648 lines
17 KiB
C++
648 lines
17 KiB
C++
|
// Copyright 2004 The Trustees of Indiana University.
|
||
|
|
||
|
// Use, modification and distribution is subject to the Boost Software
|
||
|
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
|
||
|
// http://www.boost.org/LICENSE_1_0.txt)
|
||
|
|
||
|
// Authors: Douglas Gregor
|
||
|
// Andrew Lumsdaine
|
||
|
#ifndef BOOST_RELAXED_HEAP_HEADER
|
||
|
#define BOOST_RELAXED_HEAP_HEADER
|
||
|
|
||
|
#include <functional>
|
||
|
#include <boost/property_map/property_map.hpp>
|
||
|
#include <boost/optional.hpp>
|
||
|
#include <vector>
|
||
|
#include <climits> // for CHAR_BIT
|
||
|
#include <boost/none.hpp>
|
||
|
|
||
|
#ifdef BOOST_RELAXED_HEAP_DEBUG
|
||
|
# include <iostream>
|
||
|
#endif // BOOST_RELAXED_HEAP_DEBUG
|
||
|
|
||
|
#if defined(BOOST_MSVC)
|
||
|
# pragma warning(push)
|
||
|
# pragma warning(disable:4355) // complaint about using 'this' to
|
||
|
#endif // initialize a member
|
||
|
|
||
|
namespace boost {
|
||
|
|
||
|
template<typename IndexedType,
|
||
|
typename Compare = std::less<IndexedType>,
|
||
|
typename ID = identity_property_map>
|
||
|
class relaxed_heap
|
||
|
{
|
||
|
struct group;
|
||
|
|
||
|
typedef relaxed_heap self_type;
|
||
|
typedef std::size_t rank_type;
|
||
|
|
||
|
public:
|
||
|
typedef IndexedType value_type;
|
||
|
typedef rank_type size_type;
|
||
|
|
||
|
private:
|
||
|
/**
|
||
|
* The kind of key that a group has. The actual values are discussed
|
||
|
* in-depth in the documentation of the @c kind field of the @c group
|
||
|
* structure. Note that the order of the enumerators *IS* important
|
||
|
* and must not be changed.
|
||
|
*/
|
||
|
enum group_key_kind { smallest_key, stored_key, largest_key };
|
||
|
|
||
|
struct group {
|
||
|
explicit group(group_key_kind kind = largest_key)
|
||
|
: kind(kind), parent(this), rank(0) { }
|
||
|
|
||
|
/** The value associated with this group. This value is only valid
|
||
|
* when @c kind!=largest_key (which indicates a deleted
|
||
|
* element). Note that the use of boost::optional increases the
|
||
|
* memory requirements slightly but does not result in extraneous
|
||
|
* memory allocations or deallocations. The optional could be
|
||
|
* eliminated when @c value_type is a model of
|
||
|
* DefaultConstructible.
|
||
|
*/
|
||
|
::boost::optional<value_type> value;
|
||
|
|
||
|
/**
|
||
|
* The kind of key stored at this group. This may be @c
|
||
|
* smallest_key, which indicates that the key is infinitely small;
|
||
|
* @c largest_key, which indicates that the key is infinitely
|
||
|
* large; or @c stored_key, which means that the key is unknown,
|
||
|
* but its relationship to other keys can be determined via the
|
||
|
* comparison function object.
|
||
|
*/
|
||
|
group_key_kind kind;
|
||
|
|
||
|
/// The parent of this group. Will only be NULL for the dummy root group
|
||
|
group* parent;
|
||
|
|
||
|
/// The rank of this group. Equivalent to the number of children in
|
||
|
/// the group.
|
||
|
rank_type rank;
|
||
|
|
||
|
/** The children of this group. For the dummy root group, these are
|
||
|
* the roots. This is an array of length log n containing pointers
|
||
|
* to the child groups.
|
||
|
*/
|
||
|
group** children;
|
||
|
};
|
||
|
|
||
|
size_type log_base_2(size_type n) // log2 is a macro on some platforms
|
||
|
{
|
||
|
size_type leading_zeroes = 0;
|
||
|
do {
|
||
|
size_type next = n << 1;
|
||
|
if (n == (next >> 1)) {
|
||
|
++leading_zeroes;
|
||
|
n = next;
|
||
|
} else {
|
||
|
break;
|
||
|
}
|
||
|
} while (true);
|
||
|
return sizeof(size_type) * CHAR_BIT - leading_zeroes - 1;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
relaxed_heap(size_type n, const Compare& compare = Compare(),
|
||
|
const ID& id = ID())
|
||
|
: compare(compare), id(id), root(smallest_key), groups(n),
|
||
|
smallest_value(0)
|
||
|
{
|
||
|
if (n == 0) {
|
||
|
root.children = new group*[1];
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
log_n = log_base_2(n);
|
||
|
if (log_n == 0) log_n = 1;
|
||
|
size_type g = n / log_n;
|
||
|
if (n % log_n > 0) ++g;
|
||
|
size_type log_g = log_base_2(g);
|
||
|
size_type r = log_g;
|
||
|
|
||
|
// Reserve an appropriate amount of space for data structures, so
|
||
|
// that we do not need to expand them.
|
||
|
index_to_group.resize(g);
|
||
|
A.resize(r + 1, 0);
|
||
|
root.rank = r + 1;
|
||
|
root.children = new group*[(log_g + 1) * (g + 1)];
|
||
|
for (rank_type i = 0; i < r+1; ++i) root.children[i] = 0;
|
||
|
|
||
|
// Build initial heap
|
||
|
size_type idx = 0;
|
||
|
while (idx < g) {
|
||
|
root.children[r] = &index_to_group[idx];
|
||
|
idx = build_tree(root, idx, r, log_g + 1);
|
||
|
if (idx != g)
|
||
|
r = static_cast<size_type>(log_base_2(g-idx));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
~relaxed_heap() { delete [] root.children; }
|
||
|
|
||
|
void push(const value_type& x)
|
||
|
{
|
||
|
groups[get(id, x)] = x;
|
||
|
update(x);
|
||
|
}
|
||
|
|
||
|
void update(const value_type& x)
|
||
|
{
|
||
|
group* a = &index_to_group[get(id, x) / log_n];
|
||
|
if (!a->value
|
||
|
|| *a->value == x
|
||
|
|| compare(x, *a->value)) {
|
||
|
if (a != smallest_value) smallest_value = 0;
|
||
|
a->kind = stored_key;
|
||
|
a->value = x;
|
||
|
promote(a);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void remove(const value_type& x)
|
||
|
{
|
||
|
group* a = &index_to_group[get(id, x) / log_n];
|
||
|
assert(groups[get(id, x)]);
|
||
|
a->value = x;
|
||
|
a->kind = smallest_key;
|
||
|
promote(a);
|
||
|
smallest_value = a;
|
||
|
pop();
|
||
|
}
|
||
|
|
||
|
value_type& top()
|
||
|
{
|
||
|
find_smallest();
|
||
|
assert(smallest_value->value != none);
|
||
|
return *smallest_value->value;
|
||
|
}
|
||
|
|
||
|
const value_type& top() const
|
||
|
{
|
||
|
find_smallest();
|
||
|
assert(smallest_value->value != none);
|
||
|
return *smallest_value->value;
|
||
|
}
|
||
|
|
||
|
bool empty() const
|
||
|
{
|
||
|
find_smallest();
|
||
|
return !smallest_value || (smallest_value->kind == largest_key);
|
||
|
}
|
||
|
|
||
|
bool contains(const value_type& x) const {
|
||
|
return static_cast<bool>(groups[get(id, x)]);
|
||
|
}
|
||
|
|
||
|
|
||
|
void pop()
|
||
|
{
|
||
|
// Fill in smallest_value. This is the group x.
|
||
|
find_smallest();
|
||
|
group* x = smallest_value;
|
||
|
smallest_value = 0;
|
||
|
|
||
|
// Make x a leaf, giving it the smallest value within its group
|
||
|
rank_type r = x->rank;
|
||
|
group* p = x->parent;
|
||
|
{
|
||
|
assert(x->value != none);
|
||
|
|
||
|
// Find x's group
|
||
|
size_type start = get(id, *x->value) - get(id, *x->value) % log_n;
|
||
|
size_type end = start + log_n;
|
||
|
if (end > groups.size()) end = groups.size();
|
||
|
|
||
|
// Remove the smallest value from the group, and find the new
|
||
|
// smallest value.
|
||
|
groups[get(id, *x->value)].reset();
|
||
|
x->value.reset();
|
||
|
x->kind = largest_key;
|
||
|
for (size_type i = start; i < end; ++i) {
|
||
|
if (groups[i] && (!x->value || compare(*groups[i], *x->value))) {
|
||
|
x->kind = stored_key;
|
||
|
x->value = groups[i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
x->rank = 0;
|
||
|
|
||
|
// Combine prior children of x with x
|
||
|
group* y = x;
|
||
|
for (size_type c = 0; c < r; ++c) {
|
||
|
group* child = x->children[c];
|
||
|
if (A[c] == child) A[c] = 0;
|
||
|
y = combine(y, child);
|
||
|
}
|
||
|
|
||
|
// If we got back something other than x, let y take x's place
|
||
|
if (y != x) {
|
||
|
y->parent = p;
|
||
|
p->children[r] = y;
|
||
|
|
||
|
assert(r == y->rank);
|
||
|
if (A[y->rank] == x)
|
||
|
A[y->rank] = do_compare(y, p)? y : 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef BOOST_RELAXED_HEAP_DEBUG
|
||
|
/*************************************************************************
|
||
|
* Debugging support *
|
||
|
*************************************************************************/
|
||
|
void dump_tree() { dump_tree(std::cout); }
|
||
|
void dump_tree(std::ostream& out) { dump_tree(out, &root); }
|
||
|
|
||
|
void dump_tree(std::ostream& out, group* p, bool in_progress = false)
|
||
|
{
|
||
|
if (!in_progress) {
|
||
|
out << "digraph heap {\n"
|
||
|
<< " edge[dir=\"back\"];\n";
|
||
|
}
|
||
|
|
||
|
size_type p_index = 0;
|
||
|
if (p != &root) while (&index_to_group[p_index] != p) ++p_index;
|
||
|
|
||
|
for (size_type i = 0; i < p->rank; ++i) {
|
||
|
group* c = p->children[i];
|
||
|
if (c) {
|
||
|
size_type c_index = 0;
|
||
|
if (c != &root) while (&index_to_group[c_index] != c) ++c_index;
|
||
|
|
||
|
out << " ";
|
||
|
if (p == &root) out << 'p'; else out << p_index;
|
||
|
out << " -> ";
|
||
|
if (c == &root) out << 'p'; else out << c_index;
|
||
|
if (A[c->rank] == c) out << " [style=\"dotted\"]";
|
||
|
out << ";\n";
|
||
|
dump_tree(out, c, true);
|
||
|
|
||
|
// Emit node information
|
||
|
out << " ";
|
||
|
if (c == &root) out << 'p'; else out << c_index;
|
||
|
out << " [label=\"";
|
||
|
if (c == &root) out << 'p'; else out << c_index;
|
||
|
out << ":";
|
||
|
size_type start = c_index * log_n;
|
||
|
size_type end = start + log_n;
|
||
|
if (end > groups.size()) end = groups.size();
|
||
|
while (start != end) {
|
||
|
if (groups[start]) {
|
||
|
out << " " << get(id, *groups[start]);
|
||
|
if (*groups[start] == *c->value) out << "(*)";
|
||
|
}
|
||
|
++start;
|
||
|
}
|
||
|
out << '"';
|
||
|
|
||
|
if (do_compare(c, p)) {
|
||
|
out << " ";
|
||
|
if (c == &root) out << 'p'; else out << c_index;
|
||
|
out << ", style=\"filled\", fillcolor=\"gray\"";
|
||
|
}
|
||
|
out << "];\n";
|
||
|
} else {
|
||
|
assert(p->parent == p);
|
||
|
}
|
||
|
}
|
||
|
if (!in_progress) out << "}\n";
|
||
|
}
|
||
|
|
||
|
bool valid()
|
||
|
{
|
||
|
// Check that the ranks in the A array match the ranks of the
|
||
|
// groups stored there. Also, the active groups must be the last
|
||
|
// child of their parent.
|
||
|
for (size_type r = 0; r < A.size(); ++r) {
|
||
|
if (A[r] && A[r]->rank != r) return false;
|
||
|
|
||
|
if (A[r] && A[r]->parent->children[A[r]->parent->rank-1] != A[r])
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// The root must have no value and a key of -Infinity
|
||
|
if (root.kind != smallest_key) return false;
|
||
|
|
||
|
return valid(&root);
|
||
|
}
|
||
|
|
||
|
bool valid(group* p)
|
||
|
{
|
||
|
for (size_type i = 0; i < p->rank; ++i) {
|
||
|
group* c = p->children[i];
|
||
|
if (c) {
|
||
|
// Check link structure
|
||
|
if (c->parent != p) return false;
|
||
|
if (c->rank != i) return false;
|
||
|
|
||
|
// A bad group must be active
|
||
|
if (do_compare(c, p) && A[i] != c) return false;
|
||
|
|
||
|
// Check recursively
|
||
|
if (!valid(c)) return false;
|
||
|
} else {
|
||
|
// Only the root may
|
||
|
if (p != &root) return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#endif // BOOST_RELAXED_HEAP_DEBUG
|
||
|
|
||
|
private:
|
||
|
size_type
|
||
|
build_tree(group& parent, size_type idx, size_type r, size_type max_rank)
|
||
|
{
|
||
|
group& this_group = index_to_group[idx];
|
||
|
this_group.parent = &parent;
|
||
|
++idx;
|
||
|
|
||
|
this_group.children = root.children + (idx * max_rank);
|
||
|
this_group.rank = r;
|
||
|
for (size_type i = 0; i < r; ++i) {
|
||
|
this_group.children[i] = &index_to_group[idx];
|
||
|
idx = build_tree(this_group, idx, i, max_rank);
|
||
|
}
|
||
|
return idx;
|
||
|
}
|
||
|
|
||
|
void find_smallest() const
|
||
|
{
|
||
|
group** roots = root.children;
|
||
|
|
||
|
if (!smallest_value) {
|
||
|
std::size_t i;
|
||
|
for (i = 0; i < root.rank; ++i) {
|
||
|
if (roots[i] &&
|
||
|
(!smallest_value || do_compare(roots[i], smallest_value))) {
|
||
|
smallest_value = roots[i];
|
||
|
}
|
||
|
}
|
||
|
for (i = 0; i < A.size(); ++i) {
|
||
|
if (A[i] && (!smallest_value || do_compare(A[i], smallest_value)))
|
||
|
smallest_value = A[i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool do_compare(group* x, group* y) const
|
||
|
{
|
||
|
return (x->kind < y->kind
|
||
|
|| (x->kind == y->kind
|
||
|
&& x->kind == stored_key
|
||
|
&& compare(*x->value, *y->value)));
|
||
|
}
|
||
|
|
||
|
void promote(group* a)
|
||
|
{
|
||
|
assert(a != 0);
|
||
|
rank_type r = a->rank;
|
||
|
group* p = a->parent;
|
||
|
assert(p != 0);
|
||
|
if (do_compare(a, p)) {
|
||
|
// s is the rank + 1 sibling
|
||
|
group* s = p->rank > r + 1? p->children[r + 1] : 0;
|
||
|
|
||
|
// If a is the last child of p
|
||
|
if (r == p->rank - 1) {
|
||
|
if (!A[r]) A[r] = a;
|
||
|
else if (A[r] != a) pair_transform(a);
|
||
|
} else {
|
||
|
assert(s != 0);
|
||
|
if (A[r + 1] == s) active_sibling_transform(a, s);
|
||
|
else good_sibling_transform(a, s);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
group* combine(group* a1, group* a2)
|
||
|
{
|
||
|
assert(a1->rank == a2->rank);
|
||
|
if (do_compare(a2, a1)) do_swap(a1, a2);
|
||
|
a1->children[a1->rank++] = a2;
|
||
|
a2->parent = a1;
|
||
|
clean(a1);
|
||
|
return a1;
|
||
|
}
|
||
|
|
||
|
void clean(group* q)
|
||
|
{
|
||
|
if (2 > q->rank) return;
|
||
|
group* qp = q->children[q->rank-1];
|
||
|
rank_type s = q->rank - 2;
|
||
|
group* x = q->children[s];
|
||
|
group* xp = qp->children[s];
|
||
|
assert(s == x->rank);
|
||
|
|
||
|
// If x is active, swap x and xp
|
||
|
if (A[s] == x) {
|
||
|
q->children[s] = xp;
|
||
|
xp->parent = q;
|
||
|
qp->children[s] = x;
|
||
|
x->parent = qp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void pair_transform(group* a)
|
||
|
{
|
||
|
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
|
||
|
std::cerr << "- pair transform\n";
|
||
|
#endif
|
||
|
rank_type r = a->rank;
|
||
|
|
||
|
// p is a's parent
|
||
|
group* p = a->parent;
|
||
|
assert(p != 0);
|
||
|
|
||
|
// g is p's parent (a's grandparent)
|
||
|
group* g = p->parent;
|
||
|
assert(g != 0);
|
||
|
|
||
|
// a' <- A(r)
|
||
|
assert(A[r] != 0);
|
||
|
group* ap = A[r];
|
||
|
assert(ap != 0);
|
||
|
|
||
|
// A(r) <- nil
|
||
|
A[r] = 0;
|
||
|
|
||
|
// let a' have parent p'
|
||
|
group* pp = ap->parent;
|
||
|
assert(pp != 0);
|
||
|
|
||
|
// let a' have grandparent g'
|
||
|
group* gp = pp->parent;
|
||
|
assert(gp != 0);
|
||
|
|
||
|
// Remove a and a' from their parents
|
||
|
assert(ap == pp->children[pp->rank-1]); // Guaranteed because ap is active
|
||
|
--pp->rank;
|
||
|
|
||
|
// Guaranteed by caller
|
||
|
assert(a == p->children[p->rank-1]);
|
||
|
--p->rank;
|
||
|
|
||
|
// Note: a, ap, p, pp all have rank r
|
||
|
if (do_compare(pp, p)) {
|
||
|
do_swap(a, ap);
|
||
|
do_swap(p, pp);
|
||
|
do_swap(g, gp);
|
||
|
}
|
||
|
|
||
|
// Assuming k(p) <= k(p')
|
||
|
// make p' the rank r child of p
|
||
|
assert(r == p->rank);
|
||
|
p->children[p->rank++] = pp;
|
||
|
pp->parent = p;
|
||
|
|
||
|
// Combine a, ap into a rank r+1 group c
|
||
|
group* c = combine(a, ap);
|
||
|
|
||
|
// make c the rank r+1 child of g'
|
||
|
assert(gp->rank > r+1);
|
||
|
gp->children[r+1] = c;
|
||
|
c->parent = gp;
|
||
|
|
||
|
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
|
||
|
std::cerr << "After pair transform...\n";
|
||
|
dump_tree();
|
||
|
#endif
|
||
|
|
||
|
if (A[r+1] == pp) A[r+1] = c;
|
||
|
else promote(c);
|
||
|
}
|
||
|
|
||
|
void active_sibling_transform(group* a, group* s)
|
||
|
{
|
||
|
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
|
||
|
std::cerr << "- active sibling transform\n";
|
||
|
#endif
|
||
|
group* p = a->parent;
|
||
|
group* g = p->parent;
|
||
|
|
||
|
// remove a, s from their parents
|
||
|
assert(s->parent == p);
|
||
|
assert(p->children[p->rank-1] == s);
|
||
|
--p->rank;
|
||
|
assert(p->children[p->rank-1] == a);
|
||
|
--p->rank;
|
||
|
|
||
|
rank_type r = a->rank;
|
||
|
A[r+1] = 0;
|
||
|
a = combine(p, a);
|
||
|
group* c = combine(a, s);
|
||
|
|
||
|
// make c the rank r+2 child of g
|
||
|
assert(g->children[r+2] == p);
|
||
|
g->children[r+2] = c;
|
||
|
c->parent = g;
|
||
|
if (A[r+2] == p) A[r+2] = c;
|
||
|
else promote(c);
|
||
|
}
|
||
|
|
||
|
void good_sibling_transform(group* a, group* s)
|
||
|
{
|
||
|
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
|
||
|
std::cerr << "- good sibling transform\n";
|
||
|
#endif
|
||
|
rank_type r = a->rank;
|
||
|
group* c = s->children[s->rank-1];
|
||
|
assert(c->rank == r);
|
||
|
if (A[r] == c) {
|
||
|
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
|
||
|
std::cerr << "- good sibling pair transform\n";
|
||
|
#endif
|
||
|
A[r] = 0;
|
||
|
group* p = a->parent;
|
||
|
|
||
|
// Remove c from its parent
|
||
|
--s->rank;
|
||
|
|
||
|
// Make s the rank r child of p
|
||
|
s->parent = p;
|
||
|
p->children[r] = s;
|
||
|
|
||
|
// combine a, c and let the result by the rank r+1 child of p
|
||
|
assert(p->rank > r+1);
|
||
|
group* x = combine(a, c);
|
||
|
x->parent = p;
|
||
|
p->children[r+1] = x;
|
||
|
|
||
|
if (A[r+1] == s) A[r+1] = x;
|
||
|
else promote(x);
|
||
|
|
||
|
#if defined(BOOST_RELAXED_HEAP_DEBUG) && BOOST_RELAXED_HEAP_DEBUG > 1
|
||
|
dump_tree(std::cerr);
|
||
|
#endif
|
||
|
// pair_transform(a);
|
||
|
} else {
|
||
|
// Clean operation
|
||
|
group* p = a->parent;
|
||
|
s->children[r] = a;
|
||
|
a->parent = s;
|
||
|
p->children[r] = c;
|
||
|
c->parent = p;
|
||
|
|
||
|
promote(a);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void do_swap(group*& x, group*& y)
|
||
|
{
|
||
|
group* tmp = x;
|
||
|
x = y;
|
||
|
y = tmp;
|
||
|
}
|
||
|
|
||
|
/// Function object that compares two values in the heap
|
||
|
Compare compare;
|
||
|
|
||
|
/// Mapping from values to indices in the range [0, n).
|
||
|
ID id;
|
||
|
|
||
|
/** The root group of the queue. This group is special because it will
|
||
|
* never store a value, but it acts as a parent to all of the
|
||
|
* roots. Thus, its list of children is the list of roots.
|
||
|
*/
|
||
|
group root;
|
||
|
|
||
|
/** Mapping from the group index of a value to the group associated
|
||
|
* with that value. If a value is not in the queue, then the "value"
|
||
|
* field will be empty.
|
||
|
*/
|
||
|
std::vector<group> index_to_group;
|
||
|
|
||
|
/** Flat data structure containing the values in each of the
|
||
|
* groups. It will be indexed via the id of the values. The groups
|
||
|
* are each log_n long, with the last group potentially being
|
||
|
* smaller.
|
||
|
*/
|
||
|
std::vector< ::boost::optional<value_type> > groups;
|
||
|
|
||
|
/** The list of active groups, indexed by rank. When A[r] is null,
|
||
|
* there is no active group of rank r. Otherwise, A[r] is the active
|
||
|
* group of rank r.
|
||
|
*/
|
||
|
std::vector<group*> A;
|
||
|
|
||
|
/** The group containing the smallest value in the queue, which must
|
||
|
* be either a root or an active group. If this group is null, then we
|
||
|
* will need to search for this group when it is needed.
|
||
|
*/
|
||
|
mutable group* smallest_value;
|
||
|
|
||
|
/// Cached value log_base_2(n)
|
||
|
size_type log_n;
|
||
|
};
|
||
|
|
||
|
|
||
|
} // end namespace boost
|
||
|
|
||
|
#if defined(BOOST_MSVC)
|
||
|
# pragma warning(pop)
|
||
|
#endif
|
||
|
|
||
|
#endif // BOOST_RELAXED_HEAP_HEADER
|