Rocket.Chat.ReactNative/ios/Pods/boost-for-react-native/boost/endian/conversion.hpp

489 lines
20 KiB
C++
Raw Normal View History

// boost/endian/conversion.hpp -------------------------------------------------------//
// Copyright Beman Dawes 2010, 2011, 2014
// Distributed under the Boost Software License, Version 1.0.
// http://www.boost.org/LICENSE_1_0.txt
#ifndef BOOST_ENDIAN_CONVERSION_HPP
#define BOOST_ENDIAN_CONVERSION_HPP
#include <boost/config.hpp>
#include <boost/predef/detail/endian_compat.h>
#include <boost/cstdint.hpp>
#include <boost/endian/detail/intrinsic.hpp>
#include <boost/core/scoped_enum.hpp>
#include <boost/static_assert.hpp>
#include <algorithm>
#include <cstring> // for memcpy
//------------------------------------- synopsis ---------------------------------------//
namespace boost
{
namespace endian
{
BOOST_SCOPED_ENUM_START(order)
{
big, little,
# ifdef BOOST_BIG_ENDIAN
native = big
# else
native = little
# endif
}; BOOST_SCOPED_ENUM_END
//--------------------------------------------------------------------------------------//
// //
// return-by-value interfaces //
// suggested by Phil Endecott //
// //
// user-defined types (UDTs) //
// //
// All return-by-value conversion function templates are required to be implemented in //
// terms of an unqualified call to "endian_reverse(x)", a function returning the //
// value of x with endianness reversed. This provides a customization point for any //
// UDT that provides a "endian_reverse" free-function meeting the requirements. //
// It must be defined in the same namespace as the UDT itself so that it will be found //
// by argument dependent lookup (ADL). //
// //
//--------------------------------------------------------------------------------------//
// customization for exact-length arithmetic types. See doc/conversion.html/#FAQ.
// Note: The omission of a overloads for the arithmetic type (typically long, or
// long long) not assigned to one of the exact length typedefs is a deliberate
// design decision. Such overloads would be non-portable and thus error prone.
inline int8_t endian_reverse(int8_t x) BOOST_NOEXCEPT;
inline int16_t endian_reverse(int16_t x) BOOST_NOEXCEPT;
inline int32_t endian_reverse(int32_t x) BOOST_NOEXCEPT;
inline int64_t endian_reverse(int64_t x) BOOST_NOEXCEPT;
inline uint8_t endian_reverse(uint8_t x) BOOST_NOEXCEPT;
inline uint16_t endian_reverse(uint16_t x) BOOST_NOEXCEPT;
inline uint32_t endian_reverse(uint32_t x) BOOST_NOEXCEPT;
inline uint64_t endian_reverse(uint64_t x) BOOST_NOEXCEPT;
// reverse byte order unless native endianness is big
template <class EndianReversible >
inline EndianReversible big_to_native(EndianReversible x) BOOST_NOEXCEPT;
// Returns: x if native endian order is big, otherwise endian_reverse(x)
template <class EndianReversible >
inline EndianReversible native_to_big(EndianReversible x) BOOST_NOEXCEPT;
// Returns: x if native endian order is big, otherwise endian_reverse(x)
// reverse byte order unless native endianness is little
template <class EndianReversible >
inline EndianReversible little_to_native(EndianReversible x) BOOST_NOEXCEPT;
// Returns: x if native endian order is little, otherwise endian_reverse(x)
template <class EndianReversible >
inline EndianReversible native_to_little(EndianReversible x) BOOST_NOEXCEPT;
// Returns: x if native endian order is little, otherwise endian_reverse(x)
// generic conditional reverse byte order
template <BOOST_SCOPED_ENUM(order) From, BOOST_SCOPED_ENUM(order) To,
class EndianReversible>
inline EndianReversible conditional_reverse(EndianReversible from) BOOST_NOEXCEPT;
// Returns: If From == To have different values, from.
// Otherwise endian_reverse(from).
// Remarks: The From == To test, and as a consequence which form the return takes, is
// is determined at compile time.
// runtime conditional reverse byte order
template <class EndianReversible >
inline EndianReversible conditional_reverse(EndianReversible from,
BOOST_SCOPED_ENUM(order) from_order, BOOST_SCOPED_ENUM(order) to_order)
BOOST_NOEXCEPT;
// Returns: from_order == to_order ? from : endian_reverse(from).
//------------------------------------------------------------------------------------//
// Q: What happened to bswap, htobe, and the other synonym functions based on names
// popularized by BSD, OS X, and Linux?
// A: Turned out these may be implemented as macros on some systems. Ditto POSIX names
// for such functionality. Since macros would cause endless problems with functions
// of the same names, and these functions are just synonyms anyhow, they have been
// removed.
//------------------------------------------------------------------------------------//
// //
// reverse in place interfaces //
// //
// user-defined types (UDTs) //
// //
// All reverse in place function templates are required to be implemented in terms //
// of an unqualified call to "endian_reverse_inplace(x)", a function reversing //
// the endianness of x, which is a non-const reference. This provides a //
// customization point for any UDT that provides a "reverse_inplace" free-function //
// meeting the requirements. The free-function must be declared in the same //
// namespace as the UDT itself so that it will be found by argument-dependent //
// lookup (ADL). //
// //
//------------------------------------------------------------------------------------//
// reverse in place
template <class EndianReversible>
inline void endian_reverse_inplace(EndianReversible& x) BOOST_NOEXCEPT;
// Effects: x = endian_reverse(x)
// reverse in place unless native endianness is big
template <class EndianReversibleInplace>
inline void big_to_native_inplace(EndianReversibleInplace& x) BOOST_NOEXCEPT;
// Effects: none if native byte-order is big, otherwise endian_reverse_inplace(x)
template <class EndianReversibleInplace>
inline void native_to_big_inplace(EndianReversibleInplace& x) BOOST_NOEXCEPT;
// Effects: none if native byte-order is big, otherwise endian_reverse_inplace(x)
// reverse in place unless native endianness is little
template <class EndianReversibleInplace>
inline void little_to_native_inplace(EndianReversibleInplace& x) BOOST_NOEXCEPT;
// Effects: none if native byte-order is little, otherwise endian_reverse_inplace(x);
template <class EndianReversibleInplace>
inline void native_to_little_inplace(EndianReversibleInplace& x) BOOST_NOEXCEPT;
// Effects: none if native byte-order is little, otherwise endian_reverse_inplace(x);
// generic conditional reverse in place
template <BOOST_SCOPED_ENUM(order) From, BOOST_SCOPED_ENUM(order) To,
class EndianReversibleInplace>
inline void conditional_reverse_inplace(EndianReversibleInplace& x) BOOST_NOEXCEPT;
// runtime reverse in place
template <class EndianReversibleInplace>
inline void conditional_reverse_inplace(EndianReversibleInplace& x,
BOOST_SCOPED_ENUM(order) from_order, BOOST_SCOPED_ENUM(order) to_order)
BOOST_NOEXCEPT;
//----------------------------------- end synopsis -------------------------------------//
namespace detail
{
// generic reverse function template implementation approach using std::reverse
// suggested by Mathias Gaunard. Primary motivation for inclusion is to have an
// independent implementation to test against.
template <class T>
inline T std_endian_reverse(T x) BOOST_NOEXCEPT
{
T tmp(x);
std::reverse(
reinterpret_cast<unsigned char*>(&tmp),
reinterpret_cast<unsigned char*>(&tmp) + sizeof(T));
return tmp;
}
// conditional unaligned reverse copy, patterned after std::reverse_copy
template <class T>
inline void big_reverse_copy(T from, char* to) BOOST_NOEXCEPT;
template <class T>
inline void big_reverse_copy(const char* from, T& to) BOOST_NOEXCEPT;
template <class T>
inline void little_reverse_copy(T from, char* to) BOOST_NOEXCEPT;
template <class T>
inline void little_reverse_copy(const char* from, T& to) BOOST_NOEXCEPT;
} // namespace detail
//--------------------------------------------------------------------------------------//
// //
// return-by-value implementation //
// //
// -- portable approach suggested by tymofey, with avoidance of undefined behavior //
// as suggested by Giovanni Piero Deretta, with a further refinement suggested //
// by Pyry Jahkola. //
// -- intrinsic approach suggested by reviewers, and by David Stone, who provided //
// his Boost licensed macro implementation (detail/intrinsic.hpp) //
// //
//--------------------------------------------------------------------------------------//
inline int8_t endian_reverse(int8_t x) BOOST_NOEXCEPT
{
return x;
}
inline int16_t endian_reverse(int16_t x) BOOST_NOEXCEPT
{
# ifdef BOOST_ENDIAN_NO_INTRINSICS
return (static_cast<uint16_t>(x) << 8)
| (static_cast<uint16_t>(x) >> 8);
# else
return BOOST_ENDIAN_INTRINSIC_BYTE_SWAP_2(static_cast<uint16_t>(x));
# endif
}
inline int32_t endian_reverse(int32_t x) BOOST_NOEXCEPT
{
# ifdef BOOST_ENDIAN_NO_INTRINSICS
uint32_t step16;
step16 = static_cast<uint32_t>(x) << 16 | static_cast<uint32_t>(x) >> 16;
return
((static_cast<uint32_t>(step16) << 8) & 0xff00ff00)
| ((static_cast<uint32_t>(step16) >> 8) & 0x00ff00ff);
# else
return BOOST_ENDIAN_INTRINSIC_BYTE_SWAP_4(static_cast<uint32_t>(x));
# endif
}
inline int64_t endian_reverse(int64_t x) BOOST_NOEXCEPT
{
# ifdef BOOST_ENDIAN_NO_INTRINSICS
uint64_t step32, step16;
step32 = static_cast<uint64_t>(x) << 32 | static_cast<uint64_t>(x) >> 32;
step16 = (step32 & 0x0000FFFF0000FFFFULL) << 16
| (step32 & 0xFFFF0000FFFF0000ULL) >> 16;
return static_cast<int64_t>((step16 & 0x00FF00FF00FF00FFULL) << 8
| (step16 & 0xFF00FF00FF00FF00ULL) >> 8);
# else
return BOOST_ENDIAN_INTRINSIC_BYTE_SWAP_8(static_cast<uint64_t>(x));
# endif
}
inline uint8_t endian_reverse(uint8_t x) BOOST_NOEXCEPT
{
return x;
}
inline uint16_t endian_reverse(uint16_t x) BOOST_NOEXCEPT
{
# ifdef BOOST_ENDIAN_NO_INTRINSICS
return (x << 8)
| (x >> 8);
# else
return BOOST_ENDIAN_INTRINSIC_BYTE_SWAP_2(x);
# endif
}
inline uint32_t endian_reverse(uint32_t x) BOOST_NOEXCEPT
{
# ifdef BOOST_ENDIAN_NO_INTRINSICS
uint32_t step16;
step16 = x << 16 | x >> 16;
return
((step16 << 8) & 0xff00ff00)
| ((step16 >> 8) & 0x00ff00ff);
# else
return BOOST_ENDIAN_INTRINSIC_BYTE_SWAP_4(x);
# endif
}
inline uint64_t endian_reverse(uint64_t x) BOOST_NOEXCEPT
{
# ifdef BOOST_ENDIAN_NO_INTRINSICS
uint64_t step32, step16;
step32 = x << 32 | x >> 32;
step16 = (step32 & 0x0000FFFF0000FFFFULL) << 16
| (step32 & 0xFFFF0000FFFF0000ULL) >> 16;
return (step16 & 0x00FF00FF00FF00FFULL) << 8
| (step16 & 0xFF00FF00FF00FF00ULL) >> 8;
# else
return BOOST_ENDIAN_INTRINSIC_BYTE_SWAP_8(x);
# endif
}
template <class EndianReversible >
inline EndianReversible big_to_native(EndianReversible x) BOOST_NOEXCEPT
{
# ifdef BOOST_BIG_ENDIAN
return x;
# else
return endian_reverse(x);
# endif
}
template <class EndianReversible >
inline EndianReversible native_to_big(EndianReversible x) BOOST_NOEXCEPT
{
# ifdef BOOST_BIG_ENDIAN
return x;
# else
return endian_reverse(x);
# endif
}
template <class EndianReversible >
inline EndianReversible little_to_native(EndianReversible x) BOOST_NOEXCEPT
{
# ifdef BOOST_LITTLE_ENDIAN
return x;
# else
return endian_reverse(x);
# endif
}
template <class EndianReversible >
inline EndianReversible native_to_little(EndianReversible x) BOOST_NOEXCEPT
{
# ifdef BOOST_LITTLE_ENDIAN
return x;
# else
return endian_reverse(x);
# endif
}
namespace detail
{
// Primary template and specializations to support endian_reverse().
// See rationale in endian_reverse() below.
template <BOOST_SCOPED_ENUM(order) From, BOOST_SCOPED_ENUM(order) To,
class EndianReversible>
class value_converter ; // primary template
template <class T> class value_converter <order::big, order::big, T>
{public: T operator()(T x) BOOST_NOEXCEPT {return x;}};
template <class T> class value_converter <order::little, order::little, T>
{public: T operator()(T x) BOOST_NOEXCEPT {return x;}};
template <class T> class value_converter <order::big, order::little, T>
{public: T operator()(T x) BOOST_NOEXCEPT {return endian_reverse(x);}};
template <class T> class value_converter <order::little, order::big, T>
{public: T operator()(T x) BOOST_NOEXCEPT {return endian_reverse(x);}};
}
// generic conditional reverse
template <BOOST_SCOPED_ENUM(order) From, BOOST_SCOPED_ENUM(order) To,
class EndianReversible>
inline EndianReversible conditional_reverse(EndianReversible from) BOOST_NOEXCEPT {
// work around lack of function template partial specialization by instantiating
// a function object of a class that is partially specialized on the two order
// template parameters, and then calling its operator().
detail::value_converter <From, To, EndianReversible> tmp;
return tmp(from);
}
// runtime conditional reverse
template <class EndianReversible >
inline EndianReversible conditional_reverse(EndianReversible from,
BOOST_SCOPED_ENUM(order) from_order, BOOST_SCOPED_ENUM(order) to_order) BOOST_NOEXCEPT
{
return from_order == to_order ? from : endian_reverse(from);
}
//--------------------------------------------------------------------------------------//
// reverse-in-place implementation //
//--------------------------------------------------------------------------------------//
// reverse in place
template <class EndianReversible>
inline void endian_reverse_inplace(EndianReversible& x) BOOST_NOEXCEPT
{
x = endian_reverse(x);
}
template <class EndianReversibleInplace>
# ifdef BOOST_BIG_ENDIAN
inline void big_to_native_inplace(EndianReversibleInplace&) BOOST_NOEXCEPT {}
# else
inline void big_to_native_inplace(EndianReversibleInplace& x) BOOST_NOEXCEPT
{ endian_reverse_inplace(x); }
# endif
template <class EndianReversibleInplace>
# ifdef BOOST_BIG_ENDIAN
inline void native_to_big_inplace(EndianReversibleInplace&) BOOST_NOEXCEPT {}
# else
inline void native_to_big_inplace(EndianReversibleInplace& x) BOOST_NOEXCEPT
{
endian_reverse_inplace(x);
}
# endif
template <class EndianReversibleInplace>
# ifdef BOOST_LITTLE_ENDIAN
inline void little_to_native_inplace(EndianReversibleInplace&) BOOST_NOEXCEPT {}
# else
inline void little_to_native_inplace(EndianReversibleInplace& x) BOOST_NOEXCEPT
{ endian_reverse_inplace(x); }
# endif
template <class EndianReversibleInplace>
# ifdef BOOST_LITTLE_ENDIAN
inline void native_to_little_inplace(EndianReversibleInplace&) BOOST_NOEXCEPT {}
# else
inline void native_to_little_inplace(EndianReversibleInplace& x) BOOST_NOEXCEPT
{
endian_reverse_inplace(x);
}
# endif
namespace detail
{
// Primary template and specializations support generic
// endian_reverse_inplace().
// See rationale in endian_reverse_inplace() below.
template <BOOST_SCOPED_ENUM(order) From, BOOST_SCOPED_ENUM(order) To,
class EndianReversibleInplace>
class converter; // primary template
template <class T> class converter<order::big, order::big, T>
{public: void operator()(T&) BOOST_NOEXCEPT {/*no effect*/}};
template <class T> class converter<order::little, order::little, T>
{public: void operator()(T&) BOOST_NOEXCEPT {/*no effect*/}};
template <class T> class converter<order::big, order::little, T>
{public: void operator()(T& x) BOOST_NOEXCEPT { endian_reverse_inplace(x); }};
template <class T> class converter<order::little, order::big, T>
{public: void operator()(T& x) BOOST_NOEXCEPT { endian_reverse_inplace(x); }};
} // namespace detail
// generic conditional reverse in place
template <BOOST_SCOPED_ENUM(order) From, BOOST_SCOPED_ENUM(order) To,
class EndianReversibleInplace>
inline void conditional_reverse_inplace(EndianReversibleInplace& x) BOOST_NOEXCEPT
{
// work around lack of function template partial specialization by instantiating
// a function object of a class that is partially specialized on the two order
// template parameters, and then calling its operator().
detail::converter<From, To, EndianReversibleInplace> tmp;
tmp(x); // call operator ()
}
// runtime reverse in place
template <class EndianReversibleInplace>
inline void conditional_reverse_inplace(EndianReversibleInplace& x,
BOOST_SCOPED_ENUM(order) from_order, BOOST_SCOPED_ENUM(order) to_order)
BOOST_NOEXCEPT
{
if (from_order != to_order)
endian_reverse_inplace(x);
}
namespace detail
{
template <class T>
inline void big_reverse_copy(T from, char* to) BOOST_NOEXCEPT
{
# ifdef BOOST_BIG_ENDIAN
std::memcpy(to, reinterpret_cast<const char*>(&from), sizeof(T));
# else
std::reverse_copy(reinterpret_cast<const char*>(&from),
reinterpret_cast<const char*>(&from) + sizeof(T), to);
# endif
}
template <class T>
inline void big_reverse_copy(const char* from, T& to) BOOST_NOEXCEPT
{
# ifdef BOOST_BIG_ENDIAN
std::memcpy(reinterpret_cast<char*>(&to), from, sizeof(T));
# else
std::reverse_copy(from, from + sizeof(T), reinterpret_cast<char*>(&to));
# endif
}
template <class T>
inline void little_reverse_copy(T from, char* to) BOOST_NOEXCEPT
{
# ifdef BOOST_LITTLE_ENDIAN
std::memcpy(to, reinterpret_cast<const char*>(&from), sizeof(T));
# else
std::reverse_copy(reinterpret_cast<const char*>(&from),
reinterpret_cast<const char*>(&from) + sizeof(T), to);
# endif
}
template <class T>
inline void little_reverse_copy(const char* from, T& to) BOOST_NOEXCEPT
{
# ifdef BOOST_LITTLE_ENDIAN
std::memcpy(reinterpret_cast<char*>(&to), from, sizeof(T));
# else
std::reverse_copy(from, from + sizeof(T), reinterpret_cast<char*>(&to));
# endif
}
} // namespace detail
} // namespace endian
} // namespace boost
#endif // BOOST_ENDIAN_CONVERSION_HPP