Rocket.Chat.ReactNative/ios/Pods/Flipper-Folly/folly/io/async/AsyncSSLSocket.cpp

2079 lines
65 KiB
C++
Raw Normal View History

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <folly/io/async/AsyncSSLSocket.h>
#include <folly/io/async/EventBase.h>
#include <folly/portability/Sockets.h>
#include <fcntl.h>
#include <sys/types.h>
#include <cerrno>
#include <chrono>
#include <memory>
#include <utility>
#include <folly/Format.h>
#include <folly/Indestructible.h>
#include <folly/SocketAddress.h>
#include <folly/SpinLock.h>
#include <folly/io/Cursor.h>
#include <folly/io/IOBuf.h>
#include <folly/io/SocketOptionMap.h>
#include <folly/io/async/ssl/BasicTransportCertificate.h>
#include <folly/lang/Bits.h>
#include <folly/portability/OpenSSL.h>
using std::shared_ptr;
using folly::SpinLock;
using folly::io::Cursor;
namespace {
using folly::AsyncSSLSocket;
using folly::SSLContext;
// For OpenSSL portability API
using namespace folly::ssl;
using folly::ssl::OpenSSLUtils;
// We have one single dummy SSL context so that we can implement attach
// and detach methods in a thread safe fashion without modifying opnessl.
SSLContext* dummyCtx = nullptr;
SpinLock dummyCtxLock;
// If given min write size is less than this, buffer will be allocated on
// stack, otherwise it is allocated on heap
const size_t MAX_STACK_BUF_SIZE = 2048;
// This converts "illegal" shutdowns into ZERO_RETURN
inline bool zero_return(int error, int rc, int errno_copy) {
if (error == SSL_ERROR_ZERO_RETURN || (rc == 0 && errno_copy == 0)) {
return true;
}
#ifdef _WIN32
// on windows underlying TCP socket may error with this code
// if the sending/receiving client crashes or is killed
if (error == SSL_ERROR_SYSCALL && errno_copy == WSAECONNRESET) {
return true;
}
#endif
return false;
}
void setup_SSL_CTX(SSL_CTX* ctx) {
#ifdef SSL_MODE_RELEASE_BUFFERS
SSL_CTX_set_mode(
ctx,
SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER | SSL_MODE_ENABLE_PARTIAL_WRITE |
SSL_MODE_RELEASE_BUFFERS);
#else
SSL_CTX_set_mode(
ctx, SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER | SSL_MODE_ENABLE_PARTIAL_WRITE);
#endif
// SSL_CTX_set_mode is a Macro
#ifdef SSL_MODE_WRITE_IOVEC
SSL_CTX_set_mode(ctx, SSL_CTX_get_mode(ctx) | SSL_MODE_WRITE_IOVEC);
#endif
}
// Note: This is a Leaky Meyer's Singleton. The reason we can't use a non-leaky
// thing is because we will be setting this BIO_METHOD* inside BIOs owned by
// various SSL objects which may get callbacks even during teardown. We may
// eventually try to fix this
BIO_METHOD* getSSLBioMethod() {
static auto const instance = OpenSSLUtils::newSocketBioMethod().release();
return instance;
}
void* initsslBioMethod() {
auto sslBioMethod = getSSLBioMethod();
// override the bwrite method for MSG_EOR support
OpenSSLUtils::setCustomBioWriteMethod(sslBioMethod, AsyncSSLSocket::bioWrite);
OpenSSLUtils::setCustomBioReadMethod(sslBioMethod, AsyncSSLSocket::bioRead);
// Note that the sslBioMethod.type and sslBioMethod.name are not
// set here. openssl code seems to be checking ".type == BIO_TYPE_SOCKET" and
// then have specific handlings. The sslWriteBioWrite should be compatible
// with the one in openssl.
// Return something here to enable AsyncSSLSocket to call this method using
// a function-scoped static.
return nullptr;
}
} // namespace
namespace folly {
class AsyncSSLSocketConnector : public AsyncSocket::ConnectCallback,
public AsyncSSLSocket::HandshakeCB {
private:
AsyncSSLSocket* sslSocket_;
AsyncSSLSocket::ConnectCallback* callback_;
std::chrono::milliseconds timeout_;
std::chrono::steady_clock::time_point startTime_;
public:
AsyncSSLSocketConnector(
AsyncSSLSocket* sslSocket,
AsyncSocket::ConnectCallback* callback,
std::chrono::milliseconds timeout)
: sslSocket_(sslSocket),
callback_(callback),
timeout_(timeout),
startTime_(std::chrono::steady_clock::now()) {}
~AsyncSSLSocketConnector() override = default;
void preConnect(folly::NetworkSocket fd) override {
VLOG(7) << "client preConnect hook is invoked";
if (callback_) {
callback_->preConnect(fd);
}
}
void connectSuccess() noexcept override {
VLOG(7) << "client socket connected";
std::chrono::milliseconds timeoutLeft{0};
if (timeout_ > std::chrono::milliseconds::zero()) {
auto curTime = std::chrono::steady_clock::now();
timeoutLeft = std::chrono::duration_cast<std::chrono::milliseconds>(
timeout_ - (curTime - startTime_));
if (timeoutLeft <= std::chrono::milliseconds::zero()) {
AsyncSocketException ex(
AsyncSocketException::TIMED_OUT,
folly::sformat(
"SSL connect timed out after {}ms", timeout_.count()));
fail(ex);
delete this;
return;
}
}
sslSocket_->sslConn(this, timeoutLeft);
}
void connectErr(const AsyncSocketException& ex) noexcept override {
VLOG(1) << "TCP connect failed: " << ex.what();
fail(ex);
delete this;
}
void handshakeSuc(AsyncSSLSocket* /* sock */) noexcept override {
VLOG(7) << "client handshake success";
if (callback_) {
callback_->connectSuccess();
}
delete this;
}
void handshakeErr(
AsyncSSLSocket* /* socket */,
const AsyncSocketException& ex) noexcept override {
VLOG(1) << "client handshakeErr: " << ex.what();
fail(ex);
delete this;
}
void fail(const AsyncSocketException& ex) {
// fail is a noop if called twice
if (callback_) {
AsyncSSLSocket::ConnectCallback* cb = callback_;
callback_ = nullptr;
cb->connectErr(ex);
sslSocket_->closeNow();
// closeNow can call handshakeErr if it hasn't been called already.
// So this may have been deleted, no member variable access beyond this
// point
// Note that closeNow may invoke writeError callbacks if the socket had
// write data pending connection completion.
}
}
};
/**
* Create a client AsyncSSLSocket
*/
AsyncSSLSocket::AsyncSSLSocket(
shared_ptr<SSLContext> ctx,
EventBase* evb,
bool deferSecurityNegotiation)
: AsyncSocket(evb),
ctx_(std::move(ctx)),
handshakeTimeout_(this, evb),
connectionTimeout_(this, evb) {
init();
if (deferSecurityNegotiation) {
sslState_ = STATE_UNENCRYPTED;
}
}
/**
* Create a server/client AsyncSSLSocket
*/
AsyncSSLSocket::AsyncSSLSocket(
shared_ptr<SSLContext> ctx,
EventBase* evb,
NetworkSocket fd,
bool server,
bool deferSecurityNegotiation)
: AsyncSocket(evb, fd),
server_(server),
ctx_(std::move(ctx)),
handshakeTimeout_(this, evb),
connectionTimeout_(this, evb) {
noTransparentTls_ = true;
init();
if (server) {
SSL_CTX_set_info_callback(
ctx_->getSSLCtx(), AsyncSSLSocket::sslInfoCallback);
}
if (deferSecurityNegotiation) {
sslState_ = STATE_UNENCRYPTED;
}
}
AsyncSSLSocket::AsyncSSLSocket(
shared_ptr<SSLContext> ctx,
AsyncSocket::UniquePtr oldAsyncSocket,
bool server,
bool deferSecurityNegotiation)
: AsyncSocket(std::move(oldAsyncSocket)),
server_(server),
ctx_(std::move(ctx)),
handshakeTimeout_(this, AsyncSocket::getEventBase()),
connectionTimeout_(this, AsyncSocket::getEventBase()) {
noTransparentTls_ = true;
init();
if (server) {
SSL_CTX_set_info_callback(
ctx_->getSSLCtx(), AsyncSSLSocket::sslInfoCallback);
}
if (deferSecurityNegotiation) {
sslState_ = STATE_UNENCRYPTED;
}
}
#if FOLLY_OPENSSL_HAS_SNI
/**
* Create a client AsyncSSLSocket and allow tlsext_hostname
* to be sent in Client Hello.
*/
AsyncSSLSocket::AsyncSSLSocket(
const shared_ptr<SSLContext>& ctx,
EventBase* evb,
const std::string& serverName,
bool deferSecurityNegotiation)
: AsyncSSLSocket(ctx, evb, deferSecurityNegotiation) {
tlsextHostname_ = serverName;
}
/**
* Create a client AsyncSSLSocket from an already connected fd
* and allow tlsext_hostname to be sent in Client Hello.
*/
AsyncSSLSocket::AsyncSSLSocket(
const shared_ptr<SSLContext>& ctx,
EventBase* evb,
NetworkSocket fd,
const std::string& serverName,
bool deferSecurityNegotiation)
: AsyncSSLSocket(ctx, evb, fd, false, deferSecurityNegotiation) {
tlsextHostname_ = serverName;
}
#endif // FOLLY_OPENSSL_HAS_SNI
AsyncSSLSocket::~AsyncSSLSocket() {
VLOG(3) << "actual destruction of AsyncSSLSocket(this=" << this
<< ", evb=" << eventBase_ << ", fd=" << fd_
<< ", state=" << int(state_) << ", sslState=" << sslState_
<< ", events=" << eventFlags_ << ")";
}
void AsyncSSLSocket::init() {
// Do this here to ensure we initialize this once before any use of
// AsyncSSLSocket instances and not as part of library load.
static const auto sslBioMethodInitializer = initsslBioMethod();
(void)sslBioMethodInitializer;
setup_SSL_CTX(ctx_->getSSLCtx());
}
void AsyncSSLSocket::closeNow() {
// Close the SSL connection.
if (ssl_ != nullptr && fd_ != NetworkSocket() && !waitingOnAccept_) {
int rc = SSL_shutdown(ssl_.get());
if (rc == 0) {
rc = SSL_shutdown(ssl_.get());
}
if (rc < 0) {
ERR_clear_error();
}
}
if (sslSession_ != nullptr) {
SSL_SESSION_free(sslSession_);
sslSession_ = nullptr;
}
sslState_ = STATE_CLOSED;
if (handshakeTimeout_.isScheduled()) {
handshakeTimeout_.cancelTimeout();
}
DestructorGuard dg(this);
static const Indestructible<AsyncSocketException> ex(
AsyncSocketException::END_OF_FILE, "SSL connection closed locally");
invokeHandshakeErr(*ex);
// Close the socket.
AsyncSocket::closeNow();
}
void AsyncSSLSocket::shutdownWrite() {
// SSL sockets do not support half-shutdown, so just perform a full shutdown.
//
// (Performing a full shutdown here is more desirable than doing nothing at
// all. The purpose of shutdownWrite() is normally to notify the other end
// of the connection that no more data will be sent. If we do nothing, the
// other end will never know that no more data is coming, and this may result
// in protocol deadlock.)
close();
}
void AsyncSSLSocket::shutdownWriteNow() {
closeNow();
}
bool AsyncSSLSocket::good() const {
return (
AsyncSocket::good() &&
(sslState_ == STATE_ACCEPTING || sslState_ == STATE_CONNECTING ||
sslState_ == STATE_ESTABLISHED || sslState_ == STATE_UNENCRYPTED ||
sslState_ == STATE_UNINIT));
}
// The AsyncTransportWrapper definition of 'good' states that the transport is
// ready to perform reads and writes, so sslState_ == UNINIT must report !good.
// connecting can be true when the sslState_ == UNINIT because the AsyncSocket
// is connected but we haven't initiated the call to SSL_connect.
bool AsyncSSLSocket::connecting() const {
return (
!server_ &&
(AsyncSocket::connecting() ||
(AsyncSocket::good() &&
(sslState_ == STATE_UNINIT || sslState_ == STATE_CONNECTING))));
}
std::string AsyncSSLSocket::getApplicationProtocol() const noexcept {
const unsigned char* protoName = nullptr;
unsigned protoLength;
if (getSelectedNextProtocolNoThrow(&protoName, &protoLength)) {
return std::string(reinterpret_cast<const char*>(protoName), protoLength);
}
return "";
}
void AsyncSSLSocket::setEorTracking(bool track) {
if (isEorTrackingEnabled() != track) {
AsyncSocket::setEorTracking(track);
appEorByteNo_ = 0;
appEorByteWriteFlags_ = {};
minEorRawByteNo_ = 0;
}
}
size_t AsyncSSLSocket::getRawBytesWritten() const {
// The bio(s) in the write path are in a chain
// each bio flushes to the next and finally written into the socket
// to get the rawBytesWritten on the socket,
// get the write bytes of the last bio
BIO* b;
if (!ssl_ || !(b = SSL_get_wbio(ssl_.get()))) {
return 0;
}
BIO* next = BIO_next(b);
while (next != nullptr) {
b = next;
next = BIO_next(b);
}
return BIO_number_written(b);
}
size_t AsyncSSLSocket::getRawBytesReceived() const {
BIO* b;
if (!ssl_ || !(b = SSL_get_rbio(ssl_.get()))) {
return 0;
}
return BIO_number_read(b);
}
void AsyncSSLSocket::invalidState(HandshakeCB* callback) {
LOG(ERROR) << "AsyncSSLSocket(this=" << this << ", fd=" << fd_
<< ", state=" << int(state_) << ", sslState=" << sslState_ << ", "
<< "events=" << eventFlags_ << ", server=" << short(server_)
<< "): "
<< "sslAccept/Connect() called in invalid "
<< "state, handshake callback " << handshakeCallback_
<< ", new callback " << callback;
assert(!handshakeTimeout_.isScheduled());
sslState_ = STATE_ERROR;
static const Indestructible<AsyncSocketException> ex(
AsyncSocketException::INVALID_STATE,
"sslAccept() called with socket in invalid state");
handshakeEndTime_ = std::chrono::steady_clock::now();
if (callback) {
callback->handshakeErr(this, *ex);
}
failHandshake(__func__, *ex);
}
void AsyncSSLSocket::sslAccept(
HandshakeCB* callback,
std::chrono::milliseconds timeout,
const SSLContext::SSLVerifyPeerEnum& verifyPeer) {
DestructorGuard dg(this);
eventBase_->dcheckIsInEventBaseThread();
verifyPeer_ = verifyPeer;
// Make sure we're in the uninitialized state
if (!server_ ||
(sslState_ != STATE_UNINIT && sslState_ != STATE_UNENCRYPTED) ||
handshakeCallback_ != nullptr) {
return invalidState(callback);
}
// Cache local and remote socket addresses to keep them available
// after socket file descriptor is closed.
if (cacheAddrOnFailure_) {
cacheAddresses();
}
handshakeStartTime_ = std::chrono::steady_clock::now();
// Make end time at least >= start time.
handshakeEndTime_ = handshakeStartTime_;
sslState_ = STATE_ACCEPTING;
handshakeCallback_ = callback;
if (timeout > std::chrono::milliseconds::zero()) {
handshakeTimeout_.scheduleTimeout(timeout);
}
/* register for a read operation (waiting for CLIENT HELLO) */
updateEventRegistration(EventHandler::READ, EventHandler::WRITE);
checkForImmediateRead();
}
void AsyncSSLSocket::attachSSLContext(const std::shared_ptr<SSLContext>& ctx) {
// Check to ensure we are in client mode. Changing a server's ssl
// context doesn't make sense since clients of that server would likely
// become confused when the server's context changes.
DCHECK(!server_);
DCHECK(!ctx_);
DCHECK(ctx);
DCHECK(ctx->getSSLCtx());
ctx_ = ctx;
// It's possible this could be attached before ssl_ is set up
if (!ssl_) {
return;
}
// In order to call attachSSLContext, detachSSLContext must have been
// previously called.
// We need to update the initial_ctx if necessary
// The 'initial_ctx' inside an SSL* points to the context that it was created
// with, which is also where session callbacks and servername callbacks
// happen.
// When we switch to a different SSL_CTX, we want to update the initial_ctx as
// well so that any callbacks don't go to a different object
// NOTE: this will only work if we have access to ssl_ internals, so it may
// not work on
// OpenSSL version >= 1.1.0
auto sslCtx = ctx->getSSLCtx();
OpenSSLUtils::setSSLInitialCtx(ssl_.get(), sslCtx);
// Detach sets the socket's context to the dummy context. Thus we must acquire
// this lock.
SpinLockGuard guard(dummyCtxLock);
SSL_set_SSL_CTX(ssl_.get(), sslCtx);
}
void AsyncSSLSocket::detachSSLContext() {
DCHECK(ctx_);
ctx_.reset();
// It's possible for this to be called before ssl_ has been
// set up
if (!ssl_) {
return;
}
// The 'initial_ctx' inside an SSL* points to the context that it was created
// with, which is also where session callbacks and servername callbacks
// happen.
// Detach the initial_ctx as well. It will be reattached in attachSSLContext
// it is used for session info.
// NOTE: this will only work if we have access to ssl_ internals, so it may
// not work on
// OpenSSL version >= 1.1.0
SSL_CTX* initialCtx = OpenSSLUtils::getSSLInitialCtx(ssl_.get());
if (initialCtx) {
SSL_CTX_free(initialCtx);
OpenSSLUtils::setSSLInitialCtx(ssl_.get(), nullptr);
}
SpinLockGuard guard(dummyCtxLock);
if (nullptr == dummyCtx) {
// We need to lazily initialize the dummy context so we don't
// accidentally override any programmatic settings to openssl
dummyCtx = new SSLContext;
}
// We must remove this socket's references to its context right now
// since this socket could get passed to any thread. If the context has
// had its locking disabled, just doing a set in attachSSLContext()
// would not be thread safe.
SSL_set_SSL_CTX(ssl_.get(), dummyCtx->getSSLCtx());
}
#if FOLLY_OPENSSL_HAS_SNI
void AsyncSSLSocket::switchServerSSLContext(
const std::shared_ptr<SSLContext>& handshakeCtx) {
CHECK(server_);
if (sslState_ != STATE_ACCEPTING) {
// We log it here and allow the switch.
// It should not affect our re-negotiation support (which
// is not supported now).
VLOG(6) << "fd=" << getNetworkSocket()
<< " renegotation detected when switching SSL_CTX";
}
setup_SSL_CTX(handshakeCtx->getSSLCtx());
SSL_CTX_set_info_callback(
handshakeCtx->getSSLCtx(), AsyncSSLSocket::sslInfoCallback);
handshakeCtx_ = handshakeCtx;
SSL_set_SSL_CTX(ssl_.get(), handshakeCtx->getSSLCtx());
}
bool AsyncSSLSocket::isServerNameMatch() const {
CHECK(!server_);
if (!ssl_) {
return false;
}
SSL_SESSION* ss = SSL_get_session(ssl_.get());
if (!ss) {
return false;
}
auto tlsextHostname = SSL_SESSION_get0_hostname(ss);
return (tlsextHostname && !tlsextHostname_.compare(tlsextHostname));
}
void AsyncSSLSocket::setServerName(std::string serverName) noexcept {
tlsextHostname_ = std::move(serverName);
}
#endif // FOLLY_OPENSSL_HAS_SNI
void AsyncSSLSocket::timeoutExpired(
std::chrono::milliseconds timeout) noexcept {
if (state_ == StateEnum::ESTABLISHED && sslState_ == STATE_ASYNC_PENDING) {
sslState_ = STATE_ERROR;
// We are expecting a callback in restartSSLAccept. The cache lookup
// and rsa-call necessarily have pointers to this ssl socket, so delay
// the cleanup until he calls us back.
} else if (state_ == StateEnum::CONNECTING) {
assert(sslState_ == STATE_CONNECTING);
DestructorGuard dg(this);
static const Indestructible<AsyncSocketException> ex(
AsyncSocketException::TIMED_OUT,
"Fallback connect timed out during TFO");
failHandshake(__func__, *ex);
} else {
assert(
state_ == StateEnum::ESTABLISHED &&
(sslState_ == STATE_CONNECTING || sslState_ == STATE_ACCEPTING));
DestructorGuard dg(this);
AsyncSocketException ex(
AsyncSocketException::TIMED_OUT,
folly::sformat(
"SSL {} timed out after {}ms",
(sslState_ == STATE_CONNECTING) ? "connect" : "accept",
timeout.count()));
failHandshake(__func__, ex);
}
}
int AsyncSSLSocket::getSSLExDataIndex() {
static auto index = SSL_get_ex_new_index(
0, (void*)"AsyncSSLSocket data index", nullptr, nullptr, nullptr);
return index;
}
AsyncSSLSocket* AsyncSSLSocket::getFromSSL(const SSL* ssl) {
return static_cast<AsyncSSLSocket*>(
SSL_get_ex_data(ssl, getSSLExDataIndex()));
}
void AsyncSSLSocket::failHandshake(
const char* /* fn */,
const AsyncSocketException& ex) {
startFail();
if (handshakeTimeout_.isScheduled()) {
handshakeTimeout_.cancelTimeout();
}
invokeHandshakeErr(ex);
finishFail();
}
void AsyncSSLSocket::invokeHandshakeErr(const AsyncSocketException& ex) {
handshakeEndTime_ = std::chrono::steady_clock::now();
if (handshakeCallback_ != nullptr) {
HandshakeCB* callback = handshakeCallback_;
handshakeCallback_ = nullptr;
callback->handshakeErr(this, ex);
}
}
void AsyncSSLSocket::invokeHandshakeCB() {
handshakeEndTime_ = std::chrono::steady_clock::now();
if (handshakeTimeout_.isScheduled()) {
handshakeTimeout_.cancelTimeout();
}
if (handshakeCallback_) {
HandshakeCB* callback = handshakeCallback_;
handshakeCallback_ = nullptr;
callback->handshakeSuc(this);
}
}
void AsyncSSLSocket::connect(
ConnectCallback* callback,
const folly::SocketAddress& address,
int timeout,
const SocketOptionMap& options,
const folly::SocketAddress& bindAddr) noexcept {
auto timeoutChrono = std::chrono::milliseconds(timeout);
connect(callback, address, timeoutChrono, timeoutChrono, options, bindAddr);
}
void AsyncSSLSocket::connect(
ConnectCallback* callback,
const folly::SocketAddress& address,
std::chrono::milliseconds connectTimeout,
std::chrono::milliseconds totalConnectTimeout,
const SocketOptionMap& options,
const folly::SocketAddress& bindAddr) noexcept {
assert(!server_);
assert(state_ == StateEnum::UNINIT);
assert(sslState_ == STATE_UNINIT || sslState_ == STATE_UNENCRYPTED);
noTransparentTls_ = true;
totalConnectTimeout_ = totalConnectTimeout;
if (sslState_ != STATE_UNENCRYPTED) {
allocatedConnectCallback_ =
new AsyncSSLSocketConnector(this, callback, totalConnectTimeout);
callback = allocatedConnectCallback_;
}
AsyncSocket::connect(
callback, address, int(connectTimeout.count()), options, bindAddr);
}
void AsyncSSLSocket::cancelConnect() {
if (connectCallback_ && allocatedConnectCallback_) {
// Since the connect callback won't be called, clean it up.
delete allocatedConnectCallback_;
allocatedConnectCallback_ = nullptr;
connectCallback_ = nullptr;
}
AsyncSocket::cancelConnect();
}
bool AsyncSSLSocket::needsPeerVerification() const {
if (verifyPeer_ == SSLContext::SSLVerifyPeerEnum::USE_CTX) {
return ctx_->needsPeerVerification();
}
return (
verifyPeer_ == SSLContext::SSLVerifyPeerEnum::VERIFY ||
verifyPeer_ == SSLContext::SSLVerifyPeerEnum::VERIFY_REQ_CLIENT_CERT);
}
bool AsyncSSLSocket::applyVerificationOptions(const ssl::SSLUniquePtr& ssl) {
// apply the settings specified in verifyPeer_
if (verifyPeer_ == SSLContext::SSLVerifyPeerEnum::USE_CTX) {
if (ctx_->needsPeerVerification()) {
if (ctx_->checkPeerName()) {
#if FOLLY_OPENSSL_IS_100 || FOLLY_OPENSSL_IS_101
return false;
#else
std::string peerNameToVerify = !ctx_->peerFixedName().empty()
? ctx_->peerFixedName()
: tlsextHostname_;
X509_VERIFY_PARAM* param = SSL_get0_param(ssl.get());
if (!X509_VERIFY_PARAM_set1_host(
param, peerNameToVerify.c_str(), peerNameToVerify.length())) {
return false;
}
#endif // FOLLY_OPENSSL_IS_100 || FOLLY_OPENSSL_IS_101
}
SSL_set_verify(
ssl.get(),
ctx_->getVerificationMode(),
AsyncSSLSocket::sslVerifyCallback);
}
} else {
if (verifyPeer_ == SSLContext::SSLVerifyPeerEnum::VERIFY ||
verifyPeer_ == SSLContext::SSLVerifyPeerEnum::VERIFY_REQ_CLIENT_CERT) {
SSL_set_verify(
ssl.get(),
SSLContext::getVerificationMode(verifyPeer_),
AsyncSSLSocket::sslVerifyCallback);
}
}
return true;
}
bool AsyncSSLSocket::setupSSLBio() {
auto sslBio = BIO_new(getSSLBioMethod());
if (!sslBio) {
return false;
}
OpenSSLUtils::setBioAppData(sslBio, this);
OpenSSLUtils::setBioFd(sslBio, fd_, BIO_NOCLOSE);
SSL_set_bio(ssl_.get(), sslBio, sslBio);
return true;
}
void AsyncSSLSocket::sslConn(
HandshakeCB* callback,
std::chrono::milliseconds timeout,
const SSLContext::SSLVerifyPeerEnum& verifyPeer) {
DestructorGuard dg(this);
eventBase_->dcheckIsInEventBaseThread();
// Cache local and remote socket addresses to keep them available
// after socket file descriptor is closed.
if (cacheAddrOnFailure_) {
cacheAddresses();
}
verifyPeer_ = verifyPeer;
// Make sure we're in the uninitialized state
if (server_ ||
(sslState_ != STATE_UNINIT && sslState_ != STATE_UNENCRYPTED) ||
handshakeCallback_ != nullptr) {
return invalidState(callback);
}
sslState_ = STATE_CONNECTING;
handshakeCallback_ = callback;
try {
ssl_.reset(ctx_->createSSL());
} catch (std::exception& e) {
sslState_ = STATE_ERROR;
static const Indestructible<AsyncSocketException> ex(
AsyncSocketException::INTERNAL_ERROR,
"error calling SSLContext::createSSL()");
LOG(ERROR) << "AsyncSSLSocket::sslConn(this=" << this << ", fd=" << fd_
<< "): " << e.what();
return failHandshake(__func__, *ex);
}
if (!setupSSLBio()) {
sslState_ = STATE_ERROR;
static const Indestructible<AsyncSocketException> ex(
AsyncSocketException::INTERNAL_ERROR, "error creating SSL bio");
return failHandshake(__func__, *ex);
}
if (!applyVerificationOptions(ssl_)) {
sslState_ = STATE_ERROR;
static const Indestructible<AsyncSocketException> ex(
AsyncSocketException::INTERNAL_ERROR,
"error applying the SSL verification options");
return failHandshake(__func__, *ex);
}
if (sslSession_ != nullptr) {
sessionResumptionAttempted_ = true;
SSL_set_session(ssl_.get(), sslSession_);
SSL_SESSION_free(sslSession_);
sslSession_ = nullptr;
}
#if FOLLY_OPENSSL_HAS_SNI
if (!tlsextHostname_.empty()) {
SSL_set_tlsext_host_name(ssl_.get(), tlsextHostname_.c_str());
}
#endif
SSL_set_ex_data(ssl_.get(), getSSLExDataIndex(), this);
handshakeConnectTimeout_ = timeout;
startSSLConnect();
}
// This could be called multiple times, during normal ssl connections
// and after TFO fallback.
void AsyncSSLSocket::startSSLConnect() {
handshakeStartTime_ = std::chrono::steady_clock::now();
// Make end time at least >= start time.
handshakeEndTime_ = handshakeStartTime_;
if (handshakeConnectTimeout_ > std::chrono::milliseconds::zero()) {
handshakeTimeout_.scheduleTimeout(handshakeConnectTimeout_);
}
handleConnect();
}
SSL_SESSION* AsyncSSLSocket::getSSLSession() {
if (ssl_ != nullptr && sslState_ == STATE_ESTABLISHED) {
return SSL_get1_session(ssl_.get());
}
return sslSession_;
}
const SSL* AsyncSSLSocket::getSSL() const {
return ssl_.get();
}
void AsyncSSLSocket::setSSLSession(SSL_SESSION* session, bool takeOwnership) {
if (sslSession_) {
SSL_SESSION_free(sslSession_);
}
sslSession_ = session;
if (!takeOwnership && session != nullptr) {
// Increment the reference count
// This API exists in BoringSSL and OpenSSL 1.1.0
SSL_SESSION_up_ref(session);
}
}
void AsyncSSLSocket::getSelectedNextProtocol(
const unsigned char** protoName,
unsigned* protoLen) const {
if (!getSelectedNextProtocolNoThrow(protoName, protoLen)) {
throw AsyncSocketException(
AsyncSocketException::NOT_SUPPORTED, "ALPN not supported");
}
}
bool AsyncSSLSocket::getSelectedNextProtocolNoThrow(
const unsigned char** protoName,
unsigned* protoLen) const {
*protoName = nullptr;
*protoLen = 0;
#if FOLLY_OPENSSL_HAS_ALPN
SSL_get0_alpn_selected(ssl_.get(), protoName, protoLen);
return true;
#else
return false;
#endif
}
bool AsyncSSLSocket::getSSLSessionReused() const {
if (ssl_ != nullptr && sslState_ == STATE_ESTABLISHED) {
return SSL_session_reused(ssl_.get());
}
return false;
}
const char* AsyncSSLSocket::getNegotiatedCipherName() const {
return (ssl_ != nullptr) ? SSL_get_cipher_name(ssl_.get()) : nullptr;
}
/* static */
const char* AsyncSSLSocket::getSSLServerNameFromSSL(SSL* ssl) {
if (ssl == nullptr) {
return nullptr;
}
#ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB
return SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
#else
return nullptr;
#endif
}
const char* AsyncSSLSocket::getSSLServerName() const {
if (clientHelloInfo_ && !clientHelloInfo_->clientHelloSNIHostname_.empty()) {
return clientHelloInfo_->clientHelloSNIHostname_.c_str();
}
#ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB
return getSSLServerNameFromSSL(ssl_.get());
#else
throw AsyncSocketException(
AsyncSocketException::NOT_SUPPORTED, "SNI not supported");
#endif
}
const char* AsyncSSLSocket::getSSLServerNameNoThrow() const {
if (clientHelloInfo_ && !clientHelloInfo_->clientHelloSNIHostname_.empty()) {
return clientHelloInfo_->clientHelloSNIHostname_.c_str();
}
return getSSLServerNameFromSSL(ssl_.get());
}
int AsyncSSLSocket::getSSLVersion() const {
return (ssl_ != nullptr) ? SSL_version(ssl_.get()) : 0;
}
const char* AsyncSSLSocket::getSSLCertSigAlgName() const {
X509* cert = (ssl_ != nullptr) ? SSL_get_certificate(ssl_.get()) : nullptr;
if (cert) {
int nid = X509_get_signature_nid(cert);
return OBJ_nid2ln(nid);
}
return nullptr;
}
int AsyncSSLSocket::getSSLCertSize() const {
int certSize = 0;
X509* cert = (ssl_ != nullptr) ? SSL_get_certificate(ssl_.get()) : nullptr;
if (cert) {
EVP_PKEY* key = X509_get_pubkey(cert);
certSize = EVP_PKEY_bits(key);
EVP_PKEY_free(key);
}
return certSize;
}
const AsyncTransportCertificate* AsyncSSLSocket::getPeerCertificate() const {
if (peerCertData_) {
return peerCertData_.get();
}
if (ssl_ != nullptr) {
auto peerX509 = SSL_get_peer_certificate(ssl_.get());
if (peerX509) {
// already up ref'd
folly::ssl::X509UniquePtr peer(peerX509);
auto cn = OpenSSLUtils::getCommonName(peerX509);
peerCertData_ = std::make_unique<BasicTransportCertificate>(
std::move(cn), std::move(peer));
}
}
return peerCertData_.get();
}
const AsyncTransportCertificate* AsyncSSLSocket::getSelfCertificate() const {
if (selfCertData_) {
return selfCertData_.get();
}
if (ssl_ != nullptr) {
auto selfX509 = SSL_get_certificate(ssl_.get());
if (selfX509) {
// need to upref
X509_up_ref(selfX509);
folly::ssl::X509UniquePtr peer(selfX509);
auto cn = OpenSSLUtils::getCommonName(selfX509);
selfCertData_ = std::make_unique<BasicTransportCertificate>(
std::move(cn), std::move(peer));
}
}
return selfCertData_.get();
}
bool AsyncSSLSocket::willBlock(
int ret,
int* sslErrorOut,
unsigned long* errErrorOut) noexcept {
*errErrorOut = 0;
int error = *sslErrorOut = SSL_get_error(ssl_.get(), ret);
if (error == SSL_ERROR_WANT_READ) {
// Register for read event if not already.
updateEventRegistration(EventHandler::READ, EventHandler::WRITE);
return true;
}
if (error == SSL_ERROR_WANT_WRITE) {
VLOG(3) << "AsyncSSLSocket(fd=" << fd_ << ", state=" << int(state_)
<< ", sslState=" << sslState_ << ", events=" << eventFlags_ << "): "
<< "SSL_ERROR_WANT_WRITE";
// Register for write event if not already.
updateEventRegistration(EventHandler::WRITE, EventHandler::READ);
return true;
}
if ((false
#ifdef SSL_ERROR_WANT_ASYNC // OpenSSL 1.1.0 Async API
|| error == SSL_ERROR_WANT_ASYNC
#endif
)) {
// An asynchronous request has been kicked off. On completion, it will
// invoke a callback to re-call handleAccept
sslState_ = STATE_ASYNC_PENDING;
// Unregister for all events while blocked here
updateEventRegistration(
EventHandler::NONE, EventHandler::READ | EventHandler::WRITE);
#ifdef SSL_ERROR_WANT_ASYNC
if (error == SSL_ERROR_WANT_ASYNC) {
size_t numfds;
if (SSL_get_all_async_fds(ssl_.get(), nullptr, &numfds) <= 0) {
VLOG(4) << "SSL_ERROR_WANT_ASYNC but no async FDs set!";
return false;
}
if (numfds != 1) {
VLOG(4) << "SSL_ERROR_WANT_ASYNC expected exactly 1 async fd, got "
<< numfds;
return false;
}
OSSL_ASYNC_FD ofd; // This should just be an int in POSIX
if (SSL_get_all_async_fds(ssl_.get(), &ofd, &numfds) <= 0) {
VLOG(4) << "SSL_ERROR_WANT_ASYNC cant get async fd";
return false;
}
// On POSIX systems, OSSL_ASYNC_FD is type int, but on win32
// it has type HANDLE.
// Our NetworkSocket::native_handle_type is type SOCKET on
// win32, which means that we need to explicitly construct
// a native handle type to pass to the constructor.
auto native_handle = NetworkSocket::native_handle_type(ofd);
auto asyncPipeReader =
AsyncPipeReader::newReader(eventBase_, NetworkSocket(native_handle));
auto asyncPipeReaderPtr = asyncPipeReader.get();
if (!asyncOperationFinishCallback_) {
asyncOperationFinishCallback_.reset(
new DefaultOpenSSLAsyncFinishCallback(
std::move(asyncPipeReader), this, DestructorGuard(this)));
}
asyncPipeReaderPtr->setReadCB(asyncOperationFinishCallback_.get());
}
#endif
// The timeout (if set) keeps running here
return true;
} else {
unsigned long lastError = *errErrorOut = ERR_get_error();
VLOG(6) << "AsyncSSLSocket(fd=" << fd_ << ", "
<< "state=" << state_ << ", "
<< "sslState=" << sslState_ << ", "
<< "events=" << std::hex << eventFlags_ << "): "
<< "SSL error: " << error << ", "
<< "errno: " << errno << ", "
<< "ret: " << ret << ", "
<< "read: " << BIO_number_read(SSL_get_rbio(ssl_.get())) << ", "
<< "written: " << BIO_number_written(SSL_get_wbio(ssl_.get()))
<< ", "
<< "func: " << ERR_func_error_string(lastError) << ", "
<< "reason: " << ERR_reason_error_string(lastError);
return false;
}
}
void AsyncSSLSocket::checkForImmediateRead() noexcept {
// openssl may have buffered data that it read from the socket already.
// In this case we have to process it immediately, rather than waiting for
// the socket to become readable again.
if (ssl_ != nullptr && SSL_pending(ssl_.get()) > 0) {
AsyncSocket::handleRead();
} else {
AsyncSocket::checkForImmediateRead();
}
}
void AsyncSSLSocket::restartSSLAccept() {
VLOG(3) << "AsyncSSLSocket::restartSSLAccept() this=" << this
<< ", fd=" << fd_ << ", state=" << int(state_) << ", "
<< "sslState=" << sslState_ << ", events=" << eventFlags_;
DestructorGuard dg(this);
assert(
sslState_ == STATE_ASYNC_PENDING || sslState_ == STATE_ERROR ||
sslState_ == STATE_CLOSED);
if (sslState_ == STATE_CLOSED) {
// I sure hope whoever closed this socket didn't delete it already,
// but this is not strictly speaking an error
return;
}
if (sslState_ == STATE_ERROR) {
// go straight to fail if timeout expired during lookup
static const Indestructible<AsyncSocketException> ex(
AsyncSocketException::TIMED_OUT, "SSL accept timed out");
failHandshake(__func__, *ex);
return;
}
sslState_ = STATE_ACCEPTING;
this->handleAccept();
}
void AsyncSSLSocket::handleAccept() noexcept {
VLOG(3) << "AsyncSSLSocket::handleAccept() this=" << this << ", fd=" << fd_
<< ", state=" << int(state_) << ", "
<< "sslState=" << sslState_ << ", events=" << eventFlags_;
assert(server_);
assert(state_ == StateEnum::ESTABLISHED && sslState_ == STATE_ACCEPTING);
if (!ssl_) {
/* lazily create the SSL structure */
try {
ssl_.reset(ctx_->createSSL());
} catch (std::exception& e) {
sslState_ = STATE_ERROR;
static const Indestructible<AsyncSocketException> ex(
AsyncSocketException::INTERNAL_ERROR,
"error calling SSLContext::createSSL()");
LOG(ERROR) << "AsyncSSLSocket::handleAccept(this=" << this
<< ", fd=" << fd_ << "): " << e.what();
return failHandshake(__func__, *ex);
}
if (!setupSSLBio()) {
sslState_ = STATE_ERROR;
static const Indestructible<AsyncSocketException> ex(
AsyncSocketException::INTERNAL_ERROR, "error creating write bio");
return failHandshake(__func__, *ex);
}
SSL_set_ex_data(ssl_.get(), getSSLExDataIndex(), this);
if (!applyVerificationOptions(ssl_)) {
sslState_ = STATE_ERROR;
static const Indestructible<AsyncSocketException> ex(
AsyncSocketException::INTERNAL_ERROR,
"error applying the SSL verification options");
return failHandshake(__func__, *ex);
}
}
if (server_ && parseClientHello_) {
SSL_set_msg_callback(
ssl_.get(), &AsyncSSLSocket::clientHelloParsingCallback);
SSL_set_msg_callback_arg(ssl_.get(), this);
}
DCHECK(ctx_->sslAcceptRunner());
updateEventRegistration(
EventHandler::NONE, EventHandler::READ | EventHandler::WRITE);
DelayedDestruction::DestructorGuard dg(this);
ctx_->sslAcceptRunner()->run(
[this, dg]() {
waitingOnAccept_ = true;
return SSL_accept(ssl_.get());
},
[this, dg](int ret) {
waitingOnAccept_ = false;
handleReturnFromSSLAccept(ret);
});
}
void AsyncSSLSocket::handleReturnFromSSLAccept(int ret) {
if (sslState_ != STATE_ACCEPTING) {
return;
}
if (ret <= 0) {
VLOG(3) << "SSL_accept returned: " << ret;
int sslError;
unsigned long errError;
int errnoCopy = errno;
if (willBlock(ret, &sslError, &errError)) {
return;
} else {
sslState_ = STATE_ERROR;
SSLException ex(sslError, errError, ret, errnoCopy);
return failHandshake(__func__, ex);
}
}
handshakeComplete_ = true;
updateEventRegistration(0, EventHandler::READ | EventHandler::WRITE);
// Move into STATE_ESTABLISHED in the normal case that we are in
// STATE_ACCEPTING.
sslState_ = STATE_ESTABLISHED;
VLOG(3) << "AsyncSSLSocket " << this << ": fd " << fd_
<< " successfully accepted; state=" << int(state_)
<< ", sslState=" << sslState_ << ", events=" << eventFlags_;
// Remember the EventBase we are attached to, before we start invoking any
// callbacks (since the callbacks may call detachEventBase()).
EventBase* originalEventBase = eventBase_;
// Call the accept callback.
invokeHandshakeCB();
// Note that the accept callback may have changed our state.
// (set or unset the read callback, called write(), closed the socket, etc.)
// The following code needs to handle these situations correctly.
//
// If the socket has been closed, readCallback_ and writeReqHead_ will
// always be nullptr, so that will prevent us from trying to read or write.
//
// The main thing to check for is if eventBase_ is still originalEventBase.
// If not, we have been detached from this event base, so we shouldn't
// perform any more operations.
if (eventBase_ != originalEventBase) {
return;
}
AsyncSocket::handleInitialReadWrite();
}
void AsyncSSLSocket::handleConnect() noexcept {
VLOG(3) << "AsyncSSLSocket::handleConnect() this=" << this << ", fd=" << fd_
<< ", state=" << int(state_) << ", "
<< "sslState=" << sslState_ << ", events=" << eventFlags_;
assert(!server_);
if (state_ < StateEnum::ESTABLISHED) {
return AsyncSocket::handleConnect();
}
assert(
(state_ == StateEnum::FAST_OPEN || state_ == StateEnum::ESTABLISHED) &&
sslState_ == STATE_CONNECTING);
assert(ssl_);
auto originalState = state_;
int ret = SSL_connect(ssl_.get());
if (ret <= 0) {
int sslError;
unsigned long errError;
int errnoCopy = errno;
if (willBlock(ret, &sslError, &errError)) {
// We fell back to connecting state due to TFO
if (state_ == StateEnum::CONNECTING) {
DCHECK_EQ(StateEnum::FAST_OPEN, originalState);
if (handshakeTimeout_.isScheduled()) {
handshakeTimeout_.cancelTimeout();
}
}
return;
} else {
sslState_ = STATE_ERROR;
SSLException ex(sslError, errError, ret, errnoCopy);
return failHandshake(__func__, ex);
}
}
handshakeComplete_ = true;
updateEventRegistration(0, EventHandler::READ | EventHandler::WRITE);
// Move into STATE_ESTABLISHED in the normal case that we are in
// STATE_CONNECTING.
sslState_ = STATE_ESTABLISHED;
VLOG(3) << "AsyncSSLSocket " << this << ": "
<< "fd " << fd_ << " successfully connected; "
<< "state=" << int(state_) << ", sslState=" << sslState_
<< ", events=" << eventFlags_;
// Remember the EventBase we are attached to, before we start invoking any
// callbacks (since the callbacks may call detachEventBase()).
EventBase* originalEventBase = eventBase_;
// Call the handshake callback.
invokeHandshakeCB();
// Note that the connect callback may have changed our state.
// (set or unset the read callback, called write(), closed the socket, etc.)
// The following code needs to handle these situations correctly.
//
// If the socket has been closed, readCallback_ and writeReqHead_ will
// always be nullptr, so that will prevent us from trying to read or write.
//
// The main thing to check for is if eventBase_ is still originalEventBase.
// If not, we have been detached from this event base, so we shouldn't
// perform any more operations.
if (eventBase_ != originalEventBase) {
return;
}
AsyncSocket::handleInitialReadWrite();
}
void AsyncSSLSocket::invokeConnectErr(const AsyncSocketException& ex) {
connectionTimeout_.cancelTimeout();
AsyncSocket::invokeConnectErr(ex);
if (sslState_ == SSLStateEnum::STATE_CONNECTING) {
if (handshakeTimeout_.isScheduled()) {
handshakeTimeout_.cancelTimeout();
}
// If we fell back to connecting state during TFO and the connection
// failed, it would be an SSL failure as well.
invokeHandshakeErr(ex);
}
}
void AsyncSSLSocket::invokeConnectSuccess() {
connectionTimeout_.cancelTimeout();
if (sslState_ == SSLStateEnum::STATE_CONNECTING) {
assert(tfoAttempted_);
// If we failed TFO, we'd fall back to trying to connect the socket,
// to setup things like timeouts.
startSSLConnect();
}
// still invoke the base class since it re-sets the connect time.
AsyncSocket::invokeConnectSuccess();
}
void AsyncSSLSocket::scheduleConnectTimeout() {
if (sslState_ == SSLStateEnum::STATE_CONNECTING) {
// We fell back from TFO, and need to set the timeouts.
// We will not have a connect callback in this case, thus if the timer
// expires we would have no-one to notify.
// Thus we should reset even the connect timers to point to the handshake
// timeouts.
assert(connectCallback_ == nullptr);
// We use a different connect timeout here than the handshake timeout, so
// that we can disambiguate the 2 timers.
if (connectTimeout_.count() > 0) {
if (!connectionTimeout_.scheduleTimeout(connectTimeout_)) {
throw AsyncSocketException(
AsyncSocketException::INTERNAL_ERROR,
withAddr("failed to schedule AsyncSSLSocket connect timeout"));
}
}
return;
}
AsyncSocket::scheduleConnectTimeout();
}
void AsyncSSLSocket::handleRead() noexcept {
VLOG(5) << "AsyncSSLSocket::handleRead() this=" << this << ", fd=" << fd_
<< ", state=" << int(state_) << ", "
<< "sslState=" << sslState_ << ", events=" << eventFlags_;
if (state_ < StateEnum::ESTABLISHED) {
return AsyncSocket::handleRead();
}
if (sslState_ == STATE_ACCEPTING) {
assert(server_);
handleAccept();
return;
} else if (sslState_ == STATE_CONNECTING) {
assert(!server_);
handleConnect();
return;
}
// Normal read
AsyncSocket::handleRead();
}
AsyncSocket::ReadResult
AsyncSSLSocket::performRead(void** buf, size_t* buflen, size_t* offset) {
VLOG(4) << "AsyncSSLSocket::performRead() this=" << this << ", buf=" << *buf
<< ", buflen=" << *buflen;
if (sslState_ == STATE_UNENCRYPTED) {
return AsyncSocket::performRead(buf, buflen, offset);
}
int numToRead = 0;
if (*buflen > std::numeric_limits<int>::max()) {
numToRead = std::numeric_limits<int>::max();
VLOG(4) << "Clamping SSL_read to " << numToRead;
} else {
numToRead = int(*buflen);
}
int bytes = SSL_read(ssl_.get(), *buf, numToRead);
if (server_ && renegotiateAttempted_) {
LOG(ERROR) << "AsyncSSLSocket(fd=" << fd_ << ", state=" << int(state_)
<< ", sslstate=" << sslState_ << ", events=" << eventFlags_
<< "): client intitiated SSL renegotiation not permitted";
return ReadResult(
READ_ERROR,
std::make_unique<SSLException>(SSLError::CLIENT_RENEGOTIATION));
}
if (bytes <= 0) {
int error = SSL_get_error(ssl_.get(), bytes);
if (error == SSL_ERROR_WANT_READ) {
// The caller will register for read event if not already.
if (errno == EWOULDBLOCK || errno == EAGAIN) {
return ReadResult(READ_BLOCKING);
} else {
return ReadResult(READ_ERROR);
}
} else if (error == SSL_ERROR_WANT_WRITE) {
// TODO: Even though we are attempting to read data, SSL_read() may
// need to write data if renegotiation is being performed. We currently
// don't support this and just fail the read.
LOG(ERROR) << "AsyncSSLSocket(fd=" << fd_ << ", state=" << int(state_)
<< ", sslState=" << sslState_ << ", events=" << eventFlags_
<< "): unsupported SSL renegotiation during read";
return ReadResult(
READ_ERROR,
std::make_unique<SSLException>(SSLError::INVALID_RENEGOTIATION));
} else {
if (zero_return(error, bytes, errno)) {
return ReadResult(bytes);
}
auto errError = ERR_get_error();
VLOG(6) << "AsyncSSLSocket(fd=" << fd_ << ", "
<< "state=" << state_ << ", "
<< "sslState=" << sslState_ << ", "
<< "events=" << std::hex << eventFlags_ << "): "
<< "bytes: " << bytes << ", "
<< "error: " << error << ", "
<< "errno: " << errno << ", "
<< "func: " << ERR_func_error_string(errError) << ", "
<< "reason: " << ERR_reason_error_string(errError);
return ReadResult(
READ_ERROR,
std::make_unique<SSLException>(error, errError, bytes, errno));
}
} else {
appBytesReceived_ += bytes;
return ReadResult(bytes);
}
}
void AsyncSSLSocket::handleWrite() noexcept {
VLOG(5) << "AsyncSSLSocket::handleWrite() this=" << this << ", fd=" << fd_
<< ", state=" << int(state_) << ", "
<< "sslState=" << sslState_ << ", events=" << eventFlags_;
if (state_ < StateEnum::ESTABLISHED) {
return AsyncSocket::handleWrite();
}
if (sslState_ == STATE_ACCEPTING) {
assert(server_);
handleAccept();
return;
}
if (sslState_ == STATE_CONNECTING) {
assert(!server_);
handleConnect();
return;
}
// Normal write
AsyncSocket::handleWrite();
}
AsyncSocket::WriteResult AsyncSSLSocket::interpretSSLError(int rc, int error) {
if (error == SSL_ERROR_WANT_READ) {
// Even though we are attempting to write data, SSL_write() may
// need to read data if renegotiation is being performed. We currently
// don't support this and just fail the write.
LOG(ERROR) << "AsyncSSLSocket(fd=" << fd_ << ", state=" << int(state_)
<< ", sslState=" << sslState_ << ", events=" << eventFlags_
<< "): "
<< "unsupported SSL renegotiation during write";
return WriteResult(
WRITE_ERROR,
std::make_unique<SSLException>(SSLError::INVALID_RENEGOTIATION));
} else {
auto errError = ERR_get_error();
VLOG(3) << "ERROR: AsyncSSLSocket(fd=" << fd_ << ", state=" << int(state_)
<< ", sslState=" << sslState_ << ", events=" << eventFlags_ << "): "
<< "SSL error: " << error << ", errno: " << errno
<< ", func: " << ERR_func_error_string(errError)
<< ", reason: " << ERR_reason_error_string(errError);
return WriteResult(
WRITE_ERROR,
std::make_unique<SSLException>(error, errError, rc, errno));
}
}
AsyncSocket::WriteResult AsyncSSLSocket::performWrite(
const iovec* vec,
uint32_t count,
WriteFlags flags,
uint32_t* countWritten,
uint32_t* partialWritten) {
if (sslState_ == STATE_UNENCRYPTED) {
return AsyncSocket::performWrite(
vec, count, flags, countWritten, partialWritten);
}
if (sslState_ != STATE_ESTABLISHED) {
LOG(ERROR) << "AsyncSSLSocket(fd=" << fd_ << ", state=" << int(state_)
<< ", sslState=" << sslState_ << ", events=" << eventFlags_
<< "): "
<< "TODO: AsyncSSLSocket currently does not support calling "
<< "write() before the handshake has fully completed";
return WriteResult(
WRITE_ERROR, std::make_unique<SSLException>(SSLError::EARLY_WRITE));
}
// Declare a buffer used to hold small write requests. It could point to a
// memory block either on stack or on heap. If it is on heap, we release it
// manually when scope exits
char* combinedBuf{nullptr};
SCOPE_EXIT {
// Note, always keep this check consistent with what we do below
if (combinedBuf != nullptr && minWriteSize_ > MAX_STACK_BUF_SIZE) {
delete[] combinedBuf;
}
};
*countWritten = 0;
*partialWritten = 0;
ssize_t totalWritten = 0;
size_t bytesStolenFromNextBuffer = 0;
for (uint32_t i = 0; i < count; i++) {
const iovec* v = vec + i;
size_t offset = bytesStolenFromNextBuffer;
bytesStolenFromNextBuffer = 0;
size_t len = v->iov_len - offset;
const void* buf;
if (len == 0) {
(*countWritten)++;
continue;
}
buf = ((const char*)v->iov_base) + offset;
ssize_t bytes;
uint32_t buffersStolen = 0;
auto sslWriteBuf = buf;
if ((len < minWriteSize_) && ((i + 1) < count)) {
// Combine this buffer with part or all of the next buffers in
// order to avoid really small-grained calls to SSL_write().
// Each call to SSL_write() produces a separate record in
// the egress SSL stream, and we've found that some low-end
// mobile clients can't handle receiving an HTTP response
// header and the first part of the response body in two
// separate SSL records (even if those two records are in
// the same TCP packet).
if (combinedBuf == nullptr) {
if (minWriteSize_ > MAX_STACK_BUF_SIZE) {
// Allocate the buffer on heap
combinedBuf = new char[minWriteSize_];
} else {
// Allocate the buffer on stack
combinedBuf = (char*)alloca(minWriteSize_);
}
}
assert(combinedBuf != nullptr);
sslWriteBuf = combinedBuf;
memcpy(combinedBuf, buf, len);
do {
// INVARIANT: i + buffersStolen == complete chunks serialized
uint32_t nextIndex = i + buffersStolen + 1;
bytesStolenFromNextBuffer =
std::min(vec[nextIndex].iov_len, minWriteSize_ - len);
if (bytesStolenFromNextBuffer > 0) {
assert(vec[nextIndex].iov_base != nullptr);
::memcpy(
combinedBuf + len,
vec[nextIndex].iov_base,
bytesStolenFromNextBuffer);
}
len += bytesStolenFromNextBuffer;
if (bytesStolenFromNextBuffer < vec[nextIndex].iov_len) {
// couldn't steal the whole buffer
break;
} else {
bytesStolenFromNextBuffer = 0;
buffersStolen++;
}
} while ((i + buffersStolen + 1) < count && (len < minWriteSize_));
}
// Advance any empty buffers immediately after.
if (bytesStolenFromNextBuffer == 0) {
while ((i + buffersStolen + 1) < count &&
vec[i + buffersStolen + 1].iov_len == 0) {
buffersStolen++;
}
}
// cork the current write if the original flags included CORK or if there
// are remaining iovec to write
corkCurrentWrite_ =
isSet(flags, WriteFlags::CORK) || (i + buffersStolen + 1 < count);
// track the EoR if:
// (1) there are write flags that require EoR tracking (EOR / TIMESTAMP_TX)
// (2) if the buffer includes the EOR byte
appEorByteWriteFlags_ = flags & kEorRelevantWriteFlags;
bool trackEor = appEorByteWriteFlags_ != folly::WriteFlags::NONE &&
(i + buffersStolen + 1 == count);
bytes = eorAwareSSLWrite(ssl_, sslWriteBuf, int(len), trackEor);
if (bytes <= 0) {
int error = SSL_get_error(ssl_.get(), int(bytes));
if (error == SSL_ERROR_WANT_WRITE) {
// The caller will register for write event if not already.
*partialWritten = uint32_t(offset);
return WriteResult(totalWritten);
}
return interpretSSLError(int(bytes), error);
}
totalWritten += bytes;
if (bytes == (ssize_t)len) {
// The full iovec is written.
(*countWritten) += 1 + buffersStolen;
i += buffersStolen;
// continue
} else {
bytes += offset; // adjust bytes to account for all of v
while (bytes >= (ssize_t)v->iov_len) {
// We combined this buf with part or all of the next one, and
// we managed to write all of this buf but not all of the bytes
// from the next one that we'd hoped to write.
bytes -= v->iov_len;
(*countWritten)++;
v = &(vec[++i]);
}
*partialWritten = uint32_t(bytes);
return WriteResult(totalWritten);
}
}
return WriteResult(totalWritten);
}
int AsyncSSLSocket::eorAwareSSLWrite(
const ssl::SSLUniquePtr& ssl,
const void* buf,
int n,
bool eor) {
if (eor && isEorTrackingEnabled()) {
if (appEorByteNo_) {
// cannot track for more than one app byte EOR
CHECK(appEorByteNo_ == appBytesWritten_ + n);
} else {
appEorByteNo_ = appBytesWritten_ + n;
}
// 1. It is fine to keep updating minEorRawByteNo_.
// 2. It is _min_ in the sense that SSL record will add some overhead.
minEorRawByteNo_ = getRawBytesWritten() + n;
}
n = sslWriteImpl(ssl.get(), buf, n);
if (n > 0) {
appBytesWritten_ += n;
if (appEorByteNo_) {
if (getRawBytesWritten() >= minEorRawByteNo_) {
minEorRawByteNo_ = 0;
}
if (appBytesWritten_ == appEorByteNo_) {
appEorByteNo_ = 0;
appEorByteWriteFlags_ = {};
} else {
CHECK(appBytesWritten_ < appEorByteNo_);
}
}
}
return n;
}
void AsyncSSLSocket::sslInfoCallback(const SSL* ssl, int where, int ret) {
AsyncSSLSocket* sslSocket = AsyncSSLSocket::getFromSSL(ssl);
if (sslSocket->handshakeComplete_ && (where & SSL_CB_HANDSHAKE_START)) {
sslSocket->renegotiateAttempted_ = true;
}
if (sslSocket->handshakeComplete_ && (where & SSL_CB_WRITE_ALERT)) {
const char* desc = SSL_alert_desc_string(ret);
if (desc && strcmp(desc, "NR") == 0) {
sslSocket->renegotiateAttempted_ = true;
}
}
if (where & SSL_CB_READ_ALERT) {
const char* type = SSL_alert_type_string(ret);
if (type) {
const char* desc = SSL_alert_desc_string(ret);
sslSocket->alertsReceived_.emplace_back(
*type, StringPiece(desc, std::strlen(desc)));
}
}
}
int AsyncSSLSocket::bioWrite(BIO* b, const char* in, int inl) {
struct msghdr msg;
struct iovec iov;
AsyncSSLSocket* tsslSock;
iov.iov_base = const_cast<char*>(in);
iov.iov_len = size_t(inl);
memset(&msg, 0, sizeof(msg));
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
auto appData = OpenSSLUtils::getBioAppData(b);
CHECK(appData);
tsslSock = reinterpret_cast<AsyncSSLSocket*>(appData);
CHECK(tsslSock);
WriteFlags flags = WriteFlags::NONE;
if (tsslSock->isEorTrackingEnabled() && tsslSock->minEorRawByteNo_ &&
tsslSock->minEorRawByteNo_ <= BIO_number_written(b) + inl) {
flags |= tsslSock->appEorByteWriteFlags_;
}
if (tsslSock->corkCurrentWrite_) {
flags |= WriteFlags::CORK;
}
int msg_flags = tsslSock->getSendMsgParamsCB()->getFlags(
flags, false /*zeroCopyEnabled*/);
msg.msg_controllen =
tsslSock->getSendMsgParamsCB()->getAncillaryDataSize(flags);
CHECK_GE(
AsyncSocket::SendMsgParamsCallback::maxAncillaryDataSize,
msg.msg_controllen);
if (msg.msg_controllen != 0) {
msg.msg_control = reinterpret_cast<char*>(alloca(msg.msg_controllen));
tsslSock->getSendMsgParamsCB()->getAncillaryData(flags, msg.msg_control);
}
auto result =
tsslSock->sendSocketMessage(OpenSSLUtils::getBioFd(b), &msg, msg_flags);
BIO_clear_retry_flags(b);
if (!result.exception && result.writeReturn <= 0) {
if (OpenSSLUtils::getBioShouldRetryWrite(int(result.writeReturn))) {
BIO_set_retry_write(b);
}
}
return int(result.writeReturn);
}
int AsyncSSLSocket::bioRead(BIO* b, char* out, int outl) {
if (!out) {
return 0;
}
BIO_clear_retry_flags(b);
auto appData = OpenSSLUtils::getBioAppData(b);
CHECK(appData);
auto sslSock = reinterpret_cast<AsyncSSLSocket*>(appData);
if (sslSock->preReceivedData_ && !sslSock->preReceivedData_->empty()) {
VLOG(5) << "AsyncSSLSocket::bioRead() this=" << sslSock
<< ", reading pre-received data";
Cursor cursor(sslSock->preReceivedData_.get());
auto len = cursor.pullAtMost(out, outl);
IOBufQueue queue;
queue.append(std::move(sslSock->preReceivedData_));
queue.trimStart(len);
sslSock->preReceivedData_ = queue.move();
return static_cast<int>(len);
} else {
auto result = int(netops::recv(OpenSSLUtils::getBioFd(b), out, outl, 0));
if (result <= 0 && OpenSSLUtils::getBioShouldRetryWrite(result)) {
BIO_set_retry_read(b);
}
return result;
}
}
int AsyncSSLSocket::sslVerifyCallback(
int preverifyOk,
X509_STORE_CTX* x509Ctx) {
SSL* ssl = (SSL*)X509_STORE_CTX_get_ex_data(
x509Ctx, SSL_get_ex_data_X509_STORE_CTX_idx());
AsyncSSLSocket* self = AsyncSSLSocket::getFromSSL(ssl);
VLOG(3) << "AsyncSSLSocket::sslVerifyCallback() this=" << self << ", "
<< "fd=" << self->fd_ << ", preverifyOk=" << preverifyOk;
return (self->handshakeCallback_)
? self->handshakeCallback_->handshakeVer(self, preverifyOk, x509Ctx)
: preverifyOk;
}
void AsyncSSLSocket::enableClientHelloParsing() {
parseClientHello_ = true;
clientHelloInfo_ = std::make_unique<ssl::ClientHelloInfo>();
}
void AsyncSSLSocket::resetClientHelloParsing(SSL* ssl) {
SSL_set_msg_callback(ssl, nullptr);
SSL_set_msg_callback_arg(ssl, nullptr);
clientHelloInfo_->clientHelloBuf_.clear();
}
void AsyncSSLSocket::clientHelloParsingCallback(
int written,
int /* version */,
int contentType,
const void* buf,
size_t len,
SSL* ssl,
void* arg) {
auto sock = static_cast<AsyncSSLSocket*>(arg);
if (written != 0) {
sock->resetClientHelloParsing(ssl);
return;
}
if (contentType != SSL3_RT_HANDSHAKE) {
return;
}
if (len == 0) {
return;
}
auto& clientHelloBuf = sock->clientHelloInfo_->clientHelloBuf_;
clientHelloBuf.append(IOBuf::wrapBuffer(buf, len));
try {
Cursor cursor(clientHelloBuf.front());
if (cursor.read<uint8_t>() != SSL3_MT_CLIENT_HELLO) {
sock->resetClientHelloParsing(ssl);
return;
}
if (cursor.totalLength() < 3) {
clientHelloBuf.trimEnd(len);
clientHelloBuf.append(IOBuf::copyBuffer(buf, len));
return;
}
uint32_t messageLength = cursor.read<uint8_t>();
messageLength <<= 8;
messageLength |= cursor.read<uint8_t>();
messageLength <<= 8;
messageLength |= cursor.read<uint8_t>();
if (cursor.totalLength() < messageLength) {
clientHelloBuf.trimEnd(len);
clientHelloBuf.append(IOBuf::copyBuffer(buf, len));
return;
}
sock->clientHelloInfo_->clientHelloMajorVersion_ = cursor.read<uint8_t>();
sock->clientHelloInfo_->clientHelloMinorVersion_ = cursor.read<uint8_t>();
cursor.skip(4); // gmt_unix_time
cursor.skip(28); // random_bytes
cursor.skip(cursor.read<uint8_t>()); // session_id
auto cipherSuitesLength = cursor.readBE<uint16_t>();
for (int i = 0; i < cipherSuitesLength; i += 2) {
sock->clientHelloInfo_->clientHelloCipherSuites_.push_back(
cursor.readBE<uint16_t>());
}
auto compressionMethodsLength = cursor.read<uint8_t>();
for (int i = 0; i < compressionMethodsLength; ++i) {
sock->clientHelloInfo_->clientHelloCompressionMethods_.push_back(
cursor.readBE<uint8_t>());
}
if (cursor.totalLength() > 0) {
auto extensionsLength = cursor.readBE<uint16_t>();
while (extensionsLength) {
auto extensionType =
static_cast<ssl::TLSExtension>(cursor.readBE<uint16_t>());
sock->clientHelloInfo_->clientHelloExtensions_.push_back(extensionType);
extensionsLength -= 2;
auto extensionDataLength = cursor.readBE<uint16_t>();
extensionsLength -= 2;
extensionsLength -= extensionDataLength;
if (extensionType == ssl::TLSExtension::SIGNATURE_ALGORITHMS) {
cursor.skip(2);
extensionDataLength -= 2;
while (extensionDataLength) {
auto hashAlg =
static_cast<ssl::HashAlgorithm>(cursor.readBE<uint8_t>());
auto sigAlg =
static_cast<ssl::SignatureAlgorithm>(cursor.readBE<uint8_t>());
extensionDataLength -= 2;
sock->clientHelloInfo_->clientHelloSigAlgs_.emplace_back(
hashAlg, sigAlg);
}
} else if (extensionType == ssl::TLSExtension::SUPPORTED_VERSIONS) {
cursor.skip(1);
extensionDataLength -= 1;
while (extensionDataLength) {
sock->clientHelloInfo_->clientHelloSupportedVersions_.push_back(
cursor.readBE<uint16_t>());
extensionDataLength -= 2;
}
} else if (extensionType == ssl::TLSExtension::SERVER_NAME) {
cursor.skip(2);
extensionDataLength -= 2;
while (extensionDataLength) {
static_assert(
std::is_same<
typename std::underlying_type<ssl::NameType>::type,
uint8_t>::value,
"unexpected underlying type");
auto typ = static_cast<ssl::NameType>(cursor.readBE<uint8_t>());
auto nameLength = cursor.readBE<uint16_t>();
if (typ == NameType::HOST_NAME &&
sock->clientHelloInfo_->clientHelloSNIHostname_.empty() &&
cursor.canAdvance(nameLength)) {
sock->clientHelloInfo_->clientHelloSNIHostname_ =
cursor.readFixedString(nameLength);
} else {
// Must attempt to skip |nameLength| in order to keep cursor
// in sync. If the remaining buffer length is smaller than
// nameLength, this will throw.
cursor.skip(nameLength);
}
extensionDataLength -=
sizeof(typ) + sizeof(nameLength) + nameLength;
}
} else {
cursor.skip(extensionDataLength);
}
}
}
} catch (std::out_of_range&) {
// we'll use what we found and cleanup below.
VLOG(4) << "AsyncSSLSocket::clientHelloParsingCallback(): "
<< "buffer finished unexpectedly."
<< " AsyncSSLSocket socket=" << sock;
}
sock->resetClientHelloParsing(ssl);
}
void AsyncSSLSocket::getSSLClientCiphers(
std::string& clientCiphers,
bool convertToString) const {
std::string ciphers;
if (!parseClientHello_ ||
clientHelloInfo_->clientHelloCipherSuites_.empty()) {
clientCiphers = "";
return;
}
bool first = true;
for (auto originalCipherCode : clientHelloInfo_->clientHelloCipherSuites_) {
if (first) {
first = false;
} else {
ciphers += ":";
}
bool nameFound = convertToString;
if (convertToString) {
const auto& name = OpenSSLUtils::getCipherName(originalCipherCode);
if (name.empty()) {
nameFound = false;
} else {
ciphers += name;
}
}
if (!nameFound) {
folly::hexlify(
std::array<uint8_t, 2>{
{static_cast<uint8_t>((originalCipherCode >> 8) & 0xffL),
static_cast<uint8_t>(originalCipherCode & 0x00ffL)}},
ciphers,
/* append to ciphers = */ true);
}
}
clientCiphers = std::move(ciphers);
}
std::string AsyncSSLSocket::getSSLClientComprMethods() const {
if (!parseClientHello_) {
return "";
}
return folly::join(":", clientHelloInfo_->clientHelloCompressionMethods_);
}
std::string AsyncSSLSocket::getSSLClientExts() const {
if (!parseClientHello_) {
return "";
}
return folly::join(":", clientHelloInfo_->clientHelloExtensions_);
}
std::string AsyncSSLSocket::getSSLClientSigAlgs() const {
if (!parseClientHello_) {
return "";
}
std::string sigAlgs;
sigAlgs.reserve(clientHelloInfo_->clientHelloSigAlgs_.size() * 4);
for (size_t i = 0; i < clientHelloInfo_->clientHelloSigAlgs_.size(); i++) {
if (i) {
sigAlgs.push_back(':');
}
sigAlgs.append(
folly::to<std::string>(clientHelloInfo_->clientHelloSigAlgs_[i].first));
sigAlgs.push_back(',');
sigAlgs.append(folly::to<std::string>(
clientHelloInfo_->clientHelloSigAlgs_[i].second));
}
return sigAlgs;
}
std::string AsyncSSLSocket::getSSLClientSupportedVersions() const {
if (!parseClientHello_) {
return "";
}
return folly::join(":", clientHelloInfo_->clientHelloSupportedVersions_);
}
std::string AsyncSSLSocket::getSSLAlertsReceived() const {
std::string ret;
for (const auto& alert : alertsReceived_) {
if (!ret.empty()) {
ret.append(",");
}
ret.append(folly::to<std::string>(alert.first, ": ", alert.second));
}
return ret;
}
void AsyncSSLSocket::setSSLCertVerificationAlert(std::string alert) {
sslVerificationAlert_ = std::move(alert);
}
std::string AsyncSSLSocket::getSSLCertVerificationAlert() const {
return sslVerificationAlert_;
}
void AsyncSSLSocket::getSSLSharedCiphers(std::string& sharedCiphers) const {
char ciphersBuffer[1024];
ciphersBuffer[0] = '\0';
SSL_get_shared_ciphers(ssl_.get(), ciphersBuffer, sizeof(ciphersBuffer) - 1);
sharedCiphers = ciphersBuffer;
}
void AsyncSSLSocket::getSSLServerCiphers(std::string& serverCiphers) const {
serverCiphers = SSL_get_cipher_list(ssl_.get(), 0);
int i = 1;
const char* cipher;
while ((cipher = SSL_get_cipher_list(ssl_.get(), i)) != nullptr) {
serverCiphers.append(":");
serverCiphers.append(cipher);
i++;
}
}
} // namespace folly