vn-verdnaturachat/ios/Pods/Folly/folly/detail/IPAddressSource.h

278 lines
8.0 KiB
C++

/*
* Copyright 2014-present Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <glog/logging.h>
#include <sys/types.h>
#include <algorithm>
#include <array>
#include <cstring>
#include <string>
#include <type_traits>
#include <folly/Format.h>
#include <folly/detail/IPAddress.h>
// BSDish platforms don't provide standard access to s6_addr16
#ifndef s6_addr16
#if defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || \
defined(__OpenBSD__)
#define s6_addr16 __u6_addr.__u6_addr16
#endif
#endif
namespace folly {
namespace detail {
/**
* Helper for working with unsigned char* or uint8_t* ByteArray values
*/
struct Bytes {
// mask the values from two byte arrays, returning a new byte array
template <std::size_t N>
static std::array<uint8_t, N> mask(
const std::array<uint8_t, N>& a,
const std::array<uint8_t, N>& b) {
static_assert(N > 0, "Can't mask an empty ByteArray");
std::size_t asize = a.size();
std::array<uint8_t, N> ba{{0}};
for (std::size_t i = 0; i < asize; i++) {
ba[i] = uint8_t(a[i] & b[i]);
}
return ba;
}
template <std::size_t N>
static std::pair<std::array<uint8_t, N>, uint8_t> longestCommonPrefix(
const std::array<uint8_t, N>& one,
uint8_t oneMask,
const std::array<uint8_t, N>& two,
uint8_t twoMask) {
static constexpr auto kBitCount = N * 8;
static constexpr std::array<uint8_t, 8> kMasks{{
0x80, // /1
0xc0, // /2
0xe0, // /3
0xf0, // /4
0xf8, // /5
0xfc, // /6
0xfe, // /7
0xff // /8
}};
if (oneMask > kBitCount || twoMask > kBitCount) {
throw std::invalid_argument(sformat(
"Invalid mask length: {}. Mask length must be <= {}",
std::max(oneMask, twoMask),
kBitCount));
}
auto mask = std::min(oneMask, twoMask);
uint8_t byteIndex = 0;
std::array<uint8_t, N> ba{{0}};
// Compare a byte at a time. Note - I measured compared this with
// going multiple bytes at a time (8, 4, 2 and 1). It turns out
// to be 20 - 25% slower for 4 and 16 byte arrays.
while (byteIndex * 8 < mask && one[byteIndex] == two[byteIndex]) {
ba[byteIndex] = one[byteIndex];
++byteIndex;
}
auto bitIndex = std::min(mask, uint8_t(byteIndex * 8));
uint8_t bI = uint8_t(bitIndex / 8);
uint8_t bM = uint8_t(bitIndex % 8);
// Compute the bit up to which the two byte arrays match in the
// unmatched byte.
// Here the check is bitIndex < mask since the 0th mask entry in
// kMasks array holds the mask for masking the MSb in this byte.
// We could instead make it hold so that no 0th entry masks no
// bits but thats a useless iteration.
while (bitIndex < mask &&
((one[bI] & kMasks[bM]) == (two[bI] & kMasks[bM]))) {
ba[bI] = uint8_t(one[bI] & kMasks[bM]);
++bitIndex;
bI = uint8_t(bitIndex / 8);
bM = uint8_t(bitIndex % 8);
}
return {ba, bitIndex};
}
// create an in_addr from an uint8_t*
static inline in_addr mkAddress4(const uint8_t* src) {
union {
in_addr addr;
uint8_t bytes[4];
} addr;
std::memset(&addr, 0, 4);
std::memcpy(addr.bytes, src, 4);
return addr.addr;
}
// create an in6_addr from an uint8_t*
static inline in6_addr mkAddress6(const uint8_t* src) {
in6_addr addr;
std::memset(&addr, 0, 16);
std::memcpy(addr.s6_addr, src, 16);
return addr;
}
// convert an uint8_t* to its hex value
static std::string toHex(const uint8_t* src, std::size_t len) {
static const char* const lut = "0123456789abcdef";
std::string out(len * 2, 0);
for (std::size_t i = 0; i < len; i++) {
const unsigned char c = src[i];
out[i * 2 + 0] = lut[c >> 4];
out[i * 2 + 1] = lut[c & 15];
}
return out;
}
private:
Bytes() = delete;
~Bytes() = delete;
};
//
// Write a maximum amount of base-converted character digits, of a
// given base, from an unsigned integral type into a byte buffer of
// sufficient size.
//
// This function does not append null terminators.
//
// Output buffer size must be guaranteed by caller (indirectly
// controlled by DigitCount template parameter).
//
// Having these parameters at compile time allows compiler to
// precompute several of the values, use smaller instructions, and
// better optimize surrounding code.
//
// IntegralType:
// - Something like uint8_t, uint16_t, etc
//
// DigitCount is the maximum number of digits to be printed
// - This is tied to IntegralType and Base. For example:
// - uint8_t in base 10 will print at most 3 digits ("255")
// - uint16_t in base 16 will print at most 4 hex digits ("FFFF")
//
// Base is the desired output base of the string
// - Base 10 will print [0-9], base 16 will print [0-9a-f]
//
// PrintAllDigits:
// - Whether or not leading zeros should be printed
//
template <
class IntegralType,
IntegralType DigitCount,
IntegralType Base = IntegralType(10),
bool PrintAllDigits = false,
class = typename std::enable_if<
std::is_integral<IntegralType>::value &&
std::is_unsigned<IntegralType>::value,
bool>::type>
inline void writeIntegerString(IntegralType val, char** buffer) {
char* buf = *buffer;
if (!PrintAllDigits && val == 0) {
*(buf++) = '0';
*buffer = buf;
return;
}
IntegralType powerToPrint = 1;
for (IntegralType i = 1; i < DigitCount; ++i) {
powerToPrint *= Base;
}
bool found = PrintAllDigits;
while (powerToPrint) {
if (found || powerToPrint <= val) {
IntegralType value = IntegralType(val / powerToPrint);
if (Base == 10 || value < 10) {
value += '0';
} else {
value += ('a' - 10);
}
*(buf++) = char(value);
val %= powerToPrint;
found = true;
}
powerToPrint /= Base;
}
*buffer = buf;
}
inline size_t fastIpV4ToBufferUnsafe(const in_addr& inAddr, char* str) {
const uint8_t* octets = reinterpret_cast<const uint8_t*>(&inAddr.s_addr);
char* buf = str;
writeIntegerString<uint8_t, 3>(octets[0], &buf);
*(buf++) = '.';
writeIntegerString<uint8_t, 3>(octets[1], &buf);
*(buf++) = '.';
writeIntegerString<uint8_t, 3>(octets[2], &buf);
*(buf++) = '.';
writeIntegerString<uint8_t, 3>(octets[3], &buf);
return buf - str;
}
inline std::string fastIpv4ToString(const in_addr& inAddr) {
char str[sizeof("255.255.255.255")];
return std::string(str, fastIpV4ToBufferUnsafe(inAddr, str));
}
inline void fastIpv4AppendToString(const in_addr& inAddr, std::string& out) {
char str[sizeof("255.255.255.255")];
out.append(str, fastIpV4ToBufferUnsafe(inAddr, str));
}
inline size_t fastIpv6ToBufferUnsafe(const in6_addr& in6Addr, char* str) {
#ifdef _MSC_VER
const uint16_t* bytes = reinterpret_cast<const uint16_t*>(&in6Addr.u.Word);
#else
const uint16_t* bytes = reinterpret_cast<const uint16_t*>(&in6Addr.s6_addr16);
#endif
char* buf = str;
for (int i = 0; i < 8; ++i) {
writeIntegerString<
uint16_t,
4, // at most 4 hex digits per ushort
16, // base 16 (hex)
true>(htons(bytes[i]), &buf);
if (i != 7) {
*(buf++) = ':';
}
}
return buf - str;
}
inline std::string fastIpv6ToString(const in6_addr& in6Addr) {
char str[sizeof("2001:0db8:0000:0000:0000:ff00:0042:8329")];
return std::string(str, fastIpv6ToBufferUnsafe(in6Addr, str));
}
inline void fastIpv6AppendToString(const in6_addr& in6Addr, std::string& out) {
char str[sizeof("2001:0db8:0000:0000:0000:ff00:0042:8329")];
out.append(str, fastIpv6ToBufferUnsafe(in6Addr, str));
}
} // namespace detail
} // namespace folly