vn-verdnaturachat/ios/Pods/boost-for-react-native/boost/hana/experimental/view.hpp

515 lines
18 KiB
C++

/*
@file
Defines experimental views.
@copyright Louis Dionne 2013-2016
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_HANA_EXPERIMENTAL_VIEW_HPP
#define BOOST_HANA_EXPERIMENTAL_VIEW_HPP
#include <boost/hana/and.hpp>
#include <boost/hana/at.hpp>
#include <boost/hana/bool.hpp>
#include <boost/hana/detail/decay.hpp>
#include <boost/hana/fold_left.hpp>
#include <boost/hana/functional/compose.hpp>
#include <boost/hana/fwd/ap.hpp>
#include <boost/hana/fwd/concat.hpp>
#include <boost/hana/fwd/drop_front.hpp>
#include <boost/hana/fwd/empty.hpp>
#include <boost/hana/fwd/equal.hpp>
#include <boost/hana/fwd/flatten.hpp>
#include <boost/hana/fwd/is_empty.hpp>
#include <boost/hana/fwd/less.hpp>
#include <boost/hana/fwd/lift.hpp>
#include <boost/hana/fwd/transform.hpp>
#include <boost/hana/integral_constant.hpp>
#include <boost/hana/length.hpp>
#include <boost/hana/lexicographical_compare.hpp>
#include <boost/hana/range.hpp>
#include <boost/hana/tuple.hpp>
#include <boost/hana/unpack.hpp>
#include <cstddef>
#include <type_traits>
#include <utility>
// Pros of views
// - No temporary container created between algorithms
// - Lazy, so only the minimum is required
//
// Cons of views
// - Reference semantics mean possibility for dangling references
// - Lose the ability to move from temporary containers
// - When fetching the members of a view multiple times, no caching is done.
// So for example, `t = transform(xs, f); at_c<0>(t); at_c<0>(t)` will
// compute `f(at_c<0>(xs))` twice.
// - push_back creates a joint_view and a single_view. The single_view holds
// the value as a member. When doing multiple push_backs, we end up with a
// joint_view<xxx, joint_view<single_view<T>, joint_view<single_view<T>, ....>>>
// which contains a reference to `xxx` and all the `T`s by value. Such a
// "view" is not cheap to copy, which is inconsistent with the usual
// expectations about views.
BOOST_HANA_NAMESPACE_BEGIN
namespace experimental {
struct view_tag;
namespace detail {
template <typename Sequence>
struct is_view {
static constexpr bool value = false;
};
template <typename Sequence>
using view_storage = typename std::conditional<
detail::is_view<Sequence>::value, Sequence, Sequence&
>::type;
}
//////////////////////////////////////////////////////////////////////////
// sliced_view
//////////////////////////////////////////////////////////////////////////
template <typename Sequence, std::size_t ...indices>
struct sliced_view_t {
detail::view_storage<Sequence> sequence_;
using hana_tag = view_tag;
};
template <typename Sequence, typename Indices>
constexpr auto sliced(Sequence& sequence, Indices const& indices) {
return hana::unpack(indices, [&](auto ...i) {
return sliced_view_t<Sequence, decltype(i)::value...>{sequence};
});
}
namespace detail {
template <typename Sequence, std::size_t ...i>
struct is_view<sliced_view_t<Sequence, i...>> {
static constexpr bool value = true;
};
}
//////////////////////////////////////////////////////////////////////////
// transformed_view
//////////////////////////////////////////////////////////////////////////
template <typename Sequence, typename F>
struct transformed_view_t {
detail::view_storage<Sequence> sequence_;
F f_;
using hana_tag = view_tag;
};
template <typename Sequence, typename F>
constexpr transformed_view_t<Sequence, typename hana::detail::decay<F>::type>
transformed(Sequence& sequence, F&& f) {
return {sequence, static_cast<F&&>(f)};
}
namespace detail {
template <typename Sequence, typename F>
struct is_view<transformed_view_t<Sequence, F>> {
static constexpr bool value = true;
};
}
//////////////////////////////////////////////////////////////////////////
// filtered_view
//////////////////////////////////////////////////////////////////////////
#if 0
template <typename Sequence, typename Pred>
using filtered_view_t = sliced_view_t<Sequence, detail::filtered_indices<...>>;
template <typename Sequence, typename Pred>
constexpr filtered_view_t<Sequence, Pred> filtered(Sequence& sequence, Pred&& pred) {
return {sequence};
}
#endif
//////////////////////////////////////////////////////////////////////////
// joined_view
//////////////////////////////////////////////////////////////////////////
template <typename Sequence1, typename Sequence2>
struct joined_view_t {
detail::view_storage<Sequence1> sequence1_;
detail::view_storage<Sequence2> sequence2_;
using hana_tag = view_tag;
};
struct make_joined_view_t {
template <typename Sequence1, typename Sequence2>
constexpr joined_view_t<Sequence1, Sequence2> operator()(Sequence1& s1, Sequence2& s2) const {
return {s1, s2};
}
};
constexpr make_joined_view_t joined{};
namespace detail {
template <typename Sequence1, typename Sequence2>
struct is_view<joined_view_t<Sequence1, Sequence2>> {
static constexpr bool value = true;
};
}
//////////////////////////////////////////////////////////////////////////
// single_view
//////////////////////////////////////////////////////////////////////////
template <typename T>
struct single_view_t {
T value_;
using hana_tag = view_tag;
};
template <typename T>
constexpr single_view_t<typename hana::detail::decay<T>::type> single_view(T&& t) {
return {static_cast<T&&>(t)};
}
namespace detail {
template <typename T>
struct is_view<single_view_t<T>> {
static constexpr bool value = true;
};
}
//////////////////////////////////////////////////////////////////////////
// empty_view
//////////////////////////////////////////////////////////////////////////
struct empty_view_t {
using hana_tag = view_tag;
};
constexpr empty_view_t empty_view() {
return {};
}
namespace detail {
template <>
struct is_view<empty_view_t> {
static constexpr bool value = true;
};
}
} // end namespace experimental
//////////////////////////////////////////////////////////////////////////
// Foldable
//////////////////////////////////////////////////////////////////////////
template <>
struct unpack_impl<experimental::view_tag> {
// sliced_view
template <typename Sequence, std::size_t ...i, typename F>
static constexpr decltype(auto)
apply(experimental::sliced_view_t<Sequence, i...> view, F&& f) {
(void)view; // Remove spurious unused variable warning with GCC
return static_cast<F&&>(f)(hana::at_c<i>(view.sequence_)...);
}
// transformed_view
template <typename Sequence, typename F, typename G>
static constexpr decltype(auto)
apply(experimental::transformed_view_t<Sequence, F> view, G&& g) {
return hana::unpack(view.sequence_, hana::on(static_cast<G&&>(g), view.f_));
}
// joined_view
template <typename View, typename F, std::size_t ...i1, std::size_t ...i2>
static constexpr decltype(auto)
unpack_joined(View view, F&& f, std::index_sequence<i1...>,
std::index_sequence<i2...>)
{
(void)view; // Remove spurious unused variable warning with GCC
return static_cast<F&&>(f)(hana::at_c<i1>(view.sequence1_)...,
hana::at_c<i2>(view.sequence2_)...);
}
template <typename S1, typename S2, typename F>
static constexpr decltype(auto)
apply(experimental::joined_view_t<S1, S2> view, F&& f) {
constexpr auto N1 = decltype(hana::length(view.sequence1_))::value;
constexpr auto N2 = decltype(hana::length(view.sequence2_))::value;
return unpack_joined(view, static_cast<F&&>(f),
std::make_index_sequence<N1>{},
std::make_index_sequence<N2>{});
}
// single_view
template <typename T, typename F>
static constexpr decltype(auto) apply(experimental::single_view_t<T> view, F&& f) {
return static_cast<F&&>(f)(view.value_);
}
// empty_view
template <typename F>
static constexpr decltype(auto) apply(experimental::empty_view_t, F&& f) {
return static_cast<F&&>(f)();
}
};
//////////////////////////////////////////////////////////////////////////
// Iterable
//////////////////////////////////////////////////////////////////////////
template <>
struct at_impl<experimental::view_tag> {
// sliced_view
template <typename Sequence, std::size_t ...i, typename N>
static constexpr decltype(auto)
apply(experimental::sliced_view_t<Sequence, i...> view, N const&) {
constexpr std::size_t indices[] = {i...};
constexpr std::size_t n = indices[N::value];
return hana::at_c<n>(view.sequence_);
}
// transformed_view
template <typename Sequence, typename F, typename N>
static constexpr decltype(auto)
apply(experimental::transformed_view_t<Sequence, F> view, N const& n) {
return view.f_(hana::at(view.sequence_, n));
}
// joined_view
template <std::size_t Left, typename View, typename N>
static constexpr decltype(auto) at_joined_view(View view, N const&, hana::true_) {
return hana::at_c<N::value>(view.sequence1_);
}
template <std::size_t Left, typename View, typename N>
static constexpr decltype(auto) at_joined_view(View view, N const&, hana::false_) {
return hana::at_c<N::value - Left>(view.sequence2_);
}
template <typename S1, typename S2, typename N>
static constexpr decltype(auto)
apply(experimental::joined_view_t<S1, S2> view, N const& n) {
constexpr auto Left = decltype(hana::length(view.sequence1_))::value;
return at_joined_view<Left>(view, n, hana::bool_c<(N::value < Left)>);
}
// single_view
template <typename T, typename N>
static constexpr decltype(auto) apply(experimental::single_view_t<T> view, N const&) {
static_assert(N::value == 0,
"trying to fetch an out-of-bounds element in a hana::single_view");
return view.value_;
}
// empty_view
template <typename N>
static constexpr decltype(auto) apply(experimental::empty_view_t, N const&) = delete;
};
template <>
struct length_impl<experimental::view_tag> {
// sliced_view
template <typename Sequence, std::size_t ...i>
static constexpr auto
apply(experimental::sliced_view_t<Sequence, i...>) {
return hana::size_c<sizeof...(i)>;
}
// transformed_view
template <typename Sequence, typename F>
static constexpr auto apply(experimental::transformed_view_t<Sequence, F> view) {
return hana::length(view.sequence_);
}
// joined_view
template <typename S1, typename S2>
static constexpr auto apply(experimental::joined_view_t<S1, S2> view) {
return hana::size_c<
decltype(hana::length(view.sequence1_))::value +
decltype(hana::length(view.sequence2_))::value
>;
}
// single_view
template <typename T>
static constexpr auto apply(experimental::single_view_t<T>) {
return hana::size_c<1>;
}
// empty_view
static constexpr auto apply(experimental::empty_view_t) {
return hana::size_c<0>;
}
};
template <>
struct is_empty_impl<experimental::view_tag> {
// sliced_view
template <typename Sequence, std::size_t ...i>
static constexpr auto
apply(experimental::sliced_view_t<Sequence, i...>) {
return hana::bool_c<sizeof...(i) == 0>;
}
// transformed_view
template <typename Sequence, typename F>
static constexpr auto apply(experimental::transformed_view_t<Sequence, F> view) {
return hana::is_empty(view.sequence_);
}
// joined_view
template <typename S1, typename S2>
static constexpr auto apply(experimental::joined_view_t<S1, S2> view) {
return hana::and_(hana::is_empty(view.sequence1_),
hana::is_empty(view.sequence2_));
}
// single_view
template <typename T>
static constexpr auto apply(experimental::single_view_t<T>) {
return hana::false_c;
}
// empty_view
static constexpr auto apply(experimental::empty_view_t) {
return hana::true_c;
}
};
template <>
struct drop_front_impl<experimental::view_tag> {
template <typename View, typename N>
static constexpr auto apply(View view, N const&) {
constexpr auto n = N::value;
constexpr auto Length = decltype(hana::length(view))::value;
return experimental::sliced(view, hana::range_c<std::size_t, n, Length>);
}
};
//////////////////////////////////////////////////////////////////////////
// Functor
//////////////////////////////////////////////////////////////////////////
template <>
struct transform_impl<experimental::view_tag> {
template <typename Sequence, typename F, typename G>
static constexpr auto
apply(experimental::transformed_view_t<Sequence, F> view, G&& g) {
return experimental::transformed(view.sequence_,
hana::compose(static_cast<G&&>(g), view.f_));
}
template <typename View, typename F>
static constexpr auto apply(View view, F&& f) {
return experimental::transformed(view, static_cast<F&&>(f));
}
};
//////////////////////////////////////////////////////////////////////////
// Applicative
//////////////////////////////////////////////////////////////////////////
template <>
struct lift_impl<experimental::view_tag> {
template <typename T>
static constexpr auto apply(T&& t) {
return experimental::single_view(static_cast<T&&>(t));
}
};
template <>
struct ap_impl<experimental::view_tag> {
template <typename F, typename X>
static constexpr auto apply(F&& f, X&& x) {
// TODO: Implement cleverly; we most likely need a cartesian_product
// view or something like that.
return hana::ap(hana::to_tuple(f), hana::to_tuple(x));
}
};
//////////////////////////////////////////////////////////////////////////
// Monad
//////////////////////////////////////////////////////////////////////////
template <>
struct flatten_impl<experimental::view_tag> {
template <typename View>
static constexpr auto apply(View view) {
// TODO: Implement a flattened_view instead
return hana::fold_left(view, experimental::empty_view(),
experimental::joined);
}
};
//////////////////////////////////////////////////////////////////////////
// MonadPlus
//////////////////////////////////////////////////////////////////////////
template <>
struct concat_impl<experimental::view_tag> {
template <typename View1, typename View2>
static constexpr auto apply(View1 view1, View2 view2) {
return experimental::joined(view1, view2);
}
};
template <>
struct empty_impl<experimental::view_tag> {
static constexpr auto apply() {
return experimental::empty_view();
}
};
//////////////////////////////////////////////////////////////////////////
// Comparable
//////////////////////////////////////////////////////////////////////////
template <>
struct equal_impl<experimental::view_tag, experimental::view_tag> {
template <typename View1, typename View2>
static constexpr auto apply(View1 v1, View2 v2) {
// TODO: Use a lexicographical comparison algorithm.
return hana::equal(hana::to_tuple(v1), hana::to_tuple(v2));
}
};
template <typename S>
struct equal_impl<experimental::view_tag, S, hana::when<hana::Sequence<S>::value>> {
template <typename View1, typename Seq>
static constexpr auto apply(View1 v1, Seq const& s) {
// TODO: Use a lexicographical comparison algorithm.
return hana::equal(hana::to_tuple(v1), hana::to_tuple(s));
}
};
template <typename S>
struct equal_impl<S, experimental::view_tag, hana::when<hana::Sequence<S>::value>> {
template <typename Seq, typename View2>
static constexpr auto apply(Seq const& s, View2 v2) {
// TODO: Use a lexicographical comparison algorithm.
return hana::equal(hana::to_tuple(s), hana::to_tuple(v2));
}
};
//////////////////////////////////////////////////////////////////////////
// Orderable
//////////////////////////////////////////////////////////////////////////
template <>
struct less_impl<experimental::view_tag, experimental::view_tag> {
template <typename View1, typename View2>
static constexpr auto apply(View1 v1, View2 v2) {
return hana::lexicographical_compare(v1, v2);
}
};
template <typename S>
struct less_impl<experimental::view_tag, S, hana::when<hana::Sequence<S>::value>> {
template <typename View1, typename Seq>
static constexpr auto apply(View1 v1, Seq const& s) {
return hana::lexicographical_compare(v1, s);
}
};
template <typename S>
struct less_impl<S, experimental::view_tag, hana::when<hana::Sequence<S>::value>> {
template <typename Seq, typename View2>
static constexpr auto apply(Seq const& s, View2 v2) {
return hana::lexicographical_compare(s, v2);
}
};
BOOST_HANA_NAMESPACE_END
#endif // !BOOST_HANA_EXPERIMENTAL_VIEW_HPP