Rocket.Chat.ReactNative/ios/Pods/Flipper-Folly/folly/portability/PThread.cpp

706 lines
17 KiB
C++
Raw Normal View History

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <folly/portability/PThread.h>
#if !FOLLY_HAVE_PTHREAD && defined(_WIN32)
#include <boost/thread/exceptions.hpp>
#include <boost/thread/tss.hpp>
#include <boost/version.hpp>
#include <errno.h>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <exception>
#include <limits>
#include <mutex>
#include <shared_mutex>
#include <thread>
#include <folly/lang/Assume.h>
#include <folly/portability/Windows.h>
namespace folly {
namespace portability {
namespace pthread {
int pthread_attr_init(pthread_attr_t* attr) {
if (attr == nullptr) {
errno = EINVAL;
return -1;
}
attr->stackSize = 0;
attr->detached = false;
return 0;
}
int pthread_attr_setdetachstate(pthread_attr_t* attr, int state) {
if (attr == nullptr) {
errno = EINVAL;
return -1;
}
attr->detached = state == PTHREAD_CREATE_DETACHED ? true : false;
return 0;
}
int pthread_attr_setstacksize(pthread_attr_t* attr, size_t kb) {
if (attr == nullptr) {
errno = EINVAL;
return -1;
}
attr->stackSize = kb;
return 0;
}
namespace pthread_detail {
pthread_t::~pthread_t() noexcept {
if (handle != INVALID_HANDLE_VALUE && !detached) {
CloseHandle(handle);
}
}
} // namespace pthread_detail
int pthread_equal(pthread_t threadA, pthread_t threadB) {
if (threadA == threadB) {
return 1;
}
// Note that, in the presence of detached threads, it is in theory possible
// for two different pthread_t handles to be compared as the same due to
// Windows HANDLE and Thread ID re-use. If you're doing anything useful with
// a detached thread, you're probably doing it wrong, but I felt like leaving
// this note here anyways.
if (threadA->handle == threadB->handle &&
threadA->threadID == threadB->threadID) {
return 1;
}
return 0;
}
namespace {
thread_local pthread_t current_thread_self;
struct pthread_startup_info {
pthread_t thread;
void* (*startupFunction)(void*);
void* startupArgument;
};
DWORD internal_pthread_thread_start(void* arg) {
// We are now in the new thread.
auto startupInfo = reinterpret_cast<pthread_startup_info*>(arg);
current_thread_self = startupInfo->thread;
auto ret = startupInfo->startupFunction(startupInfo->startupArgument);
if /* constexpr */ (sizeof(void*) != sizeof(DWORD)) {
auto tmp = reinterpret_cast<uintptr_t>(ret);
if (tmp > std::numeric_limits<DWORD>::max()) {
throw std::out_of_range(
"Exit code of the pthread is outside the range representable on Windows");
}
}
delete startupInfo;
return static_cast<DWORD>(reinterpret_cast<uintptr_t>(ret));
}
} // namespace
int pthread_create(
pthread_t* thread,
const pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg) {
if (thread == nullptr) {
errno = EINVAL;
return -1;
}
size_t stackSize = attr != nullptr ? attr->stackSize : 0;
bool detach = attr != nullptr ? attr->detached : false;
// Note that the start routine passed into pthread returns a void* and the
// windows API expects DWORD's, so we need to stub around that.
auto startupInfo = new pthread_startup_info();
startupInfo->startupFunction = start_routine;
startupInfo->startupArgument = arg;
startupInfo->thread = std::make_shared<pthread_detail::pthread_t>();
// We create the thread suspended so we can assign the handle and thread id
// in the pthread_t.
startupInfo->thread->handle = CreateThread(
nullptr,
stackSize,
internal_pthread_thread_start,
startupInfo,
CREATE_SUSPENDED,
&startupInfo->thread->threadID);
ResumeThread(startupInfo->thread->handle);
if (detach) {
*thread = std::make_shared<pthread_detail::pthread_t>();
(*thread)->detached = true;
(*thread)->handle = startupInfo->thread->handle;
(*thread)->threadID = startupInfo->thread->threadID;
} else {
*thread = startupInfo->thread;
}
return 0;
}
pthread_t pthread_self() {
// Not possible to race :)
if (current_thread_self == nullptr) {
current_thread_self = std::make_shared<pthread_detail::pthread_t>();
current_thread_self->threadID = GetCurrentThreadId();
// The handle returned by GetCurrentThread is a pseudo-handle and needs to
// be swapped out for a real handle to be useful anywhere other than this
// thread.
DuplicateHandle(
GetCurrentProcess(),
GetCurrentThread(),
GetCurrentProcess(),
&current_thread_self->handle,
DUPLICATE_SAME_ACCESS,
TRUE,
0);
}
return current_thread_self;
}
int pthread_join(pthread_t thread, void** exitCode) {
if (thread->detached) {
errno = EINVAL;
return -1;
}
if (WaitForSingleObjectEx(thread->handle, INFINITE, FALSE) == WAIT_FAILED) {
return -1;
}
if (exitCode != nullptr) {
DWORD e;
if (!GetExitCodeThread(thread->handle, &e)) {
return -1;
}
*exitCode = reinterpret_cast<void*>(static_cast<uintptr_t>(e));
}
return 0;
}
HANDLE pthread_getw32threadhandle_np(pthread_t thread) {
return thread->handle;
}
DWORD pthread_getw32threadid_np(pthread_t thread) {
return thread->threadID;
}
int pthread_setschedparam(
pthread_t thread,
int policy,
const sched_param* param) {
if (thread->detached) {
errno = EINVAL;
return -1;
}
auto newPrior = param->sched_priority;
if (newPrior > THREAD_PRIORITY_TIME_CRITICAL ||
newPrior < THREAD_PRIORITY_IDLE) {
errno = EINVAL;
return -1;
}
if (GetPriorityClass(GetCurrentProcess()) != REALTIME_PRIORITY_CLASS) {
if (newPrior > THREAD_PRIORITY_IDLE && newPrior < THREAD_PRIORITY_LOWEST) {
// The values between IDLE and LOWEST are invalid unless the process is
// running as realtime.
newPrior = THREAD_PRIORITY_LOWEST;
} else if (
newPrior < THREAD_PRIORITY_TIME_CRITICAL &&
newPrior > THREAD_PRIORITY_HIGHEST) {
// Same as above.
newPrior = THREAD_PRIORITY_HIGHEST;
}
}
if (!SetThreadPriority(thread->handle, newPrior)) {
return -1;
}
return 0;
}
int pthread_mutexattr_init(pthread_mutexattr_t* attr) {
if (attr == nullptr) {
return EINVAL;
}
attr->type = PTHREAD_MUTEX_DEFAULT;
return 0;
}
int pthread_mutexattr_destroy(pthread_mutexattr_t* attr) {
if (attr == nullptr) {
return EINVAL;
}
return 0;
}
int pthread_mutexattr_settype(pthread_mutexattr_t* attr, int type) {
if (attr == nullptr) {
return EINVAL;
}
if (type != PTHREAD_MUTEX_DEFAULT && type != PTHREAD_MUTEX_RECURSIVE) {
return EINVAL;
}
attr->type = type;
return 0;
}
struct pthread_mutex_t_ {
private:
int type;
union {
std::timed_mutex timed_mtx;
std::recursive_timed_mutex recursive_timed_mtx;
};
public:
pthread_mutex_t_(int mutex_type) : type(mutex_type) {
switch (type) {
case PTHREAD_MUTEX_NORMAL:
new (&timed_mtx) std::timed_mutex();
break;
case PTHREAD_MUTEX_RECURSIVE:
new (&recursive_timed_mtx) std::recursive_timed_mutex();
break;
}
}
~pthread_mutex_t_() noexcept {
switch (type) {
case PTHREAD_MUTEX_NORMAL:
timed_mtx.~timed_mutex();
break;
case PTHREAD_MUTEX_RECURSIVE:
recursive_timed_mtx.~recursive_timed_mutex();
break;
}
}
void lock() {
switch (type) {
case PTHREAD_MUTEX_NORMAL:
timed_mtx.lock();
break;
case PTHREAD_MUTEX_RECURSIVE:
recursive_timed_mtx.lock();
break;
}
}
bool try_lock() {
switch (type) {
case PTHREAD_MUTEX_NORMAL:
return timed_mtx.try_lock();
case PTHREAD_MUTEX_RECURSIVE:
return recursive_timed_mtx.try_lock();
}
folly::assume_unreachable();
}
bool timed_try_lock(std::chrono::system_clock::time_point until) {
switch (type) {
case PTHREAD_MUTEX_NORMAL:
return timed_mtx.try_lock_until(until);
case PTHREAD_MUTEX_RECURSIVE:
return recursive_timed_mtx.try_lock_until(until);
}
folly::assume_unreachable();
}
void unlock() {
switch (type) {
case PTHREAD_MUTEX_NORMAL:
timed_mtx.unlock();
break;
case PTHREAD_MUTEX_RECURSIVE:
recursive_timed_mtx.unlock();
break;
}
}
void condition_wait(std::condition_variable_any& cond) {
switch (type) {
case PTHREAD_MUTEX_NORMAL: {
std::unique_lock<std::timed_mutex> lock(timed_mtx);
cond.wait(lock);
break;
}
case PTHREAD_MUTEX_RECURSIVE: {
std::unique_lock<std::recursive_timed_mutex> lock(recursive_timed_mtx);
cond.wait(lock);
break;
}
}
}
bool condition_timed_wait(
std::condition_variable_any& cond,
std::chrono::system_clock::time_point until) {
switch (type) {
case PTHREAD_MUTEX_NORMAL: {
std::unique_lock<std::timed_mutex> lock(timed_mtx);
return cond.wait_until(lock, until) == std::cv_status::no_timeout;
}
case PTHREAD_MUTEX_RECURSIVE: {
std::unique_lock<std::recursive_timed_mutex> lock(recursive_timed_mtx);
return cond.wait_until(lock, until) == std::cv_status::no_timeout;
}
}
folly::assume_unreachable();
}
};
int pthread_mutex_init(
pthread_mutex_t* mutex,
const pthread_mutexattr_t* attr) {
if (mutex == nullptr) {
return EINVAL;
}
auto type = attr != nullptr ? attr->type : PTHREAD_MUTEX_DEFAULT;
auto ret = new pthread_mutex_t_(type);
*mutex = ret;
return 0;
}
int pthread_mutex_destroy(pthread_mutex_t* mutex) {
if (mutex == nullptr) {
return EINVAL;
}
delete *mutex;
*mutex = nullptr;
return 0;
}
int pthread_mutex_lock(pthread_mutex_t* mutex) {
if (mutex == nullptr) {
return EINVAL;
}
// This implementation does not implement deadlock detection, as the
// STL mutexes we're wrapping don't either.
(*mutex)->lock();
return 0;
}
int pthread_mutex_trylock(pthread_mutex_t* mutex) {
if (mutex == nullptr) {
return EINVAL;
}
if ((*mutex)->try_lock()) {
return 0;
} else {
return EBUSY;
}
}
static std::chrono::system_clock::time_point timespec_to_time_point(
const timespec* t) {
using time_point = std::chrono::system_clock::time_point;
auto ns =
std::chrono::seconds(t->tv_sec) + std::chrono::nanoseconds(t->tv_nsec);
return time_point(std::chrono::duration_cast<time_point::duration>(ns));
}
int pthread_mutex_timedlock(
pthread_mutex_t* mutex,
const timespec* abs_timeout) {
if (mutex == nullptr || abs_timeout == nullptr) {
return EINVAL;
}
auto time = timespec_to_time_point(abs_timeout);
if ((*mutex)->timed_try_lock(time)) {
return 0;
} else {
return ETIMEDOUT;
}
}
int pthread_mutex_unlock(pthread_mutex_t* mutex) {
if (mutex == nullptr) {
return EINVAL;
}
// This implementation allows other threads to unlock it,
// as the STL containers also do.
(*mutex)->unlock();
return 0;
}
struct pthread_rwlock_t_ {
std::shared_timed_mutex mtx;
std::atomic<bool> writing{false};
};
int pthread_rwlock_init(pthread_rwlock_t* rwlock, const void* attr) {
if (attr != nullptr) {
return EINVAL;
}
if (rwlock == nullptr) {
return EINVAL;
}
*rwlock = new pthread_rwlock_t_();
return 0;
}
int pthread_rwlock_destroy(pthread_rwlock_t* rwlock) {
if (rwlock == nullptr) {
return EINVAL;
}
delete *rwlock;
*rwlock = nullptr;
return 0;
}
int pthread_rwlock_rdlock(pthread_rwlock_t* rwlock) {
if (rwlock == nullptr) {
return EINVAL;
}
(*rwlock)->mtx.lock_shared();
return 0;
}
int pthread_rwlock_tryrdlock(pthread_rwlock_t* rwlock) {
if (rwlock == nullptr) {
return EINVAL;
}
if ((*rwlock)->mtx.try_lock_shared()) {
return 0;
} else {
return EBUSY;
}
}
int pthread_rwlock_timedrdlock(
pthread_rwlock_t* rwlock,
const timespec* abs_timeout) {
if (rwlock == nullptr) {
return EINVAL;
}
auto time = timespec_to_time_point(abs_timeout);
if ((*rwlock)->mtx.try_lock_shared_until(time)) {
return 0;
} else {
return ETIMEDOUT;
}
}
int pthread_rwlock_wrlock(pthread_rwlock_t* rwlock) {
if (rwlock == nullptr) {
return EINVAL;
}
(*rwlock)->mtx.lock();
(*rwlock)->writing = true;
return 0;
}
// Note: As far as I can tell, rwlock is technically supposed to
// be an upgradable lock, but we don't implement it that way.
int pthread_rwlock_trywrlock(pthread_rwlock_t* rwlock) {
if (rwlock == nullptr) {
return EINVAL;
}
if ((*rwlock)->mtx.try_lock()) {
(*rwlock)->writing = true;
return 0;
} else {
return EBUSY;
}
}
int pthread_rwlock_timedwrlock(
pthread_rwlock_t* rwlock,
const timespec* abs_timeout) {
if (rwlock == nullptr) {
return EINVAL;
}
auto time = timespec_to_time_point(abs_timeout);
if ((*rwlock)->mtx.try_lock_until(time)) {
(*rwlock)->writing = true;
return 0;
} else {
return ETIMEDOUT;
}
}
int pthread_rwlock_unlock(pthread_rwlock_t* rwlock) {
if (rwlock == nullptr) {
return EINVAL;
}
// Note: We don't have any checking to ensure we have actually
// locked things first, so you'll actually be in undefined behavior
// territory if you do attempt to unlock things you haven't locked.
if ((*rwlock)->writing) {
(*rwlock)->mtx.unlock();
// If we fail, then another thread has already immediately acquired
// the write lock, so this should stay as true :)
bool dump = true;
(void)(*rwlock)->writing.compare_exchange_strong(dump, false);
} else {
(*rwlock)->mtx.unlock_shared();
}
return 0;
}
struct pthread_cond_t_ {
// pthread_mutex_t is backed by timed
// mutexes, so no basic condition variable for
// us :(
std::condition_variable_any cond;
};
int pthread_cond_init(pthread_cond_t* cond, const void* attr) {
if (attr != nullptr) {
return EINVAL;
}
if (cond == nullptr) {
return EINVAL;
}
*cond = new pthread_cond_t_();
return 0;
}
int pthread_cond_destroy(pthread_cond_t* cond) {
if (cond == nullptr) {
return EINVAL;
}
delete *cond;
*cond = nullptr;
return 0;
}
int pthread_cond_wait(pthread_cond_t* cond, pthread_mutex_t* mutex) {
if (cond == nullptr || mutex == nullptr) {
return EINVAL;
}
(*mutex)->condition_wait((*cond)->cond);
return 0;
}
int pthread_cond_timedwait(
pthread_cond_t* cond,
pthread_mutex_t* mutex,
const timespec* abstime) {
if (cond == nullptr || mutex == nullptr || abstime == nullptr) {
return EINVAL;
}
auto time = timespec_to_time_point(abstime);
if ((*mutex)->condition_timed_wait((*cond)->cond, time)) {
return 0;
} else {
return ETIMEDOUT;
}
}
int pthread_cond_signal(pthread_cond_t* cond) {
if (cond == nullptr) {
return EINVAL;
}
(*cond)->cond.notify_one();
return 0;
}
int pthread_cond_broadcast(pthread_cond_t* cond) {
if (cond == nullptr) {
return EINVAL;
}
(*cond)->cond.notify_all();
return 0;
}
int pthread_key_create(pthread_key_t* key, void (*destructor)(void*)) {
try {
auto newKey = new boost::thread_specific_ptr<void>(destructor);
*key = newKey;
return 0;
} catch (boost::thread_resource_error) {
return -1;
}
}
int pthread_key_delete(pthread_key_t key) {
try {
auto realKey = reinterpret_cast<boost::thread_specific_ptr<void>*>(key);
delete realKey;
return 0;
} catch (boost::thread_resource_error) {
return -1;
}
}
void* pthread_getspecific(pthread_key_t key) {
auto realKey = reinterpret_cast<boost::thread_specific_ptr<void>*>(key);
// This can't throw as-per the documentation.
return realKey->get();
}
int pthread_setspecific(pthread_key_t key, const void* value) {
try {
auto realKey = reinterpret_cast<boost::thread_specific_ptr<void>*>(key);
// We can't just call reset here because that would invoke the cleanup
// function, which we don't want to do.
boost::detail::set_tss_data(
realKey,
#if BOOST_VERSION >= 107000
boost::detail::thread::cleanup_caller_t(),
boost::detail::thread::cleanup_func_t(),
#else
boost::shared_ptr<boost::detail::tss_cleanup_function>(),
#endif
const_cast<void*>(value),
false);
return 0;
} catch (boost::thread_resource_error) {
return -1;
}
}
} // namespace pthread
} // namespace portability
} // namespace folly
#endif