Rocket.Chat.ReactNative/ios/Pods/Flipper-Folly/folly/gen/Base-inl.h

2734 lines
76 KiB
C
Raw Normal View History

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FOLLY_GEN_BASE_H_
#error This file may only be included from folly/gen/Base.h
#endif
#include <folly/Portability.h>
#include <folly/container/F14Map.h>
#include <folly/container/F14Set.h>
#include <folly/functional/Invoke.h>
#if FOLLY_USE_RANGEV3
#include <range/v3/view/filter.hpp>
#include <range/v3/view/transform.hpp>
#endif
// Ignore shadowing warnings within this file, so includers can use -Wshadow.
FOLLY_PUSH_WARNING
FOLLY_GNU_DISABLE_WARNING("-Wshadow")
namespace folly {
namespace gen {
/**
* ArgumentReference - For determining ideal argument type to receive a value.
*/
template <class T>
struct ArgumentReference : public std::conditional<
std::is_reference<T>::value,
T, // T& -> T&, T&& -> T&&, const T& -> const T&
typename std::conditional<
std::is_const<T>::value,
T&, // const int -> const int&
T&& // int -> int&&
>::type> {};
/**
* Group - The output objects from the GroupBy operator
*/
template <class Key, class Value>
class Group : public GenImpl<Value&&, Group<Key, Value>> {
public:
static_assert(
!std::is_reference<Key>::value && !std::is_reference<Value>::value,
"Key and Value must be decayed types");
typedef std::vector<Value> VectorType;
typedef Key KeyType;
typedef Value ValueType;
Group(Key key, VectorType values)
: key_(std::move(key)), values_(std::move(values)) {}
const Key& key() const {
return key_;
}
size_t size() const {
return values_.size();
}
const VectorType& values() const {
return values_;
}
VectorType& values() {
return values_;
}
VectorType operator|(const detail::Collect<VectorType>&) const {
return values();
}
VectorType operator|(const detail::CollectTemplate<std::vector>&) const {
return values();
}
template <class Body>
void foreach(Body&& body) const {
for (auto& value : values_) {
body(std::move(value));
}
}
template <class Handler>
bool apply(Handler&& handler) const {
for (auto& value : values_) {
if (!handler(std::move(value))) {
return false;
}
}
return true;
}
// GroupBy only takes in finite generators, so we only have finite groups
static constexpr bool infinite = false;
private:
Key key_;
mutable VectorType values_;
};
namespace detail {
// Classes used for the implementation of Sources, Operators, and Sinks
/*
******************************* Sources ***************************************
*/
/*
* ReferencedSource - Generate values from an STL-like container using
* iterators from .begin() until .end(). Value type defaults to the type of
* *container->begin(). For std::vector<int>, this would be int&. Note that the
* value here is a reference, so the values in the vector will be passed by
* reference to downstream operators.
*
* This type is primarily used through the 'from' helper method, like:
*
* string& longestName = from(names)
* | maxBy([](string& s) { return s.size() });
*/
template <class Container, class Value>
class ReferencedSource
: public GenImpl<Value, ReferencedSource<Container, Value>> {
Container* container_;
public:
explicit ReferencedSource(Container* container) : container_(container) {}
template <class Body>
void foreach(Body&& body) const {
for (auto& value : *container_) {
body(std::forward<Value>(value));
}
}
template <class Handler>
bool apply(Handler&& handler) const {
for (auto& value : *container_) {
if (!handler(std::forward<Value>(value))) {
return false;
}
}
return true;
}
// from takes in a normal stl structure, which are all finite
static constexpr bool infinite = false;
};
/**
* CopiedSource - For producing values from eagerly from a sequence of values
* whose storage is owned by this class. Useful for preparing a generator for
* use after a source collection will no longer be available, or for when the
* values are specified literally with an initializer list.
*
* This type is primarily used through the 'fromCopy' function, like:
*
* auto sourceCopy = fromCopy(makeAVector());
* auto sum = sourceCopy | sum;
* auto max = sourceCopy | max;
*
* Though it is also used for the initializer_list specialization of from().
*/
template <class StorageType, class Container>
class CopiedSource
: public GenImpl<const StorageType&, CopiedSource<StorageType, Container>> {
static_assert(
!std::is_reference<StorageType>::value,
"StorageType must be decayed");
public:
// Generator objects are often copied during normal construction as they are
// encapsulated by downstream generators. It would be bad if this caused
// a copy of the entire container each time, and since we're only exposing a
// const reference to the value, it's safe to share it between multiple
// generators.
static_assert(
!std::is_reference<Container>::value,
"Can't copy into a reference");
std::shared_ptr<const Container> copy_;
public:
typedef Container ContainerType;
template <class SourceContainer>
explicit CopiedSource(const SourceContainer& container)
: copy_(new Container(begin(container), end(container))) {}
explicit CopiedSource(Container&& container)
: copy_(new Container(std::move(container))) {}
// To enable re-use of cached results.
CopiedSource(const CopiedSource<StorageType, Container>& source)
: copy_(source.copy_) {}
template <class Body>
void foreach(Body&& body) const {
for (const auto& value : *copy_) {
body(value);
}
}
template <class Handler>
bool apply(Handler&& handler) const {
// The collection may be reused by others, we can't allow it to be changed.
for (const auto& value : *copy_) {
if (!handler(value)) {
return false;
}
}
return true;
}
// from takes in a normal stl structure, which are all finite
static constexpr bool infinite = false;
};
/**
* RangeSource - For producing values from a folly::Range. Useful for referring
* to a slice of some container.
*
* This type is primarily used through the 'from' function, like:
*
* auto rangeSource = from(folly::range(v.begin(), v.end()));
* auto sum = rangeSource | sum;
*
* Reminder: Be careful not to invalidate iterators when using ranges like this.
*/
template <class Iterator>
class RangeSource : public GenImpl<
typename Range<Iterator>::reference,
RangeSource<Iterator>> {
Range<Iterator> range_;
public:
RangeSource() = default;
explicit RangeSource(Range<Iterator> range) : range_(std::move(range)) {}
template <class Handler>
bool apply(Handler&& handler) const {
for (auto& value : range_) {
if (!handler(value)) {
return false;
}
}
return true;
}
template <class Body>
void foreach(Body&& body) const {
for (auto& value : range_) {
body(value);
}
}
// folly::Range only supports finite ranges
static constexpr bool infinite = false;
};
/**
* Sequence - For generating values from beginning value, incremented along the
* way with the ++ and += operators. Iteration may continue indefinitely.
* Value type specified explicitly.
*
* This type is primarily used through the 'seq' and 'range' function, like:
*
* int total = seq(1, 10) | sum;
* auto indexes = range(0, 10);
* auto endless = seq(0); // 0, 1, 2, 3, ...
*/
template <class Value, class SequenceImpl>
class Sequence : public GenImpl<const Value&, Sequence<Value, SequenceImpl>> {
static_assert(
!std::is_reference<Value>::value && !std::is_const<Value>::value,
"Value mustn't be const or ref.");
Value start_;
SequenceImpl impl_;
public:
explicit Sequence(Value start, SequenceImpl impl)
: start_(std::move(start)), impl_(std::move(impl)) {}
template <class Handler>
bool apply(Handler&& handler) const {
for (Value current = start_; impl_.test(current); impl_.step(current)) {
if (!handler(current)) {
return false;
}
}
return true;
}
template <class Body>
void foreach(Body&& body) const {
for (Value current = start_; impl_.test(current); impl_.step(current)) {
body(current);
}
}
// Let the implementation say if we are infinite or not
static constexpr bool infinite = SequenceImpl::infinite;
};
/**
* Sequence implementations (range, sequence, infinite, with/without step)
**/
template <class Value>
class RangeImpl {
Value end_;
public:
explicit RangeImpl(Value end) : end_(std::move(end)) {}
bool test(const Value& current) const {
return current < end_;
}
void step(Value& current) const {
++current;
}
static constexpr bool infinite = false;
};
template <class Value, class Distance>
class RangeWithStepImpl {
Value end_;
Distance step_;
public:
explicit RangeWithStepImpl(Value end, Distance step)
: end_(std::move(end)), step_(std::move(step)) {}
bool test(const Value& current) const {
return current < end_;
}
void step(Value& current) const {
current += step_;
}
static constexpr bool infinite = false;
};
template <class Value>
class SeqImpl {
Value end_;
public:
explicit SeqImpl(Value end) : end_(std::move(end)) {}
bool test(const Value& current) const {
return current <= end_;
}
void step(Value& current) const {
++current;
}
static constexpr bool infinite = false;
};
template <class Value, class Distance>
class SeqWithStepImpl {
Value end_;
Distance step_;
public:
explicit SeqWithStepImpl(Value end, Distance step)
: end_(std::move(end)), step_(std::move(step)) {}
bool test(const Value& current) const {
return current <= end_;
}
void step(Value& current) const {
current += step_;
}
static constexpr bool infinite = false;
};
template <class Value>
class InfiniteImpl {
public:
bool test(const Value& /* current */) const {
return true;
}
void step(Value& current) const {
++current;
}
static constexpr bool infinite = true;
};
/**
* GenratorBuilder - Helper for GENERTATOR macro.
**/
template <class Value>
struct GeneratorBuilder {
template <class Source, class Yield = detail::Yield<Value, Source>>
Yield operator+(Source&& source) {
return Yield(std::forward<Source>(source));
}
};
/**
* Yield - For producing values from a user-defined generator by way of a
* 'yield' function.
**/
template <class Value, class Source>
class Yield : public GenImpl<Value, Yield<Value, Source>> {
Source source_;
public:
explicit Yield(Source source) : source_(std::move(source)) {}
template <class Handler>
bool apply(Handler&& handler) const {
struct Break {};
auto body = [&](Value value) {
if (!handler(std::forward<Value>(value))) {
throw Break();
}
};
try {
source_(body);
return true;
} catch (Break&) {
return false;
}
}
template <class Body>
void foreach(Body&& body) const {
source_(std::forward<Body>(body));
}
};
template <class Value>
class Empty : public GenImpl<Value, Empty<Value>> {
public:
template <class Handler>
bool apply(Handler&&) const {
return true;
}
template <class Body>
void foreach(Body&&) const {}
// No values, so finite
static constexpr bool infinite = false;
};
template <class Value>
class SingleReference : public GenImpl<Value&, SingleReference<Value>> {
static_assert(
!std::is_reference<Value>::value,
"SingleReference requires non-ref types");
Value* ptr_;
public:
explicit SingleReference(Value& ref) : ptr_(&ref) {}
template <class Handler>
bool apply(Handler&& handler) const {
return handler(*ptr_);
}
template <class Body>
void foreach(Body&& body) const {
body(*ptr_);
}
// One value, so finite
static constexpr bool infinite = false;
};
template <class Value>
class SingleCopy : public GenImpl<const Value&, SingleCopy<Value>> {
static_assert(
!std::is_reference<Value>::value,
"SingleCopy requires non-ref types");
Value value_;
public:
explicit SingleCopy(Value value) : value_(std::forward<Value>(value)) {}
template <class Handler>
bool apply(Handler&& handler) const {
return handler(value_);
}
template <class Body>
void foreach(Body&& body) const {
body(value_);
}
// One value, so finite
static constexpr bool infinite = false;
};
/*
***************************** Operators ***************************************
*/
/**
* Map - For producing a sequence of values by passing each value from a source
* collection through a predicate.
*
* This type is usually used through the 'map' or 'mapped' helper function:
*
* auto squares = seq(1, 10) | map(square) | as<std::vector>();
*/
template <class Predicate>
class Map : public Operator<Map<Predicate>> {
Predicate pred_;
public:
Map() = default;
explicit Map(Predicate pred) : pred_(std::move(pred)) {}
template <
class Value,
class Source,
class Result =
typename ArgumentReference<invoke_result_t<Predicate, Value>>::type>
class Generator : public GenImpl<Result, Generator<Value, Source, Result>> {
Source source_;
Predicate pred_;
public:
explicit Generator(Source source, const Predicate& pred)
: source_(std::move(source)), pred_(pred) {}
template <class Body>
void foreach(Body&& body) const {
source_.foreach(
[&](Value value) { body(pred_(std::forward<Value>(value))); });
}
template <class Handler>
bool apply(Handler&& handler) const {
return source_.apply([&](Value value) {
return handler(pred_(std::forward<Value>(value)));
});
}
static constexpr bool infinite = Source::infinite;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), pred_);
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), pred_);
}
};
/**
* Filter - For filtering values from a source sequence by a predicate.
*
* This type is usually used through the 'filter' helper function, like:
*
* auto nonEmpty = from(strings)
* | filter([](const string& str) -> bool {
* return !str.empty();
* });
*
* Note that if no predicate is provided, the values are casted to bool and
* filtered based on that. So if pointers is a vector of pointers,
*
* auto nonNull = from(pointers) | filter();
*
* will give a vector of all the pointers != nullptr.
*/
template <class Predicate>
class Filter : public Operator<Filter<Predicate>> {
Predicate pred_;
public:
Filter() = default;
explicit Filter(Predicate pred) : pred_(std::move(pred)) {}
template <class Value, class Source>
class Generator : public GenImpl<Value, Generator<Value, Source>> {
Source source_;
Predicate pred_;
public:
explicit Generator(Source source, const Predicate& pred)
: source_(std::move(source)), pred_(pred) {}
template <class Body>
void foreach(Body&& body) const {
source_.foreach([&](Value value) {
// NB: Argument not forwarded to avoid accidental move-construction
if (pred_(value)) {
body(std::forward<Value>(value));
}
});
}
template <class Handler>
bool apply(Handler&& handler) const {
return source_.apply([&](Value value) -> bool {
// NB: Argument not forwarded to avoid accidental move-construction
if (pred_(value)) {
return handler(std::forward<Value>(value));
}
return true;
});
}
static constexpr bool infinite = Source::infinite;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), pred_);
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), pred_);
}
};
/**
* Until - For producing values from a source until a predicate is satisfied.
*
* This type is usually used through the 'until' helper function, like:
*
* auto best = from(sortedItems)
* | until([](Item& item) { return item.score > 100; })
* | as<std::vector>();
*/
template <class Predicate>
class Until : public Operator<Until<Predicate>> {
Predicate pred_;
public:
Until() = default;
explicit Until(Predicate pred) : pred_(std::move(pred)) {}
template <class Value, class Source>
class Generator : public GenImpl<Value, Generator<Value, Source>> {
Source source_;
Predicate pred_;
public:
explicit Generator(Source source, const Predicate& pred)
: source_(std::move(source)), pred_(pred) {}
template <class Handler>
bool apply(Handler&& handler) const {
bool cancelled = false;
source_.apply([&](Value value) -> bool {
if (pred_(value)) { // un-forwarded to disable move
return false;
}
if (!handler(std::forward<Value>(value))) {
cancelled = true;
return false;
}
return true;
});
return !cancelled;
}
// Theoretically an 'until' might stop an infinite
static constexpr bool infinite = false;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), pred_);
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), pred_);
}
};
/**
* Take - For producing up to N values from a source.
*
* This type is usually used through the 'take' helper function, like:
*
* auto best = from(docs)
* | orderByDescending(scoreDoc)
* | take(10);
*/
class Take : public Operator<Take> {
size_t count_;
public:
explicit Take(size_t count) : count_(count) {}
template <class Value, class Source>
class Generator : public GenImpl<Value, Generator<Value, Source>> {
Source source_;
size_t count_;
public:
explicit Generator(Source source, size_t count)
: source_(std::move(source)), count_(count) {}
template <class Handler>
bool apply(Handler&& handler) const {
if (count_ == 0) {
return false;
}
size_t n = count_;
bool cancelled = false;
source_.apply([&](Value value) -> bool {
if (!handler(std::forward<Value>(value))) {
cancelled = true;
return false;
}
return --n;
});
return !cancelled;
}
// take will stop an infinite generator
static constexpr bool infinite = false;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), count_);
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), count_);
}
};
/**
* Visit - For calling a function on each item before passing it down the
* pipeline.
*
* This type is usually used through the 'visit' helper function:
*
* auto printedValues = seq(1) | visit(debugPrint);
* // nothing printed yet
* auto results = take(10) | as<std::vector>();
* // results now populated, 10 values printed
*/
template <class Visitor>
class Visit : public Operator<Visit<Visitor>> {
Visitor visitor_;
public:
Visit() = default;
explicit Visit(Visitor visitor) : visitor_(std::move(visitor)) {}
template <class Value, class Source>
class Generator : public GenImpl<Value, Generator<Value, Source>> {
Source source_;
Visitor visitor_;
public:
explicit Generator(Source source, const Visitor& visitor)
: source_(std::move(source)), visitor_(visitor) {}
template <class Body>
void foreach(Body&& body) const {
source_.foreach([&](Value value) {
visitor_(value); // not forwarding to avoid accidental moves
body(std::forward<Value>(value));
});
}
template <class Handler>
bool apply(Handler&& handler) const {
return source_.apply([&](Value value) {
visitor_(value); // not forwarding to avoid accidental moves
return handler(std::forward<Value>(value));
});
}
static constexpr bool infinite = Source::infinite;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), visitor_);
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), visitor_);
}
};
/**
* Stride - For producing every Nth value from a source.
*
* This type is usually used through the 'stride' helper function, like:
*
* auto half = from(samples)
* | stride(2);
*/
class Stride : public Operator<Stride> {
size_t stride_;
public:
explicit Stride(size_t stride) : stride_(stride) {
if (stride == 0) {
throw std::invalid_argument("stride must not be 0");
}
}
template <class Value, class Source>
class Generator : public GenImpl<Value, Generator<Value, Source>> {
Source source_;
size_t stride_;
public:
explicit Generator(Source source, size_t stride)
: source_(std::move(source)), stride_(stride) {}
template <class Handler>
bool apply(Handler&& handler) const {
size_t distance = stride_;
return source_.apply([&](Value value) -> bool {
if (++distance >= stride_) {
if (!handler(std::forward<Value>(value))) {
return false;
}
distance = 0;
}
return true;
});
}
template <class Body>
void foreach(Body&& body) const {
size_t distance = stride_;
source_.foreach([&](Value value) {
if (++distance >= stride_) {
body(std::forward<Value>(value));
distance = 0;
}
});
}
// Taking every Nth of an infinite list is still infinte
static constexpr bool infinite = Source::infinite;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), stride_);
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), stride_);
}
};
/**
* Sample - For taking a random sample of N elements from a sequence
* (without replacement).
*/
template <class Random>
class Sample : public Operator<Sample<Random>> {
size_t count_;
Random rng_;
public:
explicit Sample(size_t count, Random rng)
: count_(count), rng_(std::move(rng)) {}
template <
class Value,
class Source,
class Rand,
class StorageType = typename std::decay<Value>::type>
class Generator : public GenImpl<
StorageType&&,
Generator<Value, Source, Rand, StorageType>> {
static_assert(!Source::infinite, "Cannot sample infinite source!");
// It's too easy to bite ourselves if random generator is only 16-bit
static_assert(
Random::max() >= std::numeric_limits<int32_t>::max() - 1,
"Random number generator must support big values");
Source source_;
size_t count_;
mutable Rand rng_;
public:
explicit Generator(Source source, size_t count, Random rng)
: source_(std::move(source)), count_(count), rng_(std::move(rng)) {}
template <class Handler>
bool apply(Handler&& handler) const {
if (count_ == 0) {
return false;
}
std::vector<StorageType> v;
v.reserve(count_);
// use reservoir sampling to give each source value an equal chance
// of appearing in our output.
size_t n = 1;
source_.foreach([&](Value value) -> void {
if (v.size() < count_) {
v.push_back(std::forward<Value>(value));
} else {
// alternatively, we could create a std::uniform_int_distribution
// instead of using modulus, but benchmarks show this has
// substantial overhead.
size_t index = rng_() % n;
if (index < v.size()) {
v[index] = std::forward<Value>(value);
}
}
++n;
});
// output is unsorted!
for (auto& val : v) {
if (!handler(std::move(val))) {
return false;
}
}
return true;
}
// Only takes N elements, so finite
static constexpr bool infinite = false;
};
template <
class Source,
class Value,
class Gen = Generator<Value, Source, Random>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), count_, rng_);
}
template <
class Source,
class Value,
class Gen = Generator<Value, Source, Random>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), count_, rng_);
}
};
/**
* Skip - For skipping N items from the beginning of a source generator.
*
* This type is usually used through the 'skip' helper function, like:
*
* auto page = from(results)
* | skip(pageSize * startPage)
* | take(10);
*/
class Skip : public Operator<Skip> {
size_t count_;
public:
explicit Skip(size_t count) : count_(count) {}
template <class Value, class Source>
class Generator : public GenImpl<Value, Generator<Value, Source>> {
Source source_;
size_t count_;
public:
explicit Generator(Source source, size_t count)
: source_(std::move(source)), count_(count) {}
template <class Body>
void foreach(Body&& body) const {
if (count_ == 0) {
source_.foreach(body);
return;
}
size_t n = 0;
source_.foreach([&](Value value) {
if (n < count_) {
++n;
} else {
body(std::forward<Value>(value));
}
});
}
template <class Handler>
bool apply(Handler&& handler) const {
if (count_ == 0) {
return source_.apply(std::forward<Handler>(handler));
}
size_t n = 0;
return source_.apply([&](Value value) -> bool {
if (n < count_) {
++n;
return true;
}
return handler(std::forward<Value>(value));
});
}
// Skipping N items of an infinite source is still infinite
static constexpr bool infinite = Source::infinite;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), count_);
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), count_);
}
};
/**
* Order - For ordering a sequence of values from a source by key.
* The key is extracted by the given selector functor, and this key is then
* compared using the specified comparator.
*
* This type is usually used through the 'order' helper function, like:
*
* auto closest = from(places)
* | orderBy([](Place& p) {
* return -distance(p.location, here);
* })
* | take(10);
*/
template <class Selector, class Comparer>
class Order : public Operator<Order<Selector, Comparer>> {
Selector selector_;
Comparer comparer_;
public:
Order() = default;
explicit Order(Selector selector) : selector_(std::move(selector)) {}
Order(Selector selector, Comparer comparer)
: selector_(std::move(selector)), comparer_(std::move(comparer)) {}
template <
class Value,
class Source,
class StorageType = typename std::decay<Value>::type,
class Result = invoke_result_t<Selector, Value>>
class Generator : public GenImpl<
StorageType&&,
Generator<Value, Source, StorageType, Result>> {
static_assert(!Source::infinite, "Cannot sort infinite source!");
Source source_;
Selector selector_;
Comparer comparer_;
typedef std::vector<StorageType> VectorType;
VectorType asVector() const {
auto comparer = [&](const StorageType& a, const StorageType& b) {
return comparer_(selector_(a), selector_(b));
};
auto vals = source_ | as<VectorType>();
std::sort(vals.begin(), vals.end(), comparer);
return vals;
}
public:
Generator(Source source, Selector selector, Comparer comparer)
: source_(std::move(source)),
selector_(std::move(selector)),
comparer_(std::move(comparer)) {}
VectorType operator|(const Collect<VectorType>&) const {
return asVector();
}
VectorType operator|(const CollectTemplate<std::vector>&) const {
return asVector();
}
template <class Body>
void foreach(Body&& body) const {
for (auto& value : asVector()) {
body(std::move(value));
}
}
template <class Handler>
bool apply(Handler&& handler) const {
auto comparer = [&](const StorageType& a, const StorageType& b) {
// swapped for minHeap
return comparer_(selector_(b), selector_(a));
};
auto heap = source_ | as<VectorType>();
std::make_heap(heap.begin(), heap.end(), comparer);
while (!heap.empty()) {
std::pop_heap(heap.begin(), heap.end(), comparer);
if (!handler(std::move(heap.back()))) {
return false;
}
heap.pop_back();
}
return true;
}
// Can only be run on and produce finite generators
static constexpr bool infinite = false;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), selector_, comparer_);
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), selector_, comparer_);
}
};
/**
* GroupBy - Group values by a given key selector, producing a sequence of
* groups.
*
* This type is usually used through the 'groupBy' helper function, like:
*
* auto bests
* = from(places)
* | groupBy([](const Place& p) {
* return p.city;
* })
* | [](Group<std::string, Place>&& g) {
* cout << g.key() << ": " << (g | first).description;
* };
*/
template <class Selector>
class GroupBy : public Operator<GroupBy<Selector>> {
Selector selector_;
public:
GroupBy() {}
explicit GroupBy(Selector selector) : selector_(std::move(selector)) {}
template <
class Value,
class Source,
class ValueDecayed = typename std::decay<Value>::type,
class Key = invoke_result_t<Selector, Value>,
class KeyDecayed = typename std::decay<Key>::type>
class Generator
: public GenImpl<
Group<KeyDecayed, ValueDecayed>&&,
Generator<Value, Source, ValueDecayed, Key, KeyDecayed>> {
static_assert(!Source::infinite, "Cannot group infinite source!");
Source source_;
Selector selector_;
public:
Generator(Source source, Selector selector)
: source_(std::move(source)), selector_(std::move(selector)) {}
typedef Group<KeyDecayed, ValueDecayed> GroupType;
template <class Handler>
bool apply(Handler&& handler) const {
folly::F14FastMap<KeyDecayed, typename GroupType::VectorType> groups;
source_ | [&](Value value) {
const Value& cv = value;
auto& group = groups[selector_(cv)];
group.push_back(std::forward<Value>(value));
};
for (auto& kg : groups) {
GroupType group(kg.first, std::move(kg.second));
if (!handler(std::move(group))) {
return false;
}
kg.second.clear();
}
return true;
}
// Can only be run on and produce finite generators
static constexpr bool infinite = false;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), selector_);
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), selector_);
}
};
/**
* GroupByAdjacent - Group adjacent values by a given key selector, producing a
* sequence of groups. This differs from GroupBy in that only contiguous sets
* of values with the same key are considered part of the same group. Unlike
* GroupBy, this can be used on infinite sequences.
*
* This type is usually used through the 'groupByAdjacent' helper function:
*
* auto tens
* = seq(0)
* | groupByAdjacent([](int i){ return (i / 10) % 2; })
*
* This example results in a list like [ 0:[0-9], 1:[10-19], 0:[20-29], ... ]
*/
template <class Selector>
class GroupByAdjacent : public Operator<GroupByAdjacent<Selector>> {
Selector selector_;
public:
GroupByAdjacent() {}
explicit GroupByAdjacent(Selector selector)
: selector_(std::move(selector)) {}
template <
class Value,
class Source,
class ValueDecayed = typename std::decay<Value>::type,
class Key = invoke_result_t<Selector, Value>,
class KeyDecayed = typename std::decay<Key>::type>
class Generator
: public GenImpl<
Group<KeyDecayed, ValueDecayed>&&,
Generator<Value, Source, ValueDecayed, Key, KeyDecayed>> {
Source source_;
Selector selector_;
public:
Generator(Source source, Selector selector)
: source_(std::move(source)), selector_(std::move(selector)) {}
typedef Group<KeyDecayed, ValueDecayed> GroupType;
template <class Handler>
bool apply(Handler&& handler) const {
Optional<KeyDecayed> key = none;
typename GroupType::VectorType values;
bool result = source_.apply([&](Value value) mutable {
KeyDecayed newKey = selector_(value);
// start the first group
if (!key.hasValue()) {
key.emplace(newKey);
}
if (key == newKey) {
// grow the current group
values.push_back(std::forward<Value>(value));
} else {
// flush the current group
GroupType group(key.value(), std::move(values));
if (!handler(std::move(group))) {
return false;
}
// start a new group
key.emplace(newKey);
values.clear();
values.push_back(std::forward<Value>(value));
}
return true;
});
if (!result) {
return false;
}
if (!key.hasValue()) {
return true;
}
// flush the final group
GroupType group(key.value(), std::move(values));
return handler(std::move(group));
}
static constexpr bool infinite = Source::infinite;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), selector_);
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), selector_);
}
};
/*
* TypeAssertion - For verifying the exact type of the value produced by a
* generator. Useful for testing and debugging, and acts as a no-op at runtime.
* Pass-through at runtime. Used through the 'assert_type<>()' factory method
* like so:
*
* auto c = from(vector) | assert_type<int&>() | sum;
*
*/
template <class Expected>
class TypeAssertion : public Operator<TypeAssertion<Expected>> {
public:
template <class Source, class Value>
const Source& compose(const GenImpl<Value, Source>& source) const {
static_assert(
std::is_same<Expected, Value>::value, "assert_type() check failed");
return source.self();
}
template <class Source, class Value>
Source&& compose(GenImpl<Value, Source>&& source) const {
static_assert(
std::is_same<Expected, Value>::value, "assert_type() check failed");
return std::move(source.self());
}
};
/**
* Distinct - For filtering duplicates out of a sequence. A selector may be
* provided to generate a key to uniquify for each value.
*
* This type is usually used through the 'distinct' helper function, like:
*
* auto closest = from(results)
* | distinctBy([](Item& i) {
* return i.target;
* })
* | take(10);
*/
template <class Selector>
class Distinct : public Operator<Distinct<Selector>> {
Selector selector_;
public:
Distinct() = default;
explicit Distinct(Selector selector) : selector_(std::move(selector)) {}
template <class Value, class Source>
class Generator : public GenImpl<Value, Generator<Value, Source>> {
Source source_;
Selector selector_;
typedef typename std::decay<Value>::type StorageType;
// selector_ cannot be passed an rvalue or it would end up passing the husk
// of a value to the downstream operators.
typedef const StorageType& ParamType;
typedef invoke_result_t<Selector, ParamType> KeyType;
typedef typename std::decay<KeyType>::type KeyStorageType;
public:
Generator(Source source, Selector selector)
: source_(std::move(source)), selector_(std::move(selector)) {}
template <class Body>
void foreach(Body&& body) const {
folly::F14FastSet<KeyStorageType> keysSeen;
source_.foreach([&](Value value) {
if (keysSeen.insert(selector_(ParamType(value))).second) {
body(std::forward<Value>(value));
}
});
}
template <class Handler>
bool apply(Handler&& handler) const {
folly::F14FastSet<KeyStorageType> keysSeen;
return source_.apply([&](Value value) -> bool {
if (keysSeen.insert(selector_(ParamType(value))).second) {
return handler(std::forward<Value>(value));
}
return true;
});
}
// While running distinct on an infinite sequence might produce a
// conceptually finite sequence, it will take infinite time
static constexpr bool infinite = Source::infinite;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), selector_);
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), selector_);
}
};
/**
* Composer - Helper class for adapting pipelines into functors. Primarily used
* for 'mapOp'.
*/
template <class Operators>
class Composer {
Operators op_;
public:
explicit Composer(Operators op) : op_(std::move(op)) {}
template <
class Source,
class Ret =
decltype(std::declval<Operators>().compose(std::declval<Source>()))>
Ret operator()(Source&& source) const {
return op_.compose(std::forward<Source>(source));
}
};
/**
* Batch - For producing fixed-size batches of each value from a source.
*
* This type is usually used through the 'batch' helper function:
*
* auto batchSums
* = seq(1, 10)
* | batch(3)
* | map([](const std::vector<int>& batch) {
* return from(batch) | sum;
* })
* | as<vector>();
*/
class Batch : public Operator<Batch> {
size_t batchSize_;
public:
explicit Batch(size_t batchSize) : batchSize_(batchSize) {
if (batchSize_ == 0) {
throw std::invalid_argument("Batch size must be non-zero!");
}
}
template <
class Value,
class Source,
class StorageType = typename std::decay<Value>::type,
class VectorType = std::vector<StorageType>>
class Generator : public GenImpl<
VectorType&,
Generator<Value, Source, StorageType, VectorType>> {
Source source_;
size_t batchSize_;
public:
explicit Generator(Source source, size_t batchSize)
: source_(std::move(source)), batchSize_(batchSize) {}
template <class Handler>
bool apply(Handler&& handler) const {
VectorType batch_;
batch_.reserve(batchSize_);
bool shouldContinue = source_.apply([&](Value value) -> bool {
batch_.push_back(std::forward<Value>(value));
if (batch_.size() == batchSize_) {
bool needMore = handler(batch_);
batch_.clear();
return needMore;
}
// Always need more if the handler is not called.
return true;
});
// Flush everything, if and only if `handler` hasn't returned false.
if (shouldContinue && !batch_.empty()) {
shouldContinue = handler(batch_);
batch_.clear();
}
return shouldContinue;
}
// Taking n-tuples of an infinite source is still infinite
static constexpr bool infinite = Source::infinite;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), batchSize_);
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), batchSize_);
}
};
/**
* Window - For overlapping the lifetimes of pipeline values, especially with
* Futures.
*
* This type is usually used through the 'window' helper function:
*
* auto responses
* = byLine(STDIN)
* | map(makeRequestFuture)
* | window(1000)
* | map(waitFuture)
* | as<vector>();
*/
class Window : public Operator<Window> {
size_t windowSize_;
public:
explicit Window(size_t windowSize) : windowSize_(windowSize) {
if (windowSize_ == 0) {
throw std::invalid_argument("Window size must be non-zero!");
}
}
template <
class Value,
class Source,
class StorageType = typename std::decay<Value>::type>
class Generator
: public GenImpl<StorageType&&, Generator<Value, Source, StorageType>> {
Source source_;
size_t windowSize_;
public:
explicit Generator(Source source, size_t windowSize)
: source_(std::move(source)), windowSize_(windowSize) {}
template <class Handler>
bool apply(Handler&& handler) const {
std::vector<StorageType> buffer;
buffer.reserve(windowSize_);
size_t readIndex = 0;
bool shouldContinue = source_.apply([&](Value value) -> bool {
if (buffer.size() < windowSize_) {
buffer.push_back(std::forward<Value>(value));
} else {
StorageType& entry = buffer[readIndex++];
if (readIndex == windowSize_) {
readIndex = 0;
}
if (!handler(std::move(entry))) {
return false;
}
entry = std::forward<Value>(value);
}
return true;
});
if (!shouldContinue) {
return false;
}
if (buffer.size() < windowSize_) {
for (StorageType& entry : buffer) {
if (!handler(std::move(entry))) {
return false;
}
}
} else {
for (size_t i = readIndex;;) {
StorageType& entry = buffer[i++];
if (!handler(std::move(entry))) {
return false;
}
if (i == windowSize_) {
i = 0;
}
if (i == readIndex) {
break;
}
}
}
return true;
}
// Taking n-tuples of an infinite source is still infinite
static constexpr bool infinite = Source::infinite;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), windowSize_);
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), windowSize_);
}
};
/**
* Concat - For flattening generators of generators.
*
* This type is usually used through the 'concat' static value, like:
*
* auto edges =
* from(nodes)
* | map([](Node& x) {
* return from(x.neighbors)
* | map([&](Node& y) {
* return Edge(x, y);
* });
* })
* | concat
* | as<std::set>();
*/
class Concat : public Operator<Concat> {
public:
Concat() = default;
template <
class Inner,
class Source,
class InnerValue = typename std::decay<Inner>::type::ValueType>
class Generator
: public GenImpl<InnerValue, Generator<Inner, Source, InnerValue>> {
Source source_;
public:
explicit Generator(Source source) : source_(std::move(source)) {}
template <class Handler>
bool apply(Handler&& handler) const {
return source_.apply([&](Inner inner) -> bool {
return inner.apply(std::forward<Handler>(handler));
});
}
template <class Body>
void foreach(Body&& body) const {
source_.foreach(
[&](Inner inner) { inner.foreach(std::forward<Body>(body)); });
}
// Resulting concatenation is only finite if both Source and Inner are also
// finite. In one sence, if dosn't make sence to call concat when the Inner
// generator is infinite (you could just call first), so we could also just
// static_assert if the inner is infinite. Taking the less restrictive
// approch for now.
static constexpr bool infinite =
Source::infinite || std::decay<Inner>::type::infinite;
};
template <class Value, class Source, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()));
}
template <class Value, class Source, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self());
}
};
/**
* RangeConcat - For flattening generators of iterables.
*
* This type is usually used through the 'rconcat' static value, like:
*
* map<int, vector<int>> adjacency;
* auto sinks =
* from(adjacency)
* | get<1>()
* | rconcat()
* | as<std::set>();
*/
class RangeConcat : public Operator<RangeConcat> {
public:
RangeConcat() = default;
template <
class Range,
class Source,
class InnerValue = typename ValueTypeOfRange<Range>::RefType>
class Generator
: public GenImpl<InnerValue, Generator<Range, Source, InnerValue>> {
Source source_;
public:
explicit Generator(Source source) : source_(std::move(source)) {}
template <class Body>
void foreach(Body&& body) const {
source_.foreach([&](Range range) {
for (auto& value : range) {
body(value);
}
});
}
template <class Handler>
bool apply(Handler&& handler) const {
return source_.apply([&](Range range) -> bool {
for (auto& value : range) {
if (!handler(value)) {
return false;
}
}
return true;
});
}
// This is similar to concat, except that the inner iterables all are finite
// so the only thing that matters is that the source is infinite.
static constexpr bool infinite = Source::infinite;
};
template <class Value, class Source, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()));
}
template <class Value, class Source, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self());
}
};
/**
* GuardImpl - For handling exceptions from downstream computation. Requires the
* type of exception to catch, and handler function to invoke in the event of
* the exception. Note that the handler may:
* 1) return true to continue processing the sequence
* 2) return false to end the sequence immediately
* 3) throw, to pass the exception to the next catch
* The handler must match the signature 'bool(Exception&, Value)'.
*
* This type is used through the `guard` helper, like so:
*
* auto indexes
* = byLine(STDIN_FILENO)
* | guard<std::runtime_error>([](std::runtime_error& e,
* StringPiece sp) {
* LOG(ERROR) << sp << ": " << e.str();
* return true; // continue processing subsequent lines
* })
* | eachTo<int>()
* | as<vector>();
*
* KNOWN ISSUE: This only guards pipelines through operators which do not
* retain resulting values. Exceptions thrown after operators like pmap, order,
* batch, cannot be caught from here.
**/
template <class Exception, class ErrorHandler>
class GuardImpl : public Operator<GuardImpl<Exception, ErrorHandler>> {
ErrorHandler handler_;
public:
explicit GuardImpl(ErrorHandler handler) : handler_(std::move(handler)) {}
template <class Value, class Source>
class Generator : public GenImpl<Value, Generator<Value, Source>> {
Source source_;
ErrorHandler handler_;
public:
explicit Generator(Source source, ErrorHandler handler)
: source_(std::move(source)), handler_(std::move(handler)) {}
template <class Handler>
bool apply(Handler&& handler) const {
return source_.apply([&](Value value) -> bool {
try {
handler(std::forward<Value>(value));
return true;
} catch (Exception& e) {
return handler_(e, std::forward<Value>(value));
}
});
}
// Just passes value though, length unaffected
static constexpr bool infinite = Source::infinite;
};
template <class Value, class Source, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), handler_);
}
template <class Value, class Source, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), handler_);
}
};
/**
* Dereference - For dereferencing a sequence of pointers while filtering out
* null pointers.
*
* This type is usually used through the 'dereference' static value, like:
*
* auto refs = from(ptrs) | dereference;
*/
class Dereference : public Operator<Dereference> {
public:
Dereference() = default;
template <
class Value,
class Source,
class Result = decltype(*std::declval<Value>())>
class Generator : public GenImpl<Result, Generator<Value, Source, Result>> {
Source source_;
public:
explicit Generator(Source source) : source_(std::move(source)) {}
template <class Body>
void foreach(Body&& body) const {
source_.foreach([&](Value value) {
if (value) {
return body(*std::forward<Value>(value));
}
});
}
template <class Handler>
bool apply(Handler&& handler) const {
return source_.apply([&](Value value) -> bool {
if (value) {
return handler(*std::forward<Value>(value));
}
return true;
});
}
// Just passes value though, length unaffected
static constexpr bool infinite = Source::infinite;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()));
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self());
}
};
/**
* Indirect - For producing a sequence of the addresses of the values in the
* input.
*
* This type is usually used through the 'indirect' static value, like:
*
* auto ptrs = from(refs) | indirect;
*/
class Indirect : public Operator<Indirect> {
public:
Indirect() = default;
template <
class Value,
class Source,
class Result = typename std::remove_reference<Value>::type*>
class Generator : public GenImpl<Result, Generator<Value, Source, Result>> {
Source source_;
static_assert(
!std::is_rvalue_reference<Value>::value,
"Cannot use indirect on an rvalue");
public:
explicit Generator(Source source) : source_(std::move(source)) {}
template <class Body>
void foreach(Body&& body) const {
source_.foreach(
[&](Value value) { return body(&std::forward<Value>(value)); });
}
template <class Handler>
bool apply(Handler&& handler) const {
return source_.apply([&](Value value) -> bool {
return handler(&std::forward<Value>(value));
});
}
// Just passes value though, length unaffected
static constexpr bool infinite = Source::infinite;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()));
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self());
}
};
/**
* Cycle - For repeating a sequence forever.
*
* This type is usually used through the 'cycle' static value, like:
*
* auto tests
* = from(samples)
* | cycle
* | take(100);
*
* or in the finite case:
*
* auto thrice = g | cycle(3);
*/
template <bool forever>
class Cycle : public Operator<Cycle<forever>> {
off_t limit_; // not used if forever == true
public:
Cycle() = default;
explicit Cycle(off_t limit) : limit_(limit) {
static_assert(
!forever,
"Cycle limit constructor should not be used when forever == true.");
}
template <class Value, class Source>
class Generator : public GenImpl<Value, Generator<Value, Source>> {
Source source_;
off_t limit_;
public:
explicit Generator(Source source, off_t limit)
: source_(std::move(source)), limit_(limit) {}
template <class Handler>
bool apply(Handler&& handler) const {
bool cont;
auto handler2 = [&](Value value) {
cont = handler(std::forward<Value>(value));
return cont;
};
// Becomes an infinte loop if forever == true
for (off_t count = 0; (forever || count != limit_); ++count) {
cont = false;
source_.apply(handler2);
if (!cont) {
return false;
}
}
return true;
}
// This is the hardest one to infer. If we are simply doing a finite cycle,
// then (gen | cycle(n)) is infinite if and only if gen is infinite.
// However, if we are doing an infinite cycle, (gen | cycle) is infinite
// unless gen is empty. However, we will always mark (gen | cycle) as
// infinite, because patterns such as (gen | cycle | count) can either take
// on exactly one value, or infinite loop.
static constexpr bool infinite = forever || Source::infinite;
};
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(GenImpl<Value, Source>&& source) const {
return Gen(std::move(source.self()), limit_);
}
template <class Source, class Value, class Gen = Generator<Value, Source>>
Gen compose(const GenImpl<Value, Source>& source) const {
return Gen(source.self(), limit_);
}
/**
* Convenience function for finite cycles used like:
*
* auto tripled = gen | cycle(3);
*/
Cycle<false> operator()(off_t limit) const {
return Cycle<false>(limit);
}
};
/*
******************************* Sinks *****************************************
*/
/**
* FoldLeft - Left-associative functional fold. For producing an aggregate value
* from a seed and a folder function. Useful for custom aggregators on a
* sequence.
*
* This type is primarily used through the 'foldl' helper method, like:
*
* double movingAverage = from(values)
* | foldl(0.0, [](double avg, double sample) {
* return sample * 0.1 + avg * 0.9;
* });
*/
template <class Seed, class Fold>
class FoldLeft : public Operator<FoldLeft<Seed, Fold>> {
Seed seed_;
Fold fold_;
public:
FoldLeft() = default;
FoldLeft(Seed seed, Fold fold)
: seed_(std::move(seed)), fold_(std::move(fold)) {}
template <class Source, class Value>
Seed compose(const GenImpl<Value, Source>& source) const {
static_assert(!Source::infinite, "Cannot foldl infinite source");
Seed accum = seed_;
source | [&](Value v) {
accum = fold_(std::move(accum), std::forward<Value>(v));
};
return accum;
}
};
/**
* First - For finding the first value in a sequence.
*
* This type is primarily used through the 'first' static value, like:
*
* int firstThreeDigitPrime = seq(100) | filter(isPrime) | first;
*/
class First : public Operator<First> {
public:
First() = default;
template <
class Source,
class Value,
class StorageType = typename std::decay<Value>::type>
Optional<StorageType> compose(const GenImpl<Value, Source>& source) const {
Optional<StorageType> accum;
source | [&](Value v) -> bool {
accum = std::forward<Value>(v);
return false;
};
return accum;
}
};
/**
* IsEmpty - a helper class for isEmpty and notEmpty
*
* Essentially returns 'result' if the source is empty. Note that this cannot be
* called on an infinite source, because then there is only one possible return
* value.
*
*
* Used primarily through 'isEmpty' and 'notEmpty' static values
*
* bool hasPrimes = g | filter(prime) | notEmpty;
* bool lacksEvens = g | filter(even) | isEmpty;
*
* Also used in the implementation of 'any' and 'all'
*/
template <bool emptyResult>
class IsEmpty : public Operator<IsEmpty<emptyResult>> {
public:
IsEmpty() = default;
template <class Source, class Value>
bool compose(const GenImpl<Value, Source>& source) const {
static_assert(
!Source::infinite,
"Cannot call 'all', 'any', 'isEmpty', or 'notEmpty' on "
"infinite source. 'all' and 'isEmpty' will either return "
"false or hang. 'any' or 'notEmpty' will either return true "
"or hang.");
bool ans = emptyResult;
source | [&](Value /* v */) -> bool {
ans = !emptyResult;
return false;
};
return ans;
}
};
/**
* Reduce - Functional reduce, for recursively combining values from a source
* using a reducer function until there is only one item left. Useful for
* combining values when an empty sequence doesn't make sense.
*
* This type is primarily used through the 'reduce' helper method, like:
*
* sring longest = from(names)
* | reduce([](string&& best, string& current) {
* return best.size() >= current.size() ? best : current;
* });
*/
template <class Reducer>
class Reduce : public Operator<Reduce<Reducer>> {
Reducer reducer_;
public:
Reduce() = default;
explicit Reduce(Reducer reducer) : reducer_(std::move(reducer)) {}
template <
class Source,
class Value,
class StorageType = typename std::decay<Value>::type>
Optional<StorageType> compose(const GenImpl<Value, Source>& source) const {
static_assert(!Source::infinite, "Cannot reduce infinite source");
Optional<StorageType> accum;
source | [&](Value v) {
if (auto target = accum.get_pointer()) {
*target = reducer_(std::move(*target), std::forward<Value>(v));
} else {
accum = std::forward<Value>(v);
}
};
return accum;
}
};
/**
* Count - for simply counting the items in a collection.
*
* This type is usually used through its singleton, 'count':
*
* auto shortPrimes = seq(1, 100) | filter(isPrime) | count;
*/
class Count : public Operator<Count> {
public:
Count() = default;
template <class Source, class Value>
size_t compose(const GenImpl<Value, Source>& source) const {
static_assert(!Source::infinite, "Cannot count infinite source");
return foldl(
size_t(0), [](size_t accum, Value /* v */) { return accum + 1; })
.compose(source);
}
};
/**
* Sum - For simply summing up all the values from a source.
*
* This type is usually used through its singleton, 'sum':
*
* auto gaussSum = seq(1, 100) | sum;
*/
class Sum : public Operator<Sum> {
public:
Sum() = default;
template <
class Source,
class Value,
class StorageType = typename std::decay<Value>::type>
StorageType compose(const GenImpl<Value, Source>& source) const {
static_assert(!Source::infinite, "Cannot sum infinite source");
return foldl(
StorageType(0),
[](StorageType&& accum, Value v) {
return std::move(accum) + std::forward<Value>(v);
})
.compose(source);
}
};
/**
* Contains - For testing whether a value matching the given value is contained
* in a sequence.
*
* This type should be used through the 'contains' helper method, like:
*
* bool contained = seq(1, 10) | map(square) | contains(49);
*/
template <class Needle>
class Contains : public Operator<Contains<Needle>> {
Needle needle_;
public:
explicit Contains(Needle needle) : needle_(std::move(needle)) {}
template <
class Source,
class Value,
class StorageType = typename std::decay<Value>::type>
bool compose(const GenImpl<Value, Source>& source) const {
static_assert(
!Source::infinite,
"Calling contains on an infinite source might cause "
"an infinite loop.");
return !(source | [this](Value value) {
return !(needle_ == std::forward<Value>(value));
});
}
};
/**
* Min - For a value which minimizes a key, where the key is determined by a
* given selector, and compared by given comparer.
*
* This type is usually used through the singletone 'min' or through the helper
* functions 'minBy' and 'maxBy'.
*
* auto oldest = from(people)
* | minBy([](Person& p) {
* return p.dateOfBirth;
* });
*/
template <class Selector, class Comparer>
class Min : public Operator<Min<Selector, Comparer>> {
Selector selector_;
Comparer comparer_;
template <typename T>
const T& asConst(const T& t) const {
return t;
}
public:
Min() = default;
explicit Min(Selector selector) : selector_(std::move(selector)) {}
Min(Selector selector, Comparer comparer)
: selector_(std::move(selector)), comparer_(std::move(comparer)) {}
template <
class Value,
class Source,
class StorageType = typename std::decay<Value>::type,
class Key = typename std::decay<invoke_result_t<Selector, Value>>::type>
Optional<StorageType> compose(const GenImpl<Value, Source>& source) const {
static_assert(
!Source::infinite,
"Calling min or max on an infinite source will cause "
"an infinite loop.");
Optional<StorageType> min;
Optional<Key> minKey;
source | [&](Value v) {
Key key = selector_(asConst(v)); // so that selector_ cannot mutate v
if (auto lastKey = minKey.get_pointer()) {
if (!comparer_(key, *lastKey)) {
return;
}
}
minKey = std::move(key);
min = std::forward<Value>(v);
};
return min;
}
};
/**
* Append - For collecting values from a source into a given output container
* by appending.
*
* This type is usually used through the helper function 'appendTo', like:
*
* vector<int64_t> ids;
* from(results) | map([](Person& p) { return p.id })
* | appendTo(ids);
*/
template <class Collection>
class Append : public Operator<Append<Collection>> {
Collection* collection_;
public:
explicit Append(Collection* collection) : collection_(collection) {}
template <class Value, class Source>
Collection& compose(const GenImpl<Value, Source>& source) const {
static_assert(!Source::infinite, "Cannot appendTo with infinite source");
source | [&](Value v) {
collection_->insert(collection_->end(), std::forward<Value>(v));
};
return *collection_;
}
};
/**
* Collect - For collecting values from a source in a collection of the desired
* type.
*
* This type is usually used through the helper function 'as', like:
*
* std::string upper = from(stringPiece)
* | map(&toupper)
* | as<std::string>();
*/
template <class Collection>
class Collect : public Operator<Collect<Collection>> {
public:
Collect() = default;
template <
class Value,
class Source,
class StorageType = typename std::decay<Value>::type>
Collection compose(const GenImpl<Value, Source>& source) const {
static_assert(
!Source::infinite, "Cannot convert infinite source to object with as.");
Collection collection;
source | [&](Value v) {
collection.insert(collection.end(), std::forward<Value>(v));
};
return collection;
}
};
/**
* CollectTemplate - For collecting values from a source in a collection
* constructed using the specified template type. Given the type of values
* produced by the given generator, the collection type will be:
* Container<Value, Allocator<Value>>
*
* The allocator defaults to std::allocator, so this may be used for the STL
* containers by simply using operators like 'as<set>', 'as<deque>',
* 'as<vector>'. 'as', here is the helper method which is the usual means of
* constructing this operator.
*
* Example:
*
* set<string> uniqueNames = from(names) | as<set>();
*/
template <
template <class, class> class Container,
template <class> class Allocator>
class CollectTemplate : public Operator<CollectTemplate<Container, Allocator>> {
public:
CollectTemplate() = default;
template <
class Value,
class Source,
class StorageType = typename std::decay<Value>::type,
class Collection = Container<StorageType, Allocator<StorageType>>>
Collection compose(const GenImpl<Value, Source>& source) const {
static_assert(
!Source::infinite, "Cannot convert infinite source to object with as.");
Collection collection;
source | [&](Value v) {
collection.insert(collection.end(), std::forward<Value>(v));
};
return collection;
}
};
/**
* UnwrapOr - For unwrapping folly::Optional values, or providing the given
* fallback value. Usually used through the 'unwrapOr' helper like so:
*
* auto best = from(scores) | max | unwrapOr(-1);
*
* Note that the fallback value needn't match the value in the Optional it is
* unwrapping. If mis-matched types are supported, the common type of the two is
* returned by value. If the types match, a reference (T&& > T& > const T&) is
* returned.
*/
template <class T>
class UnwrapOr {
public:
explicit UnwrapOr(T&& value) : value_(std::move(value)) {}
explicit UnwrapOr(const T& value) : value_(value) {}
T& value() {
return value_;
}
const T& value() const {
return value_;
}
private:
T value_;
};
template <class T>
T&& operator|(Optional<T>&& opt, UnwrapOr<T>&& fallback) {
if (T* p = opt.get_pointer()) {
return std::move(*p);
}
return std::move(fallback.value());
}
template <class T>
T& operator|(Optional<T>& opt, UnwrapOr<T>& fallback) {
if (T* p = opt.get_pointer()) {
return *p;
}
return fallback.value();
}
template <class T>
const T& operator|(const Optional<T>& opt, const UnwrapOr<T>& fallback) {
if (const T* p = opt.get_pointer()) {
return *p;
}
return fallback.value();
}
// Mixed type unwrapping always returns values, moving where possible
template <
class T,
class U,
class R = typename std::enable_if<
!std::is_same<T, U>::value,
typename std::common_type<T, U>::type>::type>
R operator|(Optional<T>&& opt, UnwrapOr<U>&& fallback) {
if (T* p = opt.get_pointer()) {
return std::move(*p);
}
return std::move(fallback.value());
}
template <
class T,
class U,
class R = typename std::enable_if<
!std::is_same<T, U>::value,
typename std::common_type<T, U>::type>::type>
R operator|(const Optional<T>& opt, UnwrapOr<U>&& fallback) {
if (const T* p = opt.get_pointer()) {
return *p;
}
return std::move(fallback.value());
}
template <
class T,
class U,
class R = typename std::enable_if<
!std::is_same<T, U>::value,
typename std::common_type<T, U>::type>::type>
R operator|(Optional<T>&& opt, const UnwrapOr<U>& fallback) {
if (T* p = opt.get_pointer()) {
return std::move(*p);
}
return fallback.value();
}
template <
class T,
class U,
class R = typename std::enable_if<
!std::is_same<T, U>::value,
typename std::common_type<T, U>::type>::type>
R operator|(const Optional<T>& opt, const UnwrapOr<U>& fallback) {
if (const T* p = opt.get_pointer()) {
return *p;
}
return fallback.value();
}
/**
* Unwrap - For unwrapping folly::Optional values in a folly::gen style. Usually
* used through the 'unwrap' instace like so:
*
* auto best = from(scores) | max | unwrap; // may throw
*/
class Unwrap {};
template <class T>
T&& operator|(Optional<T>&& opt, const Unwrap&) {
return std::move(opt.value());
}
template <class T>
T& operator|(Optional<T>& opt, const Unwrap&) {
return opt.value();
}
template <class T>
const T& operator|(const Optional<T>& opt, const Unwrap&) {
return opt.value();
}
#if FOLLY_USE_RANGEV3
template <class RangeV3, class Value>
class RangeV3Source
: public gen::GenImpl<Value, RangeV3Source<RangeV3, Value>> {
mutable RangeV3 r_; // mutable since some ranges are not const-iteratable
public:
explicit RangeV3Source(RangeV3 const& r) : r_(r) {}
template <class Body>
void foreach(Body&& body) const {
for (auto const& value : r_) {
body(value);
}
}
template <class Handler>
bool apply(Handler&& handler) const {
for (auto const& value : r_) {
if (!handler(value)) {
return false;
}
}
return true;
}
static constexpr bool infinite = false;
};
template <class RangeV3, class Value>
class RangeV3CopySource
: public gen::GenImpl<Value, RangeV3CopySource<RangeV3, Value>> {
mutable RangeV3 r_; // mutable since some ranges are not const-iteratable
public:
explicit RangeV3CopySource(RangeV3&& r) : r_(std::move(r)) {}
template <class Body>
void foreach(Body&& body) const {
for (auto const& value : r_) {
body(value);
}
}
template <class Handler>
bool apply(Handler&& handler) const {
for (auto const& value : r_) {
if (!handler(value)) {
return false;
}
}
return true;
}
static constexpr bool infinite = false;
};
struct from_container_fn {
template <typename Container>
friend auto operator|(Container&& c, from_container_fn) {
return gen::from(std::forward<Container>(c));
}
};
struct from_rangev3_fn {
template <typename Range>
friend auto operator|(Range&& r, from_rangev3_fn) {
using DecayedRange = std::decay_t<Range>;
using DecayedValue = std::decay_t<decltype(*r.begin())>;
return RangeV3Source<DecayedRange, DecayedValue>(r);
}
};
struct from_rangev3_copy_fn {
template <typename Range>
friend auto operator|(Range&& r, from_rangev3_copy_fn) {
using RangeDecay = std::decay_t<Range>;
using Value = std::decay_t<decltype(*r.begin())>;
return RangeV3CopySource<RangeDecay, Value>(std::move(r));
}
};
#endif // FOLLY_USE_RANGEV3
} // namespace detail
#if FOLLY_USE_RANGEV3
/*
******************************************************************************
* Pipe fittings between a container/range-v3 and a folly::gen.
* Example: vec | gen::from_container | folly::gen::filter(...);
* Example: vec | ranges::views::filter(...) | gen::from_rangev3 | gen::xxx;
******************************************************************************
*/
constexpr detail::from_container_fn from_container;
constexpr detail::from_rangev3_fn from_rangev3;
constexpr detail::from_rangev3_copy_fn from_rangev3_copy;
template <typename Range>
auto from_rangev3_call(Range&& r) {
using Value = std::decay_t<decltype(*r.begin())>;
return detail::RangeV3Source<Range, Value>(r);
}
// it is safe to pipe an rvalue into a range-v3 view if the rest of the pipeline
// will finish its traversal within the current full-expr, a condition provided
// by folly::gen.
template <typename Range>
auto rangev3_will_be_consumed(Range&& r) {
// intentionally use `r` instead of `std::forward<Range>(r)`; see above.
// range-v3 ranges copy in O(1) so it is appropriate.
return ranges::views::all(r);
}
#endif // FOLLY_USE_RANGEV3
/**
* VirtualGen<T> - For wrapping template types in simple polymorphic wrapper.
**/
template <class Value>
class VirtualGen : public GenImpl<Value, VirtualGen<Value>> {
class WrapperBase {
public:
virtual ~WrapperBase() noexcept {}
virtual bool apply(const std::function<bool(Value)>& handler) const = 0;
virtual void foreach(const std::function<void(Value)>& body) const = 0;
virtual std::unique_ptr<const WrapperBase> clone() const = 0;
};
template <class Wrapped>
class WrapperImpl : public WrapperBase {
Wrapped wrapped_;
public:
explicit WrapperImpl(Wrapped wrapped) : wrapped_(std::move(wrapped)) {}
bool apply(const std::function<bool(Value)>& handler) const override {
return wrapped_.apply(handler);
}
void foreach(const std::function<void(Value)>& body) const override {
wrapped_.foreach(body);
}
std::unique_ptr<const WrapperBase> clone() const override {
return std::unique_ptr<const WrapperBase>(new WrapperImpl(wrapped_));
}
};
std::unique_ptr<const WrapperBase> wrapper_;
public:
template <class Self>
/* implicit */ VirtualGen(Self source)
: wrapper_(new WrapperImpl<Self>(std::move(source))) {}
VirtualGen(VirtualGen&& source) noexcept
: wrapper_(std::move(source.wrapper_)) {}
VirtualGen(const VirtualGen& source) : wrapper_(source.wrapper_->clone()) {}
VirtualGen& operator=(const VirtualGen& source) {
wrapper_.reset(source.wrapper_->clone());
return *this;
}
VirtualGen& operator=(VirtualGen&& source) noexcept {
wrapper_ = std::move(source.wrapper_);
return *this;
}
bool apply(const std::function<bool(Value)>& handler) const {
return wrapper_->apply(handler);
}
void foreach(const std::function<void(Value)>& body) const {
wrapper_->foreach(body);
}
};
/**
* non-template operators, statically defined to avoid the need for anything but
* the header.
*/
constexpr detail::Sum sum{};
constexpr detail::Count count{};
constexpr detail::First first{};
constexpr detail::IsEmpty<true> isEmpty{};
constexpr detail::IsEmpty<false> notEmpty{};
constexpr detail::Min<Identity, Less> min{};
constexpr detail::Min<Identity, Greater> max{};
constexpr detail::Order<Identity> order{};
constexpr detail::Distinct<Identity> distinct{};
constexpr detail::Map<Move> move{};
constexpr detail::Concat concat{};
constexpr detail::RangeConcat rconcat{};
constexpr detail::Cycle<true> cycle{};
constexpr detail::Dereference dereference{};
constexpr detail::Indirect indirect{};
constexpr detail::Unwrap unwrap{};
template <class Number>
inline detail::Take take(Number count) {
if (count < 0) {
throw std::invalid_argument("Negative value passed to take()");
}
return detail::Take(static_cast<size_t>(count));
}
inline detail::Stride stride(size_t s) {
return detail::Stride(s);
}
template <class Random = std::default_random_engine>
inline detail::Sample<Random> sample(size_t count, Random rng = Random()) {
return detail::Sample<Random>(count, std::move(rng));
}
inline detail::Skip skip(size_t count) {
return detail::Skip(count);
}
inline detail::Batch batch(size_t batchSize) {
return detail::Batch(batchSize);
}
inline detail::Window window(size_t windowSize) {
return detail::Window(windowSize);
}
} // namespace gen
} // namespace folly
FOLLY_POP_WARNING