Rocket.Chat.ReactNative/ios/Pods/Flipper-Folly/folly/synchronization/LifoSem.h

758 lines
26 KiB
C
Raw Normal View History

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <algorithm>
#include <atomic>
#include <cstdint>
#include <cstring>
#include <memory>
#include <system_error>
#include <folly/CPortability.h>
#include <folly/IndexedMemPool.h>
#include <folly/Likely.h>
#include <folly/Portability.h>
#include <folly/Traits.h>
#include <folly/detail/StaticSingletonManager.h>
#include <folly/lang/Aligned.h>
#include <folly/lang/SafeAssert.h>
#include <folly/synchronization/AtomicStruct.h>
#include <folly/synchronization/SaturatingSemaphore.h>
namespace folly {
template <
template <typename> class Atom = std::atomic,
class BatonType = SaturatingSemaphore<true, Atom>>
struct LifoSemImpl;
/// LifoSem is a semaphore that wakes its waiters in a manner intended to
/// maximize performance rather than fairness. It should be preferred
/// to a mutex+condvar or POSIX sem_t solution when all of the waiters
/// are equivalent. It is faster than a condvar or sem_t, and it has a
/// shutdown state that might save you a lot of complexity when it comes
/// time to shut down your work pipelines. LifoSem is larger than sem_t,
/// but that is only because it uses padding and alignment to avoid
/// false sharing.
///
/// LifoSem allows multi-post and multi-tryWait, and provides a shutdown
/// state that awakens all waiters. LifoSem is faster than sem_t because
/// it performs exact wakeups, so it often requires fewer system calls.
/// It provides all of the functionality of sem_t except for timed waiting.
/// It is called LifoSem because its wakeup policy is approximately LIFO,
/// rather than the usual FIFO.
///
/// The core semaphore operations provided are:
///
/// -- post() -- if there is a pending waiter, wake it up, otherwise
/// increment the value of the semaphore. If the value of the semaphore
/// is already 2^32-1, does nothing. Compare to sem_post().
///
/// -- post(n) -- equivalent to n calls to post(), but much more efficient.
/// sem_t has no equivalent to this method.
///
/// -- bool tryWait() -- if the semaphore's value is positive, decrements it
/// and returns true, otherwise returns false. Compare to sem_trywait().
///
/// -- uint32_t tryWait(uint32_t n) -- attempts to decrement the semaphore's
/// value by n, returning the amount by which it actually was decremented
/// (a value from 0 to n inclusive). Not atomic. Equivalent to n calls
/// to tryWait(). sem_t has no equivalent to this method.
///
/// -- wait() -- waits until tryWait() can succeed. Compare to sem_wait().
///
/// -- timed wait variants - will wait until timeout. Note when these
/// timeout, the current implementation takes a lock, blocking
/// concurrent pushes and pops. (If timed wait calls are
/// substantial, consider re-working this code to be lock-free).
///
/// LifoSem also has the notion of a shutdown state, in which any calls
/// that would block (or are already blocked) throw ShutdownSemError.
/// Note the difference between a call to wait() and a call to wait()
/// that might block. In the former case tryWait() would succeed, and no
/// isShutdown() check is performed. In the latter case an exception is
/// thrown. This behavior allows a LifoSem controlling work distribution
/// to drain. If you want to immediately stop all waiting on shutdown,
/// you can just check isShutdown() yourself (preferrably wrapped in
/// an UNLIKELY). This fast-stop behavior is easy to add, but difficult
/// to remove if you want the draining behavior, which is why we have
/// chosen the former.
///
/// All LifoSem operations except valueGuess() are guaranteed to be
/// linearizable.
typedef LifoSemImpl<> LifoSem;
/// The exception thrown when wait()ing on an isShutdown() LifoSem
class FOLLY_EXPORT ShutdownSemError : public std::runtime_error {
public:
using std::runtime_error::runtime_error;
};
namespace detail {
// Internally, a LifoSem is either a value or a linked list of wait nodes.
// This union is captured in the LifoSemHead type, which holds either a
// value or an indexed pointer to the list. LifoSemHead itself is a value
// type, the head is a mutable atomic box containing a LifoSemHead value.
// Each wait node corresponds to exactly one waiter. Values can flow
// through the semaphore either by going into and out of the head's value,
// or by direct communication from a poster to a waiter. The former path
// is taken when there are no pending waiters, the latter otherwise. The
// general flow of a post is to try to increment the value or pop-and-post
// a wait node. Either of those have the effect of conveying one semaphore
// unit. Waiting is the opposite, either a decrement of the value or
// push-and-wait of a wait node. The generic LifoSemBase abstracts the
// actual mechanism by which a wait node's post->wait communication is
// performed, which is why we have LifoSemRawNode and LifoSemNode.
/// LifoSemRawNode is the actual pooled storage that backs LifoSemNode
/// for user-specified Handoff types. This is done so that we can have
/// a large static IndexedMemPool of nodes, instead of per-type pools
template <template <typename> class Atom>
struct LifoSemRawNode {
aligned_storage_for_t<void*> raw;
/// The IndexedMemPool index of the next node in this chain, or 0
/// if none. This will be set to uint32_t(-1) if the node is being
/// posted due to a shutdown-induced wakeup
Atom<uint32_t> next{0};
bool isShutdownNotice() const {
return next.load(std::memory_order_relaxed) == uint32_t(-1);
}
void clearShutdownNotice() {
next.store(0, std::memory_order_relaxed);
}
void setShutdownNotice() {
next.store(uint32_t(-1), std::memory_order_relaxed);
}
typedef folly::IndexedMemPool<
LifoSemRawNode<Atom>,
32,
200,
Atom,
IndexedMemPoolTraitsLazyRecycle<LifoSemRawNode<Atom>>>
Pool;
/// Storage for all of the waiter nodes for LifoSem-s that use Atom
static Pool& pool() {
return detail::createGlobal<PoolImpl, void>();
}
private:
struct PoolImpl : Pool {
/// Raw node storage is preallocated in a contiguous memory segment,
/// but we use an anonymous mmap so the physical memory used (RSS) will
/// only reflect the maximum number of waiters that actually existed
/// concurrently. For blocked threads the max node count is limited by the
/// number of threads, so we can conservatively estimate that this will be
/// < 10k. For LifoEventSem, however, we could potentially have many more.
///
/// On a 64-bit architecture each LifoSemRawNode takes 16 bytes. We make
/// the pool 1 million entries.
static constexpr size_t capacity = 1 << 20;
PoolImpl() : Pool(static_cast<uint32_t>(capacity)) {}
};
};
/// Handoff is a type not bigger than a void* that knows how to perform a
/// single post() -> wait() communication. It must have a post() method.
/// If it has a wait() method then LifoSemBase's wait() implementation
/// will work out of the box, otherwise you will need to specialize
/// LifoSemBase::wait accordingly.
template <typename Handoff, template <typename> class Atom>
struct LifoSemNode : public LifoSemRawNode<Atom> {
static_assert(
sizeof(Handoff) <= sizeof(LifoSemRawNode<Atom>::raw),
"Handoff too big for small-object optimization, use indirection");
static_assert(
alignof(Handoff) <= alignof(decltype(LifoSemRawNode<Atom>::raw)),
"Handoff alignment constraint not satisfied");
template <typename... Args>
void init(Args&&... args) {
new (&this->raw) Handoff(std::forward<Args>(args)...);
}
void destroy() {
handoff().~Handoff();
if (kIsDebug) {
memset(&this->raw, 'F', sizeof(this->raw));
}
}
Handoff& handoff() {
return *static_cast<Handoff*>(static_cast<void*>(&this->raw));
}
const Handoff& handoff() const {
return *static_cast<const Handoff*>(static_cast<const void*>(&this->raw));
}
};
template <typename Handoff, template <typename> class Atom>
struct LifoSemNodeRecycler {
void operator()(LifoSemNode<Handoff, Atom>* elem) const {
elem->destroy();
auto idx = LifoSemRawNode<Atom>::pool().locateElem(elem);
LifoSemRawNode<Atom>::pool().recycleIndex(idx);
}
};
/// LifoSemHead is a 64-bit struct that holds a 32-bit value, some state
/// bits, and a sequence number used to avoid ABA problems in the lock-free
/// management of the LifoSem's wait lists. The value can either hold
/// an integral semaphore value (if there are no waiters) or a node index
/// (see IndexedMemPool) for the head of a list of wait nodes
class LifoSemHead {
// What we really want are bitfields:
// uint64_t data : 32; uint64_t isNodeIdx : 1; uint64_t seq : 31;
// Unfortunately g++ generates pretty bad code for this sometimes (I saw
// -O3 code from gcc 4.7.1 copying the bitfields one at a time instead of
// in bulk, for example). We can generate better code anyway by assuming
// that setters won't be given values that cause under/overflow, and
// putting the sequence at the end where its planned overflow doesn't
// need any masking.
//
// data == 0 (empty list) with isNodeIdx is conceptually the same
// as data == 0 (no unclaimed increments) with !isNodeIdx, we always
// convert the former into the latter to make the logic simpler.
enum {
IsNodeIdxShift = 32,
IsShutdownShift = 33,
IsLockedShift = 34,
SeqShift = 35,
};
enum : uint64_t {
IsNodeIdxMask = uint64_t(1) << IsNodeIdxShift,
IsShutdownMask = uint64_t(1) << IsShutdownShift,
IsLockedMask = uint64_t(1) << IsLockedShift,
SeqIncr = uint64_t(1) << SeqShift,
SeqMask = ~(SeqIncr - 1),
};
public:
uint64_t bits;
//////// getters
inline uint32_t idx() const {
assert(isNodeIdx());
assert(uint32_t(bits) != 0);
return uint32_t(bits);
}
inline uint32_t value() const {
assert(!isNodeIdx());
return uint32_t(bits);
}
inline constexpr bool isNodeIdx() const {
return (bits & IsNodeIdxMask) != 0;
}
inline constexpr bool isShutdown() const {
return (bits & IsShutdownMask) != 0;
}
inline constexpr bool isLocked() const {
return (bits & IsLockedMask) != 0;
}
inline constexpr uint32_t seq() const {
return uint32_t(bits >> SeqShift);
}
//////// setter-like things return a new struct
/// This should only be used for initial construction, not for setting
/// the value, because it clears the sequence number
static inline constexpr LifoSemHead fresh(uint32_t value) {
return LifoSemHead{value};
}
/// Returns the LifoSemHead that results from popping a waiter node,
/// given the current waiter node's next ptr
inline LifoSemHead withPop(uint32_t idxNext) const {
assert(!isLocked());
assert(isNodeIdx());
if (idxNext == 0) {
// no isNodeIdx bit or data bits. Wraparound of seq bits is okay
return LifoSemHead{(bits & (SeqMask | IsShutdownMask)) + SeqIncr};
} else {
// preserve sequence bits (incremented with wraparound okay) and
// isNodeIdx bit, replace all data bits
return LifoSemHead{(bits & (SeqMask | IsShutdownMask | IsNodeIdxMask)) +
SeqIncr + idxNext};
}
}
/// Returns the LifoSemHead that results from pushing a new waiter node
inline LifoSemHead withPush(uint32_t _idx) const {
assert(!isLocked());
assert(isNodeIdx() || value() == 0);
assert(!isShutdown());
assert(_idx != 0);
return LifoSemHead{(bits & SeqMask) | IsNodeIdxMask | _idx};
}
/// Returns the LifoSemHead with value increased by delta, with
/// saturation if the maximum value is reached
inline LifoSemHead withValueIncr(uint32_t delta) const {
assert(!isLocked());
assert(!isNodeIdx());
auto rv = LifoSemHead{bits + SeqIncr + delta};
if (UNLIKELY(rv.isNodeIdx())) {
// value has overflowed into the isNodeIdx bit
rv = LifoSemHead{(rv.bits & ~IsNodeIdxMask) | (IsNodeIdxMask - 1)};
}
return rv;
}
/// Returns the LifoSemHead that results from decrementing the value
inline LifoSemHead withValueDecr(uint32_t delta) const {
assert(!isLocked());
assert(delta > 0 && delta <= value());
return LifoSemHead{bits + SeqIncr - delta};
}
/// Returns the LifoSemHead with the same state as the current node,
/// but with the shutdown bit set
inline LifoSemHead withShutdown() const {
return LifoSemHead{bits | IsShutdownMask};
}
// Returns LifoSemHead with lock bit set, but rest of bits unchanged.
inline LifoSemHead withLock() const {
assert(!isLocked());
return LifoSemHead{bits | IsLockedMask};
}
// Returns LifoSemHead with lock bit unset, and updated seqno based
// on idx.
inline LifoSemHead withoutLock(uint32_t idxNext) const {
assert(isLocked());
// We need to treat this as a pop, as we may change the list head.
return LifoSemHead{bits & ~IsLockedMask}.withPop(idxNext);
}
inline constexpr bool operator==(const LifoSemHead& rhs) const {
return bits == rhs.bits;
}
inline constexpr bool operator!=(const LifoSemHead& rhs) const {
return !(*this == rhs);
}
};
/// LifoSemBase is the engine for several different types of LIFO
/// semaphore. LifoSemBase handles storage of positive semaphore values
/// and wait nodes, but the actual waiting and notification mechanism is
/// up to the client.
///
/// The Handoff type is responsible for arranging one wakeup notification.
/// See LifoSemNode for more information on how to make your own.
template <typename Handoff, template <typename> class Atom = std::atomic>
struct LifoSemBase {
/// Constructor
constexpr explicit LifoSemBase(uint32_t initialValue = 0)
: head_(in_place, LifoSemHead::fresh(initialValue)) {}
LifoSemBase(LifoSemBase const&) = delete;
LifoSemBase& operator=(LifoSemBase const&) = delete;
/// Silently saturates if value is already 2^32-1
bool post() {
auto idx = incrOrPop(1);
if (idx != 0) {
idxToNode(idx).handoff().post();
return true;
}
return false;
}
/// Equivalent to n calls to post(), except may be much more efficient.
/// At any point in time at which the semaphore's value would exceed
/// 2^32-1 if tracked with infinite precision, it may be silently
/// truncated to 2^32-1. This saturation is not guaranteed to be exact,
/// although it is guaranteed that overflow won't result in wrap-around.
/// There would be a substantial performance and complexity cost in
/// guaranteeing exact saturation (similar to the cost of maintaining
/// linearizability near the zero value, but without as much of
/// a benefit).
void post(uint32_t n) {
uint32_t idx;
while (n > 0 && (idx = incrOrPop(n)) != 0) {
// pop accounts for only 1
idxToNode(idx).handoff().post();
--n;
}
}
/// Returns true iff shutdown() has been called
bool isShutdown() const {
return UNLIKELY(head_->load(std::memory_order_acquire).isShutdown());
}
/// Prevents blocking on this semaphore, causing all blocking wait()
/// calls to throw ShutdownSemError. Both currently blocked wait() and
/// future calls to wait() for which tryWait() would return false will
/// cause an exception. Calls to wait() for which the matching post()
/// has already occurred will proceed normally.
void shutdown() {
// first set the shutdown bit
auto h = head_->load(std::memory_order_acquire);
while (!h.isShutdown()) {
if (h.isLocked()) {
std::this_thread::yield();
h = head_->load(std::memory_order_acquire);
continue;
}
if (head_->compare_exchange_strong(h, h.withShutdown())) {
// success
h = h.withShutdown();
break;
}
// compare_exchange_strong rereads h, retry
}
// now wake up any waiters
while (h.isNodeIdx()) {
if (h.isLocked()) {
std::this_thread::yield();
h = head_->load(std::memory_order_acquire);
continue;
}
auto& node = idxToNode(h.idx());
auto repl = h.withPop(node.next.load(std::memory_order_relaxed));
if (head_->compare_exchange_strong(h, repl)) {
// successful pop, wake up the waiter and move on. The next
// field is used to convey that this wakeup didn't consume a value
node.setShutdownNotice();
node.handoff().post();
h = repl;
}
}
}
/// Returns true iff value was decremented
bool tryWait() {
uint32_t n = 1;
auto rv = decrOrPush(n, 0);
assert(
(rv == WaitResult::DECR && n == 0) ||
(rv != WaitResult::DECR && n == 1));
// SHUTDOWN is okay here, since we don't actually wait
return rv == WaitResult::DECR;
}
/// Equivalent to (but may be much more efficient than) n calls to
/// tryWait(). Returns the total amount by which the semaphore's value
/// was decreased
uint32_t tryWait(uint32_t n) {
auto const orig = n;
while (n > 0) {
#ifndef NDEBUG
auto prev = n;
#endif
auto rv = decrOrPush(n, 0);
assert(
(rv == WaitResult::DECR && n < prev) ||
(rv != WaitResult::DECR && n == prev));
if (rv != WaitResult::DECR) {
break;
}
}
return orig - n;
}
/// Blocks the current thread until there is a matching post or the
/// semaphore is shut down. Throws ShutdownSemError if the semaphore
/// has been shut down and this method would otherwise be blocking.
/// Note that wait() doesn't throw during shutdown if tryWait() would
/// return true
void wait() {
auto const deadline = std::chrono::steady_clock::time_point::max();
auto res = try_wait_until(deadline);
FOLLY_SAFE_DCHECK(res, "infinity time has passed");
}
bool try_wait() {
return tryWait();
}
template <typename Rep, typename Period>
bool try_wait_for(const std::chrono::duration<Rep, Period>& timeout) {
return try_wait_until(timeout + std::chrono::steady_clock::now());
}
template <typename Clock, typename Duration>
bool try_wait_until(
const std::chrono::time_point<Clock, Duration>& deadline) {
// early check isn't required for correctness, but is an important
// perf win if we can avoid allocating and deallocating a node
if (tryWait()) {
return true;
}
// allocateNode() won't compile unless Handoff has a default
// constructor
UniquePtr node = allocateNode();
auto rv = tryWaitOrPush(*node);
if (UNLIKELY(rv == WaitResult::SHUTDOWN)) {
assert(isShutdown());
throw ShutdownSemError("wait() would block but semaphore is shut down");
}
if (rv == WaitResult::PUSH) {
if (!node->handoff().try_wait_until(deadline)) {
if (tryRemoveNode(*node)) {
return false;
} else {
// We could not remove our node. Return to waiting.
//
// This only happens if we lose a removal race with post(),
// so we are not likely to wait long. This is only
// necessary to ensure we don't return node's memory back to
// IndexedMemPool before post() has had a chance to post to
// handoff(). In a stronger memory reclamation scheme, such
// as hazptr or rcu, this would not be necessary.
node->handoff().wait();
}
}
if (UNLIKELY(node->isShutdownNotice())) {
// this wait() didn't consume a value, it was triggered by shutdown
throw ShutdownSemError(
"blocking wait() interrupted by semaphore shutdown");
}
// node->handoff().wait() can't return until after the node has
// been popped and post()ed, so it is okay for the UniquePtr to
// recycle the node now
}
// else node wasn't pushed, so it is safe to recycle
return true;
}
/// Returns a guess at the current value, designed for debugging.
/// If there are no concurrent posters or waiters then this will
/// be correct
uint32_t valueGuess() const {
// this is actually linearizable, but we don't promise that because
// we may want to add striping in the future to help under heavy
// contention
auto h = head_->load(std::memory_order_acquire);
return h.isNodeIdx() ? 0 : h.value();
}
protected:
enum class WaitResult {
PUSH,
DECR,
SHUTDOWN,
};
/// The type of a std::unique_ptr that will automatically return a
/// LifoSemNode to the appropriate IndexedMemPool
typedef std::
unique_ptr<LifoSemNode<Handoff, Atom>, LifoSemNodeRecycler<Handoff, Atom>>
UniquePtr;
/// Returns a node that can be passed to decrOrLink
template <typename... Args>
UniquePtr allocateNode(Args&&... args) {
auto idx = LifoSemRawNode<Atom>::pool().allocIndex();
if (idx != 0) {
auto& node = idxToNode(idx);
node.clearShutdownNotice();
try {
node.init(std::forward<Args>(args)...);
} catch (...) {
LifoSemRawNode<Atom>::pool().recycleIndex(idx);
throw;
}
return UniquePtr(&node);
} else {
return UniquePtr();
}
}
/// Returns DECR if the semaphore value was decremented (and waiterNode
/// was untouched), PUSH if a reference to the wait node was pushed,
/// or SHUTDOWN if decrement was not possible and push wasn't allowed
/// because isShutdown(). Ownership of the wait node remains the
/// responsibility of the caller, who must not release it until after
/// the node's Handoff has been posted.
WaitResult tryWaitOrPush(LifoSemNode<Handoff, Atom>& waiterNode) {
uint32_t n = 1;
return decrOrPush(n, nodeToIdx(waiterNode));
}
// Locks the list head (blocking concurrent pushes and pops)
// and attempts to remove this node. Returns true if node was
// found and removed, false if not found.
bool tryRemoveNode(const LifoSemNode<Handoff, Atom>& removenode) {
auto removeidx = nodeToIdx(removenode);
auto head = head_->load(std::memory_order_acquire);
// Try to lock the head.
while (true) {
if (head.isLocked()) {
std::this_thread::yield();
head = head_->load(std::memory_order_acquire);
continue;
}
if (!head.isNodeIdx()) {
return false;
}
if (head_->compare_exchange_weak(
head,
head.withLock(),
std::memory_order_acquire,
std::memory_order_relaxed)) {
break;
}
}
// Update local var to what head_ is, for better assert() checking.
head = head.withLock();
bool result = false;
auto idx = head.idx();
if (idx == removeidx) {
// pop from head. Head seqno is updated.
head_->store(
head.withoutLock(removenode.next.load(std::memory_order_relaxed)),
std::memory_order_release);
return true;
}
auto node = &idxToNode(idx);
idx = node->next.load(std::memory_order_relaxed);
while (idx) {
if (idx == removeidx) {
// Pop from mid-list.
node->next.store(
removenode.next.load(std::memory_order_relaxed),
std::memory_order_relaxed);
result = true;
break;
}
node = &idxToNode(idx);
idx = node->next.load(std::memory_order_relaxed);
}
// Unlock and return result
head_->store(head.withoutLock(head.idx()), std::memory_order_release);
return result;
}
private:
cacheline_aligned<folly::AtomicStruct<LifoSemHead, Atom>> head_;
static LifoSemNode<Handoff, Atom>& idxToNode(uint32_t idx) {
auto raw = &LifoSemRawNode<Atom>::pool()[idx];
return *static_cast<LifoSemNode<Handoff, Atom>*>(raw);
}
static uint32_t nodeToIdx(const LifoSemNode<Handoff, Atom>& node) {
return LifoSemRawNode<Atom>::pool().locateElem(&node);
}
/// Either increments by n and returns 0, or pops a node and returns it.
/// If n + the stripe's value overflows, then the stripe's value
/// saturates silently at 2^32-1
uint32_t incrOrPop(uint32_t n) {
while (true) {
assert(n > 0);
auto head = head_->load(std::memory_order_acquire);
if (head.isLocked()) {
std::this_thread::yield();
continue;
}
if (head.isNodeIdx()) {
auto& node = idxToNode(head.idx());
if (head_->compare_exchange_strong(
head,
head.withPop(node.next.load(std::memory_order_relaxed)))) {
// successful pop
return head.idx();
}
} else {
auto after = head.withValueIncr(n);
if (head_->compare_exchange_strong(head, after)) {
// successful incr
return 0;
}
}
// retry
}
}
/// Returns DECR if some amount was decremented, with that amount
/// subtracted from n. If n is 1 and this function returns DECR then n
/// must be 0 afterward. Returns PUSH if no value could be decremented
/// and idx was pushed, or if idx was zero and no push was performed but
/// a push would have been performed with a valid node. Returns SHUTDOWN
/// if the caller should have blocked but isShutdown(). If idx == 0,
/// may return PUSH even after isShutdown() or may return SHUTDOWN
WaitResult decrOrPush(uint32_t& n, uint32_t idx) {
assert(n > 0);
while (true) {
auto head = head_->load(std::memory_order_acquire);
if (head.isLocked()) {
std::this_thread::yield();
continue;
}
if (!head.isNodeIdx() && head.value() > 0) {
// decr
auto delta = std::min(n, head.value());
if (head_->compare_exchange_strong(head, head.withValueDecr(delta))) {
n -= delta;
return WaitResult::DECR;
}
} else {
// push
if (idx == 0) {
return WaitResult::PUSH;
}
if (UNLIKELY(head.isShutdown())) {
return WaitResult::SHUTDOWN;
}
auto& node = idxToNode(idx);
node.next.store(
head.isNodeIdx() ? head.idx() : 0, std::memory_order_relaxed);
if (head_->compare_exchange_strong(head, head.withPush(idx))) {
// push succeeded
return WaitResult::PUSH;
}
}
}
// retry
}
};
} // namespace detail
template <template <typename> class Atom, class BatonType>
struct LifoSemImpl : public detail::LifoSemBase<BatonType, Atom> {
constexpr explicit LifoSemImpl(uint32_t v = 0)
: detail::LifoSemBase<BatonType, Atom>(v) {}
};
} // namespace folly