377 lines
13 KiB
C++
377 lines
13 KiB
C++
// (C) Copyright 2007-2009 Andrew Sutton
|
|
//
|
|
// Use, modification and distribution are subject to the
|
|
// Boost Software License, Version 1.0 (See accompanying file
|
|
// LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
#ifndef BOOST_GRAPH_CYCLE_HPP
|
|
#define BOOST_GRAPH_CYCLE_HPP
|
|
|
|
#include <vector>
|
|
|
|
#include <boost/config.hpp>
|
|
#include <boost/graph/graph_concepts.hpp>
|
|
#include <boost/graph/graph_traits.hpp>
|
|
#include <boost/graph/properties.hpp>
|
|
#include <boost/concept/assert.hpp>
|
|
|
|
#include <boost/concept/detail/concept_def.hpp>
|
|
namespace boost {
|
|
namespace concepts {
|
|
BOOST_concept(CycleVisitor,(Visitor)(Path)(Graph))
|
|
{
|
|
BOOST_CONCEPT_USAGE(CycleVisitor)
|
|
{
|
|
vis.cycle(p, g);
|
|
}
|
|
private:
|
|
Visitor vis;
|
|
Graph g;
|
|
Path p;
|
|
};
|
|
} /* namespace concepts */
|
|
using concepts::CycleVisitorConcept;
|
|
} /* namespace boost */
|
|
#include <boost/concept/detail/concept_undef.hpp>
|
|
|
|
|
|
namespace boost
|
|
{
|
|
|
|
// The implementation of this algorithm is a reproduction of the Teirnan
|
|
// approach for directed graphs: bibtex follows
|
|
//
|
|
// @article{362819,
|
|
// author = {James C. Tiernan},
|
|
// title = {An efficient search algorithm to find the elementary circuits of a graph},
|
|
// journal = {Commun. ACM},
|
|
// volume = {13},
|
|
// number = {12},
|
|
// year = {1970},
|
|
// issn = {0001-0782},
|
|
// pages = {722--726},
|
|
// doi = {http://doi.acm.org/10.1145/362814.362819},
|
|
// publisher = {ACM Press},
|
|
// address = {New York, NY, USA},
|
|
// }
|
|
//
|
|
// It should be pointed out that the author does not provide a complete analysis for
|
|
// either time or space. This is in part, due to the fact that it's a fairly input
|
|
// sensitive problem related to the density and construction of the graph, not just
|
|
// its size.
|
|
//
|
|
// I've also taken some liberties with the interpretation of the algorithm - I've
|
|
// basically modernized it to use real data structures (no more arrays and matrices).
|
|
// Oh... and there's explicit control structures - not just gotos.
|
|
//
|
|
// The problem is definitely NP-complete, an unbounded implementation of this
|
|
// will probably run for quite a while on a large graph. The conclusions
|
|
// of this paper also reference a Paton algorithm for undirected graphs as being
|
|
// much more efficient (apparently based on spanning trees). Although not implemented,
|
|
// it can be found here:
|
|
//
|
|
// @article{363232,
|
|
// author = {Keith Paton},
|
|
// title = {An algorithm for finding a fundamental set of cycles of a graph},
|
|
// journal = {Commun. ACM},
|
|
// volume = {12},
|
|
// number = {9},
|
|
// year = {1969},
|
|
// issn = {0001-0782},
|
|
// pages = {514--518},
|
|
// doi = {http://doi.acm.org/10.1145/363219.363232},
|
|
// publisher = {ACM Press},
|
|
// address = {New York, NY, USA},
|
|
// }
|
|
|
|
/**
|
|
* The default cycle visitor provides an empty visit function for cycle
|
|
* visitors.
|
|
*/
|
|
struct cycle_visitor
|
|
{
|
|
template <typename Path, typename Graph>
|
|
inline void cycle(const Path& p, const Graph& g)
|
|
{ }
|
|
};
|
|
|
|
/**
|
|
* The min_max_cycle_visitor simultaneously records the minimum and maximum
|
|
* cycles in a graph.
|
|
*/
|
|
struct min_max_cycle_visitor
|
|
{
|
|
min_max_cycle_visitor(std::size_t& min_, std::size_t& max_)
|
|
: minimum(min_), maximum(max_)
|
|
{ }
|
|
|
|
template <typename Path, typename Graph>
|
|
inline void cycle(const Path& p, const Graph& g)
|
|
{
|
|
BOOST_USING_STD_MIN();
|
|
BOOST_USING_STD_MAX();
|
|
std::size_t len = p.size();
|
|
minimum = min BOOST_PREVENT_MACRO_SUBSTITUTION (minimum, len);
|
|
maximum = max BOOST_PREVENT_MACRO_SUBSTITUTION (maximum, len);
|
|
}
|
|
std::size_t& minimum;
|
|
std::size_t& maximum;
|
|
};
|
|
|
|
inline min_max_cycle_visitor
|
|
find_min_max_cycle(std::size_t& min_, std::size_t& max_)
|
|
{ return min_max_cycle_visitor(min_, max_); }
|
|
|
|
namespace detail
|
|
{
|
|
template <typename Graph, typename Path>
|
|
inline bool
|
|
is_vertex_in_path(const Graph&,
|
|
typename graph_traits<Graph>::vertex_descriptor v,
|
|
const Path& p)
|
|
{
|
|
return (std::find(p.begin(), p.end(), v) != p.end());
|
|
}
|
|
|
|
template <typename Graph, typename ClosedMatrix>
|
|
inline bool
|
|
is_path_closed(const Graph& g,
|
|
typename graph_traits<Graph>::vertex_descriptor u,
|
|
typename graph_traits<Graph>::vertex_descriptor v,
|
|
const ClosedMatrix& closed)
|
|
{
|
|
// the path from u to v is closed if v can be found in the list
|
|
// of closed vertices associated with u.
|
|
typedef typename ClosedMatrix::const_reference Row;
|
|
Row r = closed[get(vertex_index, g, u)];
|
|
if(find(r.begin(), r.end(), v) != r.end()) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template <typename Graph, typename Path, typename ClosedMatrix>
|
|
inline bool
|
|
can_extend_path(const Graph& g,
|
|
typename graph_traits<Graph>::edge_descriptor e,
|
|
const Path& p,
|
|
const ClosedMatrix& m)
|
|
{
|
|
BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<Graph> ));
|
|
BOOST_CONCEPT_ASSERT(( VertexIndexGraphConcept<Graph> ));
|
|
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
|
|
|
|
// get the vertices in question
|
|
Vertex
|
|
u = source(e, g),
|
|
v = target(e, g);
|
|
|
|
// conditions for allowing a traversal along this edge are:
|
|
// 1. the index of v must be greater than that at which the
|
|
// path is rooted (p.front()).
|
|
// 2. the vertex v cannot already be in the path
|
|
// 3. the vertex v cannot be closed to the vertex u
|
|
|
|
bool indices = get(vertex_index, g, p.front()) < get(vertex_index, g, v);
|
|
bool path = !is_vertex_in_path(g, v, p);
|
|
bool closed = !is_path_closed(g, u, v, m);
|
|
return indices && path && closed;
|
|
}
|
|
|
|
template <typename Graph, typename Path>
|
|
inline bool
|
|
can_wrap_path(const Graph& g, const Path& p)
|
|
{
|
|
BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<Graph> ));
|
|
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
|
|
typedef typename graph_traits<Graph>::out_edge_iterator OutIterator;
|
|
|
|
// iterate over the out-edges of the back, looking for the
|
|
// front of the path. also, we can't travel along the same
|
|
// edge that we did on the way here, but we don't quite have the
|
|
// stringent requirements that we do in can_extend_path().
|
|
Vertex
|
|
u = p.back(),
|
|
v = p.front();
|
|
OutIterator i, end;
|
|
for(boost::tie(i, end) = out_edges(u, g); i != end; ++i) {
|
|
if((target(*i, g) == v)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template <typename Graph,
|
|
typename Path,
|
|
typename ClosedMatrix>
|
|
inline typename graph_traits<Graph>::vertex_descriptor
|
|
extend_path(const Graph& g,
|
|
Path& p,
|
|
ClosedMatrix& closed)
|
|
{
|
|
BOOST_CONCEPT_ASSERT(( IncidenceGraphConcept<Graph> ));
|
|
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
|
|
typedef typename graph_traits<Graph>::out_edge_iterator OutIterator;
|
|
|
|
// get the current vertex
|
|
Vertex u = p.back();
|
|
Vertex ret = graph_traits<Graph>::null_vertex();
|
|
|
|
// AdjacencyIterator i, end;
|
|
OutIterator i, end;
|
|
for(boost::tie(i, end) = out_edges(u, g); i != end; ++i) {
|
|
Vertex v = target(*i, g);
|
|
|
|
// if we can actually extend along this edge,
|
|
// then that's what we want to do
|
|
if(can_extend_path(g, *i, p, closed)) {
|
|
p.push_back(v); // add the vertex to the path
|
|
ret = v;
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
template <typename Graph, typename Path, typename ClosedMatrix>
|
|
inline bool
|
|
exhaust_paths(const Graph& g, Path& p, ClosedMatrix& closed)
|
|
{
|
|
BOOST_CONCEPT_ASSERT(( GraphConcept<Graph> ));
|
|
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
|
|
|
|
// if there's more than one vertex in the path, this closes
|
|
// of some possible routes and returns true. otherwise, if there's
|
|
// only one vertex left, the vertex has been used up
|
|
if(p.size() > 1) {
|
|
// get the last and second to last vertices, popping the last
|
|
// vertex off the path
|
|
Vertex last, prev;
|
|
last = p.back();
|
|
p.pop_back();
|
|
prev = p.back();
|
|
|
|
// reset the closure for the last vertex of the path and
|
|
// indicate that the last vertex in p is now closed to
|
|
// the next-to-last vertex in p
|
|
closed[get(vertex_index, g, last)].clear();
|
|
closed[get(vertex_index, g, prev)].push_back(last);
|
|
return true;
|
|
}
|
|
else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
template <typename Graph, typename Visitor>
|
|
inline void
|
|
all_cycles_from_vertex(const Graph& g,
|
|
typename graph_traits<Graph>::vertex_descriptor v,
|
|
Visitor vis,
|
|
std::size_t minlen,
|
|
std::size_t maxlen)
|
|
{
|
|
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph> ));
|
|
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
|
|
typedef std::vector<Vertex> Path;
|
|
BOOST_CONCEPT_ASSERT(( CycleVisitorConcept<Visitor,Path,Graph> ));
|
|
typedef std::vector<Vertex> VertexList;
|
|
typedef std::vector<VertexList> ClosedMatrix;
|
|
|
|
Path p;
|
|
ClosedMatrix closed(num_vertices(g), VertexList());
|
|
Vertex null = graph_traits<Graph>::null_vertex();
|
|
|
|
// each path investigation starts at the ith vertex
|
|
p.push_back(v);
|
|
|
|
while(1) {
|
|
// extend the path until we've reached the end or the
|
|
// maxlen-sized cycle
|
|
Vertex j = null;
|
|
while(((j = detail::extend_path(g, p, closed)) != null)
|
|
&& (p.size() < maxlen))
|
|
; // empty loop
|
|
|
|
// if we're done extending the path and there's an edge
|
|
// connecting the back to the front, then we should have
|
|
// a cycle.
|
|
if(detail::can_wrap_path(g, p) && p.size() >= minlen) {
|
|
vis.cycle(p, g);
|
|
}
|
|
|
|
if(!detail::exhaust_paths(g, p, closed)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Select the minimum allowable length of a cycle based on the directedness
|
|
// of the graph - 2 for directed, 3 for undirected.
|
|
template <typename D> struct min_cycles { enum { value = 2 }; };
|
|
template <> struct min_cycles<undirected_tag> { enum { value = 3 }; };
|
|
} /* namespace detail */
|
|
|
|
template <typename Graph, typename Visitor>
|
|
inline void
|
|
tiernan_all_cycles(const Graph& g,
|
|
Visitor vis,
|
|
std::size_t minlen,
|
|
std::size_t maxlen)
|
|
{
|
|
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph> ));
|
|
typedef typename graph_traits<Graph>::vertex_iterator VertexIterator;
|
|
|
|
VertexIterator i, end;
|
|
for(boost::tie(i, end) = vertices(g); i != end; ++i) {
|
|
detail::all_cycles_from_vertex(g, *i, vis, minlen, maxlen);
|
|
}
|
|
}
|
|
|
|
template <typename Graph, typename Visitor>
|
|
inline void
|
|
tiernan_all_cycles(const Graph& g, Visitor vis, std::size_t maxlen)
|
|
{
|
|
typedef typename graph_traits<Graph>::directed_category Dir;
|
|
tiernan_all_cycles(g, vis, detail::min_cycles<Dir>::value, maxlen);
|
|
}
|
|
|
|
template <typename Graph, typename Visitor>
|
|
inline void
|
|
tiernan_all_cycles(const Graph& g, Visitor vis)
|
|
{
|
|
typedef typename graph_traits<Graph>::directed_category Dir;
|
|
tiernan_all_cycles(g, vis, detail::min_cycles<Dir>::value,
|
|
(std::numeric_limits<std::size_t>::max)());
|
|
}
|
|
|
|
template <typename Graph>
|
|
inline std::pair<std::size_t, std::size_t>
|
|
tiernan_girth_and_circumference(const Graph& g)
|
|
{
|
|
std::size_t
|
|
min_ = (std::numeric_limits<std::size_t>::max)(),
|
|
max_ = 0;
|
|
tiernan_all_cycles(g, find_min_max_cycle(min_, max_));
|
|
|
|
// if this is the case, the graph is acyclic...
|
|
if(max_ == 0) max_ = min_;
|
|
|
|
return std::make_pair(min_, max_);
|
|
}
|
|
|
|
template <typename Graph>
|
|
inline std::size_t
|
|
tiernan_girth(const Graph& g)
|
|
{ return tiernan_girth_and_circumference(g).first; }
|
|
|
|
template <typename Graph>
|
|
inline std::size_t
|
|
tiernan_circumference(const Graph& g)
|
|
{ return tiernan_girth_and_circumference(g).second; }
|
|
|
|
} /* namespace boost */
|
|
|
|
#endif
|