642 lines
27 KiB
C++
642 lines
27 KiB
C++
|
// Copyright 2010 the V8 project authors. All rights reserved.
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following
|
||
|
// disclaimer in the documentation and/or other materials provided
|
||
|
// with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived
|
||
|
// from this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
#include <math.h>
|
||
|
|
||
|
#include "bignum-dtoa.h"
|
||
|
|
||
|
#include "bignum.h"
|
||
|
#include "ieee.h"
|
||
|
|
||
|
namespace double_conversion {
|
||
|
|
||
|
static int NormalizedExponent(uint64_t significand, int exponent) {
|
||
|
ASSERT(significand != 0);
|
||
|
while ((significand & Double::kHiddenBit) == 0) {
|
||
|
significand = significand << 1;
|
||
|
exponent = exponent - 1;
|
||
|
}
|
||
|
return exponent;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Forward declarations:
|
||
|
// Returns an estimation of k such that 10^(k-1) <= v < 10^k.
|
||
|
static int EstimatePower(int exponent);
|
||
|
// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
|
||
|
// and denominator.
|
||
|
static void InitialScaledStartValues(uint64_t significand,
|
||
|
int exponent,
|
||
|
bool lower_boundary_is_closer,
|
||
|
int estimated_power,
|
||
|
bool need_boundary_deltas,
|
||
|
Bignum* numerator,
|
||
|
Bignum* denominator,
|
||
|
Bignum* delta_minus,
|
||
|
Bignum* delta_plus);
|
||
|
// Multiplies numerator/denominator so that its values lies in the range 1-10.
|
||
|
// Returns decimal_point s.t.
|
||
|
// v = numerator'/denominator' * 10^(decimal_point-1)
|
||
|
// where numerator' and denominator' are the values of numerator and
|
||
|
// denominator after the call to this function.
|
||
|
static void FixupMultiply10(int estimated_power, bool is_even,
|
||
|
int* decimal_point,
|
||
|
Bignum* numerator, Bignum* denominator,
|
||
|
Bignum* delta_minus, Bignum* delta_plus);
|
||
|
// Generates digits from the left to the right and stops when the generated
|
||
|
// digits yield the shortest decimal representation of v.
|
||
|
static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
|
||
|
Bignum* delta_minus, Bignum* delta_plus,
|
||
|
bool is_even,
|
||
|
Vector<char> buffer, int* length);
|
||
|
// Generates 'requested_digits' after the decimal point.
|
||
|
static void BignumToFixed(int requested_digits, int* decimal_point,
|
||
|
Bignum* numerator, Bignum* denominator,
|
||
|
Vector<char>(buffer), int* length);
|
||
|
// Generates 'count' digits of numerator/denominator.
|
||
|
// Once 'count' digits have been produced rounds the result depending on the
|
||
|
// remainder (remainders of exactly .5 round upwards). Might update the
|
||
|
// decimal_point when rounding up (for example for 0.9999).
|
||
|
static void GenerateCountedDigits(int count, int* decimal_point,
|
||
|
Bignum* numerator, Bignum* denominator,
|
||
|
Vector<char>(buffer), int* length);
|
||
|
|
||
|
|
||
|
void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
|
||
|
Vector<char> buffer, int* length, int* decimal_point) {
|
||
|
ASSERT(v > 0);
|
||
|
ASSERT(!Double(v).IsSpecial());
|
||
|
uint64_t significand;
|
||
|
int exponent;
|
||
|
bool lower_boundary_is_closer;
|
||
|
if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) {
|
||
|
float f = static_cast<float>(v);
|
||
|
ASSERT(f == v);
|
||
|
significand = Single(f).Significand();
|
||
|
exponent = Single(f).Exponent();
|
||
|
lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser();
|
||
|
} else {
|
||
|
significand = Double(v).Significand();
|
||
|
exponent = Double(v).Exponent();
|
||
|
lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser();
|
||
|
}
|
||
|
bool need_boundary_deltas =
|
||
|
(mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE);
|
||
|
|
||
|
bool is_even = (significand & 1) == 0;
|
||
|
int normalized_exponent = NormalizedExponent(significand, exponent);
|
||
|
// estimated_power might be too low by 1.
|
||
|
int estimated_power = EstimatePower(normalized_exponent);
|
||
|
|
||
|
// Shortcut for Fixed.
|
||
|
// The requested digits correspond to the digits after the point. If the
|
||
|
// number is much too small, then there is no need in trying to get any
|
||
|
// digits.
|
||
|
if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
|
||
|
buffer[0] = '\0';
|
||
|
*length = 0;
|
||
|
// Set decimal-point to -requested_digits. This is what Gay does.
|
||
|
// Note that it should not have any effect anyways since the string is
|
||
|
// empty.
|
||
|
*decimal_point = -requested_digits;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
Bignum numerator;
|
||
|
Bignum denominator;
|
||
|
Bignum delta_minus;
|
||
|
Bignum delta_plus;
|
||
|
// Make sure the bignum can grow large enough. The smallest double equals
|
||
|
// 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
|
||
|
// The maximum double is 1.7976931348623157e308 which needs fewer than
|
||
|
// 308*4 binary digits.
|
||
|
ASSERT(Bignum::kMaxSignificantBits >= 324*4);
|
||
|
InitialScaledStartValues(significand, exponent, lower_boundary_is_closer,
|
||
|
estimated_power, need_boundary_deltas,
|
||
|
&numerator, &denominator,
|
||
|
&delta_minus, &delta_plus);
|
||
|
// We now have v = (numerator / denominator) * 10^estimated_power.
|
||
|
FixupMultiply10(estimated_power, is_even, decimal_point,
|
||
|
&numerator, &denominator,
|
||
|
&delta_minus, &delta_plus);
|
||
|
// We now have v = (numerator / denominator) * 10^(decimal_point-1), and
|
||
|
// 1 <= (numerator + delta_plus) / denominator < 10
|
||
|
switch (mode) {
|
||
|
case BIGNUM_DTOA_SHORTEST:
|
||
|
case BIGNUM_DTOA_SHORTEST_SINGLE:
|
||
|
GenerateShortestDigits(&numerator, &denominator,
|
||
|
&delta_minus, &delta_plus,
|
||
|
is_even, buffer, length);
|
||
|
break;
|
||
|
case BIGNUM_DTOA_FIXED:
|
||
|
BignumToFixed(requested_digits, decimal_point,
|
||
|
&numerator, &denominator,
|
||
|
buffer, length);
|
||
|
break;
|
||
|
case BIGNUM_DTOA_PRECISION:
|
||
|
GenerateCountedDigits(requested_digits, decimal_point,
|
||
|
&numerator, &denominator,
|
||
|
buffer, length);
|
||
|
break;
|
||
|
default:
|
||
|
UNREACHABLE();
|
||
|
}
|
||
|
buffer[*length] = '\0';
|
||
|
}
|
||
|
|
||
|
|
||
|
// The procedure starts generating digits from the left to the right and stops
|
||
|
// when the generated digits yield the shortest decimal representation of v. A
|
||
|
// decimal representation of v is a number lying closer to v than to any other
|
||
|
// double, so it converts to v when read.
|
||
|
//
|
||
|
// This is true if d, the decimal representation, is between m- and m+, the
|
||
|
// upper and lower boundaries. d must be strictly between them if !is_even.
|
||
|
// m- := (numerator - delta_minus) / denominator
|
||
|
// m+ := (numerator + delta_plus) / denominator
|
||
|
//
|
||
|
// Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
|
||
|
// If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
|
||
|
// will be produced. This should be the standard precondition.
|
||
|
static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
|
||
|
Bignum* delta_minus, Bignum* delta_plus,
|
||
|
bool is_even,
|
||
|
Vector<char> buffer, int* length) {
|
||
|
// Small optimization: if delta_minus and delta_plus are the same just reuse
|
||
|
// one of the two bignums.
|
||
|
if (Bignum::Equal(*delta_minus, *delta_plus)) {
|
||
|
delta_plus = delta_minus;
|
||
|
}
|
||
|
*length = 0;
|
||
|
for (;;) {
|
||
|
uint16_t digit;
|
||
|
digit = numerator->DivideModuloIntBignum(*denominator);
|
||
|
ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
|
||
|
// digit = numerator / denominator (integer division).
|
||
|
// numerator = numerator % denominator.
|
||
|
buffer[(*length)++] = static_cast<char>(digit + '0');
|
||
|
|
||
|
// Can we stop already?
|
||
|
// If the remainder of the division is less than the distance to the lower
|
||
|
// boundary we can stop. In this case we simply round down (discarding the
|
||
|
// remainder).
|
||
|
// Similarly we test if we can round up (using the upper boundary).
|
||
|
bool in_delta_room_minus;
|
||
|
bool in_delta_room_plus;
|
||
|
if (is_even) {
|
||
|
in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
|
||
|
} else {
|
||
|
in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
|
||
|
}
|
||
|
if (is_even) {
|
||
|
in_delta_room_plus =
|
||
|
Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
|
||
|
} else {
|
||
|
in_delta_room_plus =
|
||
|
Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
|
||
|
}
|
||
|
if (!in_delta_room_minus && !in_delta_room_plus) {
|
||
|
// Prepare for next iteration.
|
||
|
numerator->Times10();
|
||
|
delta_minus->Times10();
|
||
|
// We optimized delta_plus to be equal to delta_minus (if they share the
|
||
|
// same value). So don't multiply delta_plus if they point to the same
|
||
|
// object.
|
||
|
if (delta_minus != delta_plus) {
|
||
|
delta_plus->Times10();
|
||
|
}
|
||
|
} else if (in_delta_room_minus && in_delta_room_plus) {
|
||
|
// Let's see if 2*numerator < denominator.
|
||
|
// If yes, then the next digit would be < 5 and we can round down.
|
||
|
int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
|
||
|
if (compare < 0) {
|
||
|
// Remaining digits are less than .5. -> Round down (== do nothing).
|
||
|
} else if (compare > 0) {
|
||
|
// Remaining digits are more than .5 of denominator. -> Round up.
|
||
|
// Note that the last digit could not be a '9' as otherwise the whole
|
||
|
// loop would have stopped earlier.
|
||
|
// We still have an assert here in case the preconditions were not
|
||
|
// satisfied.
|
||
|
ASSERT(buffer[(*length) - 1] != '9');
|
||
|
buffer[(*length) - 1]++;
|
||
|
} else {
|
||
|
// Halfway case.
|
||
|
// TODO(floitsch): need a way to solve half-way cases.
|
||
|
// For now let's round towards even (since this is what Gay seems to
|
||
|
// do).
|
||
|
|
||
|
if ((buffer[(*length) - 1] - '0') % 2 == 0) {
|
||
|
// Round down => Do nothing.
|
||
|
} else {
|
||
|
ASSERT(buffer[(*length) - 1] != '9');
|
||
|
buffer[(*length) - 1]++;
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
} else if (in_delta_room_minus) {
|
||
|
// Round down (== do nothing).
|
||
|
return;
|
||
|
} else { // in_delta_room_plus
|
||
|
// Round up.
|
||
|
// Note again that the last digit could not be '9' since this would have
|
||
|
// stopped the loop earlier.
|
||
|
// We still have an ASSERT here, in case the preconditions were not
|
||
|
// satisfied.
|
||
|
ASSERT(buffer[(*length) -1] != '9');
|
||
|
buffer[(*length) - 1]++;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Let v = numerator / denominator < 10.
|
||
|
// Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
|
||
|
// from left to right. Once 'count' digits have been produced we decide wether
|
||
|
// to round up or down. Remainders of exactly .5 round upwards. Numbers such
|
||
|
// as 9.999999 propagate a carry all the way, and change the
|
||
|
// exponent (decimal_point), when rounding upwards.
|
||
|
static void GenerateCountedDigits(int count, int* decimal_point,
|
||
|
Bignum* numerator, Bignum* denominator,
|
||
|
Vector<char> buffer, int* length) {
|
||
|
ASSERT(count >= 0);
|
||
|
for (int i = 0; i < count - 1; ++i) {
|
||
|
uint16_t digit;
|
||
|
digit = numerator->DivideModuloIntBignum(*denominator);
|
||
|
ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
|
||
|
// digit = numerator / denominator (integer division).
|
||
|
// numerator = numerator % denominator.
|
||
|
buffer[i] = static_cast<char>(digit + '0');
|
||
|
// Prepare for next iteration.
|
||
|
numerator->Times10();
|
||
|
}
|
||
|
// Generate the last digit.
|
||
|
uint16_t digit;
|
||
|
digit = numerator->DivideModuloIntBignum(*denominator);
|
||
|
if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
|
||
|
digit++;
|
||
|
}
|
||
|
ASSERT(digit <= 10);
|
||
|
buffer[count - 1] = static_cast<char>(digit + '0');
|
||
|
// Correct bad digits (in case we had a sequence of '9's). Propagate the
|
||
|
// carry until we hat a non-'9' or til we reach the first digit.
|
||
|
for (int i = count - 1; i > 0; --i) {
|
||
|
if (buffer[i] != '0' + 10) break;
|
||
|
buffer[i] = '0';
|
||
|
buffer[i - 1]++;
|
||
|
}
|
||
|
if (buffer[0] == '0' + 10) {
|
||
|
// Propagate a carry past the top place.
|
||
|
buffer[0] = '1';
|
||
|
(*decimal_point)++;
|
||
|
}
|
||
|
*length = count;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Generates 'requested_digits' after the decimal point. It might omit
|
||
|
// trailing '0's. If the input number is too small then no digits at all are
|
||
|
// generated (ex.: 2 fixed digits for 0.00001).
|
||
|
//
|
||
|
// Input verifies: 1 <= (numerator + delta) / denominator < 10.
|
||
|
static void BignumToFixed(int requested_digits, int* decimal_point,
|
||
|
Bignum* numerator, Bignum* denominator,
|
||
|
Vector<char>(buffer), int* length) {
|
||
|
// Note that we have to look at more than just the requested_digits, since
|
||
|
// a number could be rounded up. Example: v=0.5 with requested_digits=0.
|
||
|
// Even though the power of v equals 0 we can't just stop here.
|
||
|
if (-(*decimal_point) > requested_digits) {
|
||
|
// The number is definitively too small.
|
||
|
// Ex: 0.001 with requested_digits == 1.
|
||
|
// Set decimal-point to -requested_digits. This is what Gay does.
|
||
|
// Note that it should not have any effect anyways since the string is
|
||
|
// empty.
|
||
|
*decimal_point = -requested_digits;
|
||
|
*length = 0;
|
||
|
return;
|
||
|
} else if (-(*decimal_point) == requested_digits) {
|
||
|
// We only need to verify if the number rounds down or up.
|
||
|
// Ex: 0.04 and 0.06 with requested_digits == 1.
|
||
|
ASSERT(*decimal_point == -requested_digits);
|
||
|
// Initially the fraction lies in range (1, 10]. Multiply the denominator
|
||
|
// by 10 so that we can compare more easily.
|
||
|
denominator->Times10();
|
||
|
if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
|
||
|
// If the fraction is >= 0.5 then we have to include the rounded
|
||
|
// digit.
|
||
|
buffer[0] = '1';
|
||
|
*length = 1;
|
||
|
(*decimal_point)++;
|
||
|
} else {
|
||
|
// Note that we caught most of similar cases earlier.
|
||
|
*length = 0;
|
||
|
}
|
||
|
return;
|
||
|
} else {
|
||
|
// The requested digits correspond to the digits after the point.
|
||
|
// The variable 'needed_digits' includes the digits before the point.
|
||
|
int needed_digits = (*decimal_point) + requested_digits;
|
||
|
GenerateCountedDigits(needed_digits, decimal_point,
|
||
|
numerator, denominator,
|
||
|
buffer, length);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Returns an estimation of k such that 10^(k-1) <= v < 10^k where
|
||
|
// v = f * 2^exponent and 2^52 <= f < 2^53.
|
||
|
// v is hence a normalized double with the given exponent. The output is an
|
||
|
// approximation for the exponent of the decimal approimation .digits * 10^k.
|
||
|
//
|
||
|
// The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
|
||
|
// Note: this property holds for v's upper boundary m+ too.
|
||
|
// 10^k <= m+ < 10^k+1.
|
||
|
// (see explanation below).
|
||
|
//
|
||
|
// Examples:
|
||
|
// EstimatePower(0) => 16
|
||
|
// EstimatePower(-52) => 0
|
||
|
//
|
||
|
// Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
|
||
|
static int EstimatePower(int exponent) {
|
||
|
// This function estimates log10 of v where v = f*2^e (with e == exponent).
|
||
|
// Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
|
||
|
// Note that f is bounded by its container size. Let p = 53 (the double's
|
||
|
// significand size). Then 2^(p-1) <= f < 2^p.
|
||
|
//
|
||
|
// Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
|
||
|
// to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
|
||
|
// The computed number undershoots by less than 0.631 (when we compute log3
|
||
|
// and not log10).
|
||
|
//
|
||
|
// Optimization: since we only need an approximated result this computation
|
||
|
// can be performed on 64 bit integers. On x86/x64 architecture the speedup is
|
||
|
// not really measurable, though.
|
||
|
//
|
||
|
// Since we want to avoid overshooting we decrement by 1e10 so that
|
||
|
// floating-point imprecisions don't affect us.
|
||
|
//
|
||
|
// Explanation for v's boundary m+: the computation takes advantage of
|
||
|
// the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
|
||
|
// (even for denormals where the delta can be much more important).
|
||
|
|
||
|
const double k1Log10 = 0.30102999566398114; // 1/lg(10)
|
||
|
|
||
|
// For doubles len(f) == 53 (don't forget the hidden bit).
|
||
|
const int kSignificandSize = Double::kSignificandSize;
|
||
|
double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
|
||
|
return static_cast<int>(estimate);
|
||
|
}
|
||
|
|
||
|
|
||
|
// See comments for InitialScaledStartValues.
|
||
|
static void InitialScaledStartValuesPositiveExponent(
|
||
|
uint64_t significand, int exponent,
|
||
|
int estimated_power, bool need_boundary_deltas,
|
||
|
Bignum* numerator, Bignum* denominator,
|
||
|
Bignum* delta_minus, Bignum* delta_plus) {
|
||
|
// A positive exponent implies a positive power.
|
||
|
ASSERT(estimated_power >= 0);
|
||
|
// Since the estimated_power is positive we simply multiply the denominator
|
||
|
// by 10^estimated_power.
|
||
|
|
||
|
// numerator = v.
|
||
|
numerator->AssignUInt64(significand);
|
||
|
numerator->ShiftLeft(exponent);
|
||
|
// denominator = 10^estimated_power.
|
||
|
denominator->AssignPowerUInt16(10, estimated_power);
|
||
|
|
||
|
if (need_boundary_deltas) {
|
||
|
// Introduce a common denominator so that the deltas to the boundaries are
|
||
|
// integers.
|
||
|
denominator->ShiftLeft(1);
|
||
|
numerator->ShiftLeft(1);
|
||
|
// Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
|
||
|
// denominator (of 2) delta_plus equals 2^e.
|
||
|
delta_plus->AssignUInt16(1);
|
||
|
delta_plus->ShiftLeft(exponent);
|
||
|
// Same for delta_minus. The adjustments if f == 2^p-1 are done later.
|
||
|
delta_minus->AssignUInt16(1);
|
||
|
delta_minus->ShiftLeft(exponent);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// See comments for InitialScaledStartValues
|
||
|
static void InitialScaledStartValuesNegativeExponentPositivePower(
|
||
|
uint64_t significand, int exponent,
|
||
|
int estimated_power, bool need_boundary_deltas,
|
||
|
Bignum* numerator, Bignum* denominator,
|
||
|
Bignum* delta_minus, Bignum* delta_plus) {
|
||
|
// v = f * 2^e with e < 0, and with estimated_power >= 0.
|
||
|
// This means that e is close to 0 (have a look at how estimated_power is
|
||
|
// computed).
|
||
|
|
||
|
// numerator = significand
|
||
|
// since v = significand * 2^exponent this is equivalent to
|
||
|
// numerator = v * / 2^-exponent
|
||
|
numerator->AssignUInt64(significand);
|
||
|
// denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
|
||
|
denominator->AssignPowerUInt16(10, estimated_power);
|
||
|
denominator->ShiftLeft(-exponent);
|
||
|
|
||
|
if (need_boundary_deltas) {
|
||
|
// Introduce a common denominator so that the deltas to the boundaries are
|
||
|
// integers.
|
||
|
denominator->ShiftLeft(1);
|
||
|
numerator->ShiftLeft(1);
|
||
|
// Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
|
||
|
// denominator (of 2) delta_plus equals 2^e.
|
||
|
// Given that the denominator already includes v's exponent the distance
|
||
|
// to the boundaries is simply 1.
|
||
|
delta_plus->AssignUInt16(1);
|
||
|
// Same for delta_minus. The adjustments if f == 2^p-1 are done later.
|
||
|
delta_minus->AssignUInt16(1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// See comments for InitialScaledStartValues
|
||
|
static void InitialScaledStartValuesNegativeExponentNegativePower(
|
||
|
uint64_t significand, int exponent,
|
||
|
int estimated_power, bool need_boundary_deltas,
|
||
|
Bignum* numerator, Bignum* denominator,
|
||
|
Bignum* delta_minus, Bignum* delta_plus) {
|
||
|
// Instead of multiplying the denominator with 10^estimated_power we
|
||
|
// multiply all values (numerator and deltas) by 10^-estimated_power.
|
||
|
|
||
|
// Use numerator as temporary container for power_ten.
|
||
|
Bignum* power_ten = numerator;
|
||
|
power_ten->AssignPowerUInt16(10, -estimated_power);
|
||
|
|
||
|
if (need_boundary_deltas) {
|
||
|
// Since power_ten == numerator we must make a copy of 10^estimated_power
|
||
|
// before we complete the computation of the numerator.
|
||
|
// delta_plus = delta_minus = 10^estimated_power
|
||
|
delta_plus->AssignBignum(*power_ten);
|
||
|
delta_minus->AssignBignum(*power_ten);
|
||
|
}
|
||
|
|
||
|
// numerator = significand * 2 * 10^-estimated_power
|
||
|
// since v = significand * 2^exponent this is equivalent to
|
||
|
// numerator = v * 10^-estimated_power * 2 * 2^-exponent.
|
||
|
// Remember: numerator has been abused as power_ten. So no need to assign it
|
||
|
// to itself.
|
||
|
ASSERT(numerator == power_ten);
|
||
|
numerator->MultiplyByUInt64(significand);
|
||
|
|
||
|
// denominator = 2 * 2^-exponent with exponent < 0.
|
||
|
denominator->AssignUInt16(1);
|
||
|
denominator->ShiftLeft(-exponent);
|
||
|
|
||
|
if (need_boundary_deltas) {
|
||
|
// Introduce a common denominator so that the deltas to the boundaries are
|
||
|
// integers.
|
||
|
numerator->ShiftLeft(1);
|
||
|
denominator->ShiftLeft(1);
|
||
|
// With this shift the boundaries have their correct value, since
|
||
|
// delta_plus = 10^-estimated_power, and
|
||
|
// delta_minus = 10^-estimated_power.
|
||
|
// These assignments have been done earlier.
|
||
|
// The adjustments if f == 2^p-1 (lower boundary is closer) are done later.
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Let v = significand * 2^exponent.
|
||
|
// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
|
||
|
// and denominator. The functions GenerateShortestDigits and
|
||
|
// GenerateCountedDigits will then convert this ratio to its decimal
|
||
|
// representation d, with the required accuracy.
|
||
|
// Then d * 10^estimated_power is the representation of v.
|
||
|
// (Note: the fraction and the estimated_power might get adjusted before
|
||
|
// generating the decimal representation.)
|
||
|
//
|
||
|
// The initial start values consist of:
|
||
|
// - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
|
||
|
// - a scaled (common) denominator.
|
||
|
// optionally (used by GenerateShortestDigits to decide if it has the shortest
|
||
|
// decimal converting back to v):
|
||
|
// - v - m-: the distance to the lower boundary.
|
||
|
// - m+ - v: the distance to the upper boundary.
|
||
|
//
|
||
|
// v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
|
||
|
//
|
||
|
// Let ep == estimated_power, then the returned values will satisfy:
|
||
|
// v / 10^ep = numerator / denominator.
|
||
|
// v's boundarys m- and m+:
|
||
|
// m- / 10^ep == v / 10^ep - delta_minus / denominator
|
||
|
// m+ / 10^ep == v / 10^ep + delta_plus / denominator
|
||
|
// Or in other words:
|
||
|
// m- == v - delta_minus * 10^ep / denominator;
|
||
|
// m+ == v + delta_plus * 10^ep / denominator;
|
||
|
//
|
||
|
// Since 10^(k-1) <= v < 10^k (with k == estimated_power)
|
||
|
// or 10^k <= v < 10^(k+1)
|
||
|
// we then have 0.1 <= numerator/denominator < 1
|
||
|
// or 1 <= numerator/denominator < 10
|
||
|
//
|
||
|
// It is then easy to kickstart the digit-generation routine.
|
||
|
//
|
||
|
// The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST
|
||
|
// or BIGNUM_DTOA_SHORTEST_SINGLE.
|
||
|
|
||
|
static void InitialScaledStartValues(uint64_t significand,
|
||
|
int exponent,
|
||
|
bool lower_boundary_is_closer,
|
||
|
int estimated_power,
|
||
|
bool need_boundary_deltas,
|
||
|
Bignum* numerator,
|
||
|
Bignum* denominator,
|
||
|
Bignum* delta_minus,
|
||
|
Bignum* delta_plus) {
|
||
|
if (exponent >= 0) {
|
||
|
InitialScaledStartValuesPositiveExponent(
|
||
|
significand, exponent, estimated_power, need_boundary_deltas,
|
||
|
numerator, denominator, delta_minus, delta_plus);
|
||
|
} else if (estimated_power >= 0) {
|
||
|
InitialScaledStartValuesNegativeExponentPositivePower(
|
||
|
significand, exponent, estimated_power, need_boundary_deltas,
|
||
|
numerator, denominator, delta_minus, delta_plus);
|
||
|
} else {
|
||
|
InitialScaledStartValuesNegativeExponentNegativePower(
|
||
|
significand, exponent, estimated_power, need_boundary_deltas,
|
||
|
numerator, denominator, delta_minus, delta_plus);
|
||
|
}
|
||
|
|
||
|
if (need_boundary_deltas && lower_boundary_is_closer) {
|
||
|
// The lower boundary is closer at half the distance of "normal" numbers.
|
||
|
// Increase the common denominator and adapt all but the delta_minus.
|
||
|
denominator->ShiftLeft(1); // *2
|
||
|
numerator->ShiftLeft(1); // *2
|
||
|
delta_plus->ShiftLeft(1); // *2
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// This routine multiplies numerator/denominator so that its values lies in the
|
||
|
// range 1-10. That is after a call to this function we have:
|
||
|
// 1 <= (numerator + delta_plus) /denominator < 10.
|
||
|
// Let numerator the input before modification and numerator' the argument
|
||
|
// after modification, then the output-parameter decimal_point is such that
|
||
|
// numerator / denominator * 10^estimated_power ==
|
||
|
// numerator' / denominator' * 10^(decimal_point - 1)
|
||
|
// In some cases estimated_power was too low, and this is already the case. We
|
||
|
// then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
|
||
|
// estimated_power) but do not touch the numerator or denominator.
|
||
|
// Otherwise the routine multiplies the numerator and the deltas by 10.
|
||
|
static void FixupMultiply10(int estimated_power, bool is_even,
|
||
|
int* decimal_point,
|
||
|
Bignum* numerator, Bignum* denominator,
|
||
|
Bignum* delta_minus, Bignum* delta_plus) {
|
||
|
bool in_range;
|
||
|
if (is_even) {
|
||
|
// For IEEE doubles half-way cases (in decimal system numbers ending with 5)
|
||
|
// are rounded to the closest floating-point number with even significand.
|
||
|
in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
|
||
|
} else {
|
||
|
in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
|
||
|
}
|
||
|
if (in_range) {
|
||
|
// Since numerator + delta_plus >= denominator we already have
|
||
|
// 1 <= numerator/denominator < 10. Simply update the estimated_power.
|
||
|
*decimal_point = estimated_power + 1;
|
||
|
} else {
|
||
|
*decimal_point = estimated_power;
|
||
|
numerator->Times10();
|
||
|
if (Bignum::Equal(*delta_minus, *delta_plus)) {
|
||
|
delta_minus->Times10();
|
||
|
delta_plus->AssignBignum(*delta_minus);
|
||
|
} else {
|
||
|
delta_minus->Times10();
|
||
|
delta_plus->Times10();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace double_conversion
|