192 lines
6.9 KiB
C
192 lines
6.9 KiB
C
|
// Copyright 2017 Google Inc. All Rights Reserved.
|
||
|
//
|
||
|
// Use of this source code is governed by a BSD-style license
|
||
|
// that can be found in the COPYING file in the root of the source
|
||
|
// tree. An additional intellectual property rights grant can be found
|
||
|
// in the file PATENTS. All contributing project authors may
|
||
|
// be found in the AUTHORS file in the root of the source tree.
|
||
|
// -----------------------------------------------------------------------------
|
||
|
//
|
||
|
// Utilities for processing transparent channel, NEON version.
|
||
|
//
|
||
|
// Author: Skal (pascal.massimino@gmail.com)
|
||
|
|
||
|
#include "src/dsp/dsp.h"
|
||
|
|
||
|
#if defined(WEBP_USE_NEON)
|
||
|
|
||
|
#include "src/dsp/neon.h"
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
|
||
|
#define MULTIPLIER(a) ((a) * 0x8081)
|
||
|
#define PREMULTIPLY(x, m) (((x) * (m)) >> 23)
|
||
|
|
||
|
#define MULTIPLY_BY_ALPHA(V, ALPHA, OTHER) do { \
|
||
|
const uint8x8_t alpha = (V).val[(ALPHA)]; \
|
||
|
const uint16x8_t r1 = vmull_u8((V).val[1], alpha); \
|
||
|
const uint16x8_t g1 = vmull_u8((V).val[2], alpha); \
|
||
|
const uint16x8_t b1 = vmull_u8((V).val[(OTHER)], alpha); \
|
||
|
/* we use: v / 255 = (v + 1 + (v >> 8)) >> 8 */ \
|
||
|
const uint16x8_t r2 = vsraq_n_u16(r1, r1, 8); \
|
||
|
const uint16x8_t g2 = vsraq_n_u16(g1, g1, 8); \
|
||
|
const uint16x8_t b2 = vsraq_n_u16(b1, b1, 8); \
|
||
|
const uint16x8_t r3 = vaddq_u16(r2, kOne); \
|
||
|
const uint16x8_t g3 = vaddq_u16(g2, kOne); \
|
||
|
const uint16x8_t b3 = vaddq_u16(b2, kOne); \
|
||
|
(V).val[1] = vshrn_n_u16(r3, 8); \
|
||
|
(V).val[2] = vshrn_n_u16(g3, 8); \
|
||
|
(V).val[(OTHER)] = vshrn_n_u16(b3, 8); \
|
||
|
} while (0)
|
||
|
|
||
|
static void ApplyAlphaMultiply_NEON(uint8_t* rgba, int alpha_first,
|
||
|
int w, int h, int stride) {
|
||
|
const uint16x8_t kOne = vdupq_n_u16(1u);
|
||
|
while (h-- > 0) {
|
||
|
uint32_t* const rgbx = (uint32_t*)rgba;
|
||
|
int i = 0;
|
||
|
if (alpha_first) {
|
||
|
for (; i + 8 <= w; i += 8) {
|
||
|
// load aaaa...|rrrr...|gggg...|bbbb...
|
||
|
uint8x8x4_t RGBX = vld4_u8((const uint8_t*)(rgbx + i));
|
||
|
MULTIPLY_BY_ALPHA(RGBX, 0, 3);
|
||
|
vst4_u8((uint8_t*)(rgbx + i), RGBX);
|
||
|
}
|
||
|
} else {
|
||
|
for (; i + 8 <= w; i += 8) {
|
||
|
uint8x8x4_t RGBX = vld4_u8((const uint8_t*)(rgbx + i));
|
||
|
MULTIPLY_BY_ALPHA(RGBX, 3, 0);
|
||
|
vst4_u8((uint8_t*)(rgbx + i), RGBX);
|
||
|
}
|
||
|
}
|
||
|
// Finish with left-overs.
|
||
|
for (; i < w; ++i) {
|
||
|
uint8_t* const rgb = rgba + (alpha_first ? 1 : 0);
|
||
|
const uint8_t* const alpha = rgba + (alpha_first ? 0 : 3);
|
||
|
const uint32_t a = alpha[4 * i];
|
||
|
if (a != 0xff) {
|
||
|
const uint32_t mult = MULTIPLIER(a);
|
||
|
rgb[4 * i + 0] = PREMULTIPLY(rgb[4 * i + 0], mult);
|
||
|
rgb[4 * i + 1] = PREMULTIPLY(rgb[4 * i + 1], mult);
|
||
|
rgb[4 * i + 2] = PREMULTIPLY(rgb[4 * i + 2], mult);
|
||
|
}
|
||
|
}
|
||
|
rgba += stride;
|
||
|
}
|
||
|
}
|
||
|
#undef MULTIPLY_BY_ALPHA
|
||
|
#undef MULTIPLIER
|
||
|
#undef PREMULTIPLY
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
|
||
|
static int DispatchAlpha_NEON(const uint8_t* alpha, int alpha_stride,
|
||
|
int width, int height,
|
||
|
uint8_t* dst, int dst_stride) {
|
||
|
uint32_t alpha_mask = 0xffffffffu;
|
||
|
uint8x8_t mask8 = vdup_n_u8(0xff);
|
||
|
uint32_t tmp[2];
|
||
|
int i, j;
|
||
|
for (j = 0; j < height; ++j) {
|
||
|
// We don't know if alpha is first or last in dst[] (depending on rgbA/Argb
|
||
|
// mode). So we must be sure dst[4*i + 8 - 1] is writable for the store.
|
||
|
// Hence the test with 'width - 1' instead of just 'width'.
|
||
|
for (i = 0; i + 8 <= width - 1; i += 8) {
|
||
|
uint8x8x4_t rgbX = vld4_u8((const uint8_t*)(dst + 4 * i));
|
||
|
const uint8x8_t alphas = vld1_u8(alpha + i);
|
||
|
rgbX.val[0] = alphas;
|
||
|
vst4_u8((uint8_t*)(dst + 4 * i), rgbX);
|
||
|
mask8 = vand_u8(mask8, alphas);
|
||
|
}
|
||
|
for (; i < width; ++i) {
|
||
|
const uint32_t alpha_value = alpha[i];
|
||
|
dst[4 * i] = alpha_value;
|
||
|
alpha_mask &= alpha_value;
|
||
|
}
|
||
|
alpha += alpha_stride;
|
||
|
dst += dst_stride;
|
||
|
}
|
||
|
vst1_u8((uint8_t*)tmp, mask8);
|
||
|
alpha_mask &= tmp[0];
|
||
|
alpha_mask &= tmp[1];
|
||
|
return (alpha_mask != 0xffffffffu);
|
||
|
}
|
||
|
|
||
|
static void DispatchAlphaToGreen_NEON(const uint8_t* alpha, int alpha_stride,
|
||
|
int width, int height,
|
||
|
uint32_t* dst, int dst_stride) {
|
||
|
int i, j;
|
||
|
uint8x8x4_t greens; // leave A/R/B channels zero'd.
|
||
|
greens.val[0] = vdup_n_u8(0);
|
||
|
greens.val[2] = vdup_n_u8(0);
|
||
|
greens.val[3] = vdup_n_u8(0);
|
||
|
for (j = 0; j < height; ++j) {
|
||
|
for (i = 0; i + 8 <= width; i += 8) {
|
||
|
greens.val[1] = vld1_u8(alpha + i);
|
||
|
vst4_u8((uint8_t*)(dst + i), greens);
|
||
|
}
|
||
|
for (; i < width; ++i) dst[i] = alpha[i] << 8;
|
||
|
alpha += alpha_stride;
|
||
|
dst += dst_stride;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int ExtractAlpha_NEON(const uint8_t* argb, int argb_stride,
|
||
|
int width, int height,
|
||
|
uint8_t* alpha, int alpha_stride) {
|
||
|
uint32_t alpha_mask = 0xffffffffu;
|
||
|
uint8x8_t mask8 = vdup_n_u8(0xff);
|
||
|
uint32_t tmp[2];
|
||
|
int i, j;
|
||
|
for (j = 0; j < height; ++j) {
|
||
|
// We don't know if alpha is first or last in dst[] (depending on rgbA/Argb
|
||
|
// mode). So we must be sure dst[4*i + 8 - 1] is writable for the store.
|
||
|
// Hence the test with 'width - 1' instead of just 'width'.
|
||
|
for (i = 0; i + 8 <= width - 1; i += 8) {
|
||
|
const uint8x8x4_t rgbX = vld4_u8((const uint8_t*)(argb + 4 * i));
|
||
|
const uint8x8_t alphas = rgbX.val[0];
|
||
|
vst1_u8((uint8_t*)(alpha + i), alphas);
|
||
|
mask8 = vand_u8(mask8, alphas);
|
||
|
}
|
||
|
for (; i < width; ++i) {
|
||
|
alpha[i] = argb[4 * i];
|
||
|
alpha_mask &= alpha[i];
|
||
|
}
|
||
|
argb += argb_stride;
|
||
|
alpha += alpha_stride;
|
||
|
}
|
||
|
vst1_u8((uint8_t*)tmp, mask8);
|
||
|
alpha_mask &= tmp[0];
|
||
|
alpha_mask &= tmp[1];
|
||
|
return (alpha_mask == 0xffffffffu);
|
||
|
}
|
||
|
|
||
|
static void ExtractGreen_NEON(const uint32_t* argb,
|
||
|
uint8_t* alpha, int size) {
|
||
|
int i;
|
||
|
for (i = 0; i + 16 <= size; i += 16) {
|
||
|
const uint8x16x4_t rgbX = vld4q_u8((const uint8_t*)(argb + i));
|
||
|
const uint8x16_t greens = rgbX.val[1];
|
||
|
vst1q_u8(alpha + i, greens);
|
||
|
}
|
||
|
for (; i < size; ++i) alpha[i] = (argb[i] >> 8) & 0xff;
|
||
|
}
|
||
|
|
||
|
//------------------------------------------------------------------------------
|
||
|
|
||
|
extern void WebPInitAlphaProcessingNEON(void);
|
||
|
|
||
|
WEBP_TSAN_IGNORE_FUNCTION void WebPInitAlphaProcessingNEON(void) {
|
||
|
WebPApplyAlphaMultiply = ApplyAlphaMultiply_NEON;
|
||
|
WebPDispatchAlpha = DispatchAlpha_NEON;
|
||
|
WebPDispatchAlphaToGreen = DispatchAlphaToGreen_NEON;
|
||
|
WebPExtractAlpha = ExtractAlpha_NEON;
|
||
|
WebPExtractGreen = ExtractGreen_NEON;
|
||
|
}
|
||
|
|
||
|
#else // !WEBP_USE_NEON
|
||
|
|
||
|
WEBP_DSP_INIT_STUB(WebPInitAlphaProcessingNEON)
|
||
|
|
||
|
#endif // WEBP_USE_NEON
|