vn-verdnaturachat/ios/Pods/boost-for-react-native/boost/hana/fwd/concept/group.hpp

112 lines
3.8 KiB
C++

/*!
@file
Forward declares `boost::hana::Group`.
@copyright Louis Dionne 2013-2016
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_HANA_FWD_CONCEPT_GROUP_HPP
#define BOOST_HANA_FWD_CONCEPT_GROUP_HPP
#include <boost/hana/config.hpp>
BOOST_HANA_NAMESPACE_BEGIN
//! @ingroup group-concepts
//! @defgroup group-Group Group
//! The `Group` concept represents `Monoid`s where all objects have
//! an inverse w.r.t. the `Monoid`'s binary operation.
//!
//! A [Group][1] is an algebraic structure built on top of a `Monoid`
//! which adds the ability to invert the action of the `Monoid`'s binary
//! operation on any element of the set. Specifically, a `Group` is a
//! `Monoid` `(S, +)` such that every element `s` in `S` has an inverse
//! (say `s'`) which is such that
//! @code
//! s + s' == s' + s == identity of the Monoid
//! @endcode
//!
//! There are many examples of `Group`s, one of which would be the
//! additive `Monoid` on integers, where the inverse of any integer
//! `n` is the integer `-n`. The method names used here refer to
//! exactly this model.
//!
//!
//! Minimal complete definitions
//! ----------------------------
//! 1. `minus`\n
//! When `minus` is specified, the `negate` method is defaulted by setting
//! @code
//! negate(x) = minus(zero<G>(), x)
//! @endcode
//!
//! 2. `negate`\n
//! When `negate` is specified, the `minus` method is defaulted by setting
//! @code
//! minus(x, y) = plus(x, negate(y))
//! @endcode
//!
//!
//! Laws
//! ----
//! For all objects `x` of a `Group` `G`, the following laws must be
//! satisfied:
//! @code
//! plus(x, negate(x)) == zero<G>() // right inverse
//! plus(negate(x), x) == zero<G>() // left inverse
//! @endcode
//!
//!
//! Refined concept
//! ---------------
//! `Monoid`
//!
//!
//! Concrete models
//! ---------------
//! `hana::integral_constant`
//!
//!
//! Free model for non-boolean arithmetic data types
//! ------------------------------------------------
//! A data type `T` is arithmetic if `std::is_arithmetic<T>::%value` is
//! true. For a non-boolean arithmetic data type `T`, a model of `Group`
//! is automatically defined by setting
//! @code
//! minus(x, y) = (x - y)
//! negate(x) = -x
//! @endcode
//!
//! @note
//! The rationale for not providing a Group model for `bool` is the same
//! as for not providing a `Monoid` model.
//!
//!
//! Structure-preserving functions
//! ------------------------------
//! Let `A` and `B` be two `Group`s. A function `f : A -> B` is said to
//! be a [Group morphism][2] if it preserves the group structure between
//! `A` and `B`. Rigorously, for all objects `x, y` of data type `A`,
//! @code
//! f(plus(x, y)) == plus(f(x), f(y))
//! @endcode
//! Because of the `Group` structure, it is easy to prove that the
//! following will then also be satisfied:
//! @code
//! f(negate(x)) == negate(f(x))
//! f(zero<A>()) == zero<B>()
//! @endcode
//! Functions with these properties interact nicely with `Group`s, which
//! is why they are given such a special treatment.
//!
//!
//! [1]: http://en.wikipedia.org/wiki/Group_(mathematics)
//! [2]: http://en.wikipedia.org/wiki/Group_homomorphism
template <typename G>
struct Group;
BOOST_HANA_NAMESPACE_END
#endif // !BOOST_HANA_FWD_CONCEPT_GROUP_HPP