/* * Copyright (c) Facebook, Inc. and its affiliates. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #define FOLLY_STRING_H_ #include #include #include #include #include #include #include #include #include #include #include #include namespace folly { /** * C-Escape a string, making it suitable for representation as a C string * literal. Appends the result to the output string. * * Backslashes all occurrences of backslash and double-quote: * " -> \" * \ -> \\ * * Replaces all non-printable ASCII characters with backslash-octal * representation: * -> \376 * * Note that we use backslash-octal instead of backslash-hex because the octal * representation is guaranteed to consume no more than 3 characters; "\3760" * represents two characters, one with value 254, and one with value 48 ('0'), * whereas "\xfe0" represents only one character (with value 4064, which leads * to implementation-defined behavior). */ template void cEscape(StringPiece str, String& out); /** * Similar to cEscape above, but returns the escaped string. */ template String cEscape(StringPiece str) { String out; cEscape(str, out); return out; } /** * C-Unescape a string; the opposite of cEscape above. Appends the result * to the output string. * * Recognizes the standard C escape sequences: * * \' \" \? \\ \a \b \f \n \r \t \v * \[0-7]+ * \x[0-9a-fA-F]+ * * In strict mode (default), throws std::invalid_argument if it encounters * an unrecognized escape sequence. In non-strict mode, it leaves * the escape sequence unchanged. */ template void cUnescape(StringPiece str, String& out, bool strict = true); /** * Similar to cUnescape above, but returns the escaped string. */ template String cUnescape(StringPiece str, bool strict = true) { String out; cUnescape(str, out, strict); return out; } /** * URI-escape a string. Appends the result to the output string. * * Alphanumeric characters and other characters marked as "unreserved" in RFC * 3986 ( -_.~ ) are left unchanged. In PATH mode, the forward slash (/) is * also left unchanged. In QUERY mode, spaces are replaced by '+'. All other * characters are percent-encoded. */ enum class UriEscapeMode : unsigned char { // The values are meaningful, see generate_escape_tables.py ALL = 0, QUERY = 1, PATH = 2 }; template void uriEscape( StringPiece str, String& out, UriEscapeMode mode = UriEscapeMode::ALL); /** * Similar to uriEscape above, but returns the escaped string. */ template String uriEscape(StringPiece str, UriEscapeMode mode = UriEscapeMode::ALL) { String out; uriEscape(str, out, mode); return out; } /** * URI-unescape a string. Appends the result to the output string. * * In QUERY mode, '+' are replaced by space. %XX sequences are decoded if * XX is a valid hex sequence, otherwise we throw invalid_argument. */ template void uriUnescape( StringPiece str, String& out, UriEscapeMode mode = UriEscapeMode::ALL); /** * Similar to uriUnescape above, but returns the unescaped string. */ template String uriUnescape(StringPiece str, UriEscapeMode mode = UriEscapeMode::ALL) { String out; uriUnescape(str, out, mode); return out; } /** * stringPrintf is much like printf but deposits its result into a * string. Two signatures are supported: the first simply returns the * resulting string, and the second appends the produced characters to * the specified string and returns a reference to it. */ std::string stringPrintf(FOLLY_PRINTF_FORMAT const char* format, ...) FOLLY_PRINTF_FORMAT_ATTR(1, 2); /* Similar to stringPrintf, with different signature. */ void stringPrintf(std::string* out, FOLLY_PRINTF_FORMAT const char* format, ...) FOLLY_PRINTF_FORMAT_ATTR(2, 3); std::string& stringAppendf( std::string* output, FOLLY_PRINTF_FORMAT const char* format, ...) FOLLY_PRINTF_FORMAT_ATTR(2, 3); /** * Similar to stringPrintf, but accepts a va_list argument. * * As with vsnprintf() itself, the value of ap is undefined after the call. * These functions do not call va_end() on ap. */ std::string stringVPrintf(const char* format, va_list ap); void stringVPrintf(std::string* out, const char* format, va_list ap); std::string& stringVAppendf(std::string* out, const char* format, va_list ap); /** * Backslashify a string, that is, replace non-printable characters * with C-style (but NOT C compliant) "\xHH" encoding. If hex_style * is false, then shorthand notations like "\0" will be used instead * of "\x00" for the most common backslash cases. * * There are two forms, one returning the input string, and one * creating output in the specified output string. * * This is mainly intended for printing to a terminal, so it is not * particularly optimized. * * Do *not* use this in situations where you expect to be able to feed * the string to a C or C++ compiler, as there are nuances with how C * parses such strings that lead to failures. This is for display * purposed only. If you want a string you can embed for use in C or * C++, use cEscape instead. This function is for display purposes * only. */ template void backslashify( folly::StringPiece input, OutputString& output, bool hex_style = false); template OutputString backslashify(StringPiece input, bool hex_style = false) { OutputString output; backslashify(input, output, hex_style); return output; } /** * Take a string and "humanify" it -- that is, make it look better. * Since "better" is subjective, caveat emptor. The basic approach is * to count the number of unprintable characters. If there are none, * then the output is the input. If there are relatively few, or if * there is a long "enough" prefix of printable characters, use * backslashify. If it is mostly binary, then simply hex encode. * * This is an attempt to make a computer smart, and so likely is wrong * most of the time. */ template void humanify(const String1& input, String2& output); template String humanify(const String& input) { String output; humanify(input, output); return output; } /** * Same functionality as Python's binascii.hexlify. Returns true * on successful conversion. * * If append_output is true, append data to the output rather than * replace it. */ template bool hexlify( const InputString& input, OutputString& output, bool append = false); template OutputString hexlify(ByteRange input) { OutputString output; if (!hexlify(input, output)) { // hexlify() currently always returns true, so this can't really happen throw_exception("hexlify failed"); } return output; } template OutputString hexlify(StringPiece input) { return hexlify(ByteRange{input}); } /** * Same functionality as Python's binascii.unhexlify. Returns true * on successful conversion. */ template bool unhexlify(const InputString& input, OutputString& output); template OutputString unhexlify(StringPiece input) { OutputString output; if (!unhexlify(input, output)) { // unhexlify() fails if the input has non-hexidecimal characters, // or if it doesn't consist of a whole number of bytes throw_exception("unhexlify() called with non-hex input"); } return output; } /** * A pretty-printer for numbers that appends suffixes of units of the * given type. It prints 4 sig-figs of value with the most * appropriate unit. * * If `addSpace' is true, we put a space between the units suffix and * the value. * * Current types are: * PRETTY_TIME - s, ms, us, ns, etc. * PRETTY_TIME_HMS - h, m, s, ms, us, ns, etc. * PRETTY_BYTES_METRIC - kB, MB, GB, etc (goes up by 10^3 = 1000 each time) * PRETTY_BYTES - kB, MB, GB, etc (goes up by 2^10 = 1024 each time) * PRETTY_BYTES_IEC - KiB, MiB, GiB, etc * PRETTY_UNITS_METRIC - k, M, G, etc (goes up by 10^3 = 1000 each time) * PRETTY_UNITS_BINARY - k, M, G, etc (goes up by 2^10 = 1024 each time) * PRETTY_UNITS_BINARY_IEC - Ki, Mi, Gi, etc * PRETTY_SI - full SI metric prefixes from yocto to Yotta * http://en.wikipedia.org/wiki/Metric_prefix * * @author Mark Rabkin */ enum PrettyType { PRETTY_TIME, PRETTY_TIME_HMS, PRETTY_BYTES_METRIC, PRETTY_BYTES_BINARY, PRETTY_BYTES = PRETTY_BYTES_BINARY, PRETTY_BYTES_BINARY_IEC, PRETTY_BYTES_IEC = PRETTY_BYTES_BINARY_IEC, PRETTY_UNITS_METRIC, PRETTY_UNITS_BINARY, PRETTY_UNITS_BINARY_IEC, PRETTY_SI, PRETTY_NUM_TYPES, }; std::string prettyPrint(double val, PrettyType, bool addSpace = true); /** * This utility converts StringPiece in pretty format (look above) to double, * with progress information. Alters the StringPiece parameter * to get rid of the already-parsed characters. * Expects string in form {space}* [] * If string is not in correct format, utility finds longest valid prefix and * if there at least one, returns double value based on that prefix and * modifies string to what is left after parsing. Throws and std::range_error * exception if there is no correct parse. * Examples(for PRETTY_UNITS_METRIC): * '10M' => 10 000 000 * '10 M' => 10 000 000 * '10' => 10 * '10 Mx' => 10 000 000, prettyString == "x" * 'abc' => throws std::range_error */ double prettyToDouble( folly::StringPiece* const prettyString, const PrettyType type); /** * Same as prettyToDouble(folly::StringPiece*, PrettyType), but * expects whole string to be correctly parseable. Throws std::range_error * otherwise */ double prettyToDouble(folly::StringPiece prettyString, const PrettyType type); /** * Write a hex dump of size bytes starting at ptr to out. * * The hex dump is formatted as follows: * * for the string "abcdefghijklmnopqrstuvwxyz\x02" 00000000 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 |abcdefghijklmnop| 00000010 71 72 73 74 75 76 77 78 79 7a 02 |qrstuvwxyz. | * * that is, we write 16 bytes per line, both as hex bytes and as printable * characters. Non-printable characters are replaced with '.' * Lines are written to out one by one (one StringPiece at a time) without * delimiters. */ template void hexDump(const void* ptr, size_t size, OutIt out); /** * Return the hex dump of size bytes starting at ptr as a string. */ std::string hexDump(const void* ptr, size_t size); /** * Return a string containing the description of the given errno value. * Takes care not to overwrite the actual system errno, so calling * errnoStr(errno) is valid. */ std::string errnoStr(int err); /* * Split a string into a list of tokens by delimiter. * * The split interface here supports different output types, selected * at compile time: StringPiece, fbstring, or std::string. If you are * using a vector to hold the output, it detects the type based on * what your vector contains. If the output vector is not empty, split * will append to the end of the vector. * * You can also use splitTo() to write the output to an arbitrary * OutputIterator (e.g. std::inserter() on a std::set<>), in which * case you have to tell the function the type. (Rationale: * OutputIterators don't have a value_type, so we can't detect the * type in splitTo without being told.) * * Examples: * * std::vector v; * folly::split(":", "asd:bsd", v); * * std::set s; * folly::splitTo(":", "asd:bsd:asd:csd", * std::inserter(s, s.begin())); * * Split also takes a flag (ignoreEmpty) that indicates whether adjacent * delimiters should be treated as one single separator (ignoring empty tokens) * or not (generating empty tokens). */ template void split( const Delim& delimiter, const String& input, std::vector& out, const bool ignoreEmpty = false); template class fbvector; template void split( const Delim& delimiter, const String& input, folly::fbvector>& out, const bool ignoreEmpty = false); template < class OutputValueType, class Delim, class String, class OutputIterator> void splitTo( const Delim& delimiter, const String& input, OutputIterator out, const bool ignoreEmpty = false); /* * Split a string into a fixed number of string pieces and/or numeric types * by delimiter. Conversions are supported for any type which folly:to<> can * target, including all overloads of parseTo(). Returns 'true' if the fields * were all successfully populated. Returns 'false' if there were too few * fields in the input, or too many fields if exact=true. Casting exceptions * will not be caught. * * Examples: * * folly::StringPiece name, key, value; * if (folly::split('\t', line, name, key, value)) * ... * * folly::StringPiece name; * double value; * int id; * if (folly::split('\t', line, name, value, id)) * ... * * The 'exact' template parameter specifies how the function behaves when too * many fields are present in the input string. When 'exact' is set to its * default value of 'true', a call to split will fail if the number of fields in * the input string does not exactly match the number of output parameters * passed. If 'exact' is overridden to 'false', all remaining fields will be * stored, unsplit, in the last field, as shown below: * * folly::StringPiece x, y. * if (folly::split(':', "a:b:c", x, y)) * assert(x == "a" && y == "b:c"); * * Note that this will likely not work if the last field's target is of numeric * type, in which case folly::to<> will throw an exception. */ namespace detail { template struct IsConvertible : std::false_type {}; template <> struct IsConvertible : std::true_type {}; template struct IsConvertible< void_t()))>, OutputType> : std::true_type {}; } // namespace detail template struct IsConvertible : detail::IsConvertible {}; template typename std::enable_if< StrictConjunction...>::value && sizeof...(OutputTypes) >= 1, bool>::type split(const Delim& delimiter, StringPiece input, OutputTypes&... outputs); /* * Join list of tokens. * * Stores a string representation of tokens in the same order with * deliminer between each element. */ template void join(const Delim& delimiter, Iterator begin, Iterator end, String& output); template void join(const Delim& delimiter, const Container& container, String& output) { join(delimiter, container.begin(), container.end(), output); } template void join( const Delim& delimiter, const std::initializer_list& values, String& output) { join(delimiter, values.begin(), values.end(), output); } template std::string join(const Delim& delimiter, const Container& container) { std::string output; join(delimiter, container.begin(), container.end(), output); return output; } template std::string join( const Delim& delimiter, const std::initializer_list& values) { std::string output; join(delimiter, values.begin(), values.end(), output); return output; } template < class Delim, class Iterator, typename std::enable_if::iterator_category>::value>:: type* = nullptr> std::string join(const Delim& delimiter, Iterator begin, Iterator end) { std::string output; join(delimiter, begin, end, output); return output; } /** * Returns a subpiece with all whitespace removed from the front of @sp. * Whitespace means any of [' ', '\n', '\r', '\t']. */ StringPiece ltrimWhitespace(StringPiece sp); /** * Returns a subpiece with all whitespace removed from the back of @sp. * Whitespace means any of [' ', '\n', '\r', '\t']. */ StringPiece rtrimWhitespace(StringPiece sp); /** * Returns a subpiece with all whitespace removed from the back and front of * @sp. Whitespace means any of [' ', '\n', '\r', '\t']. */ inline StringPiece trimWhitespace(StringPiece sp) { return ltrimWhitespace(rtrimWhitespace(sp)); } /** * Returns a subpiece with all whitespace removed from the front of @sp. * Whitespace means any of [' ', '\n', '\r', '\t']. * DEPRECATED: @see ltrimWhitespace @see rtrimWhitespace */ inline StringPiece skipWhitespace(StringPiece sp) { return ltrimWhitespace(sp); } /** * Returns a subpiece with all characters the provided @toTrim returns true * for removed from the front of @sp. */ template StringPiece ltrim(StringPiece sp, ToTrim toTrim) { while (!sp.empty() && toTrim(sp.front())) { sp.pop_front(); } return sp; } /** * Returns a subpiece with all characters the provided @toTrim returns true * for removed from the back of @sp. */ template StringPiece rtrim(StringPiece sp, ToTrim toTrim) { while (!sp.empty() && toTrim(sp.back())) { sp.pop_back(); } return sp; } /** * Returns a subpiece with all characters the provided @toTrim returns true * for removed from the back and front of @sp. */ template StringPiece trim(StringPiece sp, ToTrim toTrim) { return ltrim(rtrim(sp, std::ref(toTrim)), std::ref(toTrim)); } /** * Strips the leading and the trailing whitespace-only lines. Then looks for * the least indented non-whitespace-only line and removes its amount of * leading whitespace from every line. Assumes leading whitespace is either all * spaces or all tabs. * * Purpose: including a multiline string literal in source code, indented to * the level expected from context. */ std::string stripLeftMargin(std::string s); /** * Fast, in-place lowercasing of ASCII alphabetic characters in strings. * Leaves all other characters unchanged, including those with the 0x80 * bit set. * @param str String to convert * @param length Length of str, in bytes */ void toLowerAscii(char* str, size_t length); inline void toLowerAscii(MutableStringPiece str) { toLowerAscii(str.begin(), str.size()); } inline void toLowerAscii(std::string& str) { // str[0] is legal also if the string is empty. toLowerAscii(&str[0], str.size()); } } // namespace folly #include