operator<<(meta_kernel &k, const vector<T, Alloc> &vector)
{
return k << k.get_buffer_identifier<T>(vector.get_buffer());
}
} // end detail namespace
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_CONTAINER_VECTOR_HPP