// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2008-2015 Bruno Lalande, Paris, France. // Copyright (c) 2009-2015 Mateusz Loskot, London, UK. // This file was modified by Oracle on 2014, 2015. // Modifications copyright (c) 2014-2015, Oracle and/or its affiliates. // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_UTIL_MATH_HPP #define BOOST_GEOMETRY_UTIL_MATH_HPP #include #include #include #include #include //#include #include #include #include #include #include namespace boost { namespace geometry { namespace math { #ifndef DOXYGEN_NO_DETAIL namespace detail { template inline T const& greatest(T const& v1, T const& v2) { return (std::max)(v1, v2); } template inline T const& greatest(T const& v1, T const& v2, T const& v3) { return (std::max)(greatest(v1, v2), v3); } template inline T const& greatest(T const& v1, T const& v2, T const& v3, T const& v4) { return (std::max)(greatest(v1, v2, v3), v4); } template inline T const& greatest(T const& v1, T const& v2, T const& v3, T const& v4, T const& v5) { return (std::max)(greatest(v1, v2, v3, v4), v5); } template ::value> struct abs { static inline T apply(T const& value) { T const zero = T(); return value < zero ? -value : value; } }; template struct abs { static inline T apply(T const& value) { using ::fabs; using std::fabs; // for long double return fabs(value); } }; struct equals_default_policy { template static inline T apply(T const& a, T const& b) { // See http://www.parashift.com/c++-faq-lite/newbie.html#faq-29.17 return greatest(abs::apply(a), abs::apply(b), T(1)); } }; template ::value> struct equals_factor_policy { equals_factor_policy() : factor(1) {} explicit equals_factor_policy(T const& v) : factor(greatest(abs::apply(v), T(1))) {} equals_factor_policy(T const& v0, T const& v1, T const& v2, T const& v3) : factor(greatest(abs::apply(v0), abs::apply(v1), abs::apply(v2), abs::apply(v3), T(1))) {} T const& apply(T const&, T const&) const { return factor; } T factor; }; template struct equals_factor_policy { equals_factor_policy() {} explicit equals_factor_policy(T const&) {} equals_factor_policy(T const& , T const& , T const& , T const& ) {} static inline T apply(T const&, T const&) { return T(1); } }; template ::value> struct equals { template static inline bool apply(Type const& a, Type const& b, Policy const&) { return a == b; } }; template struct equals { template static inline bool apply(Type const& a, Type const& b, Policy const& policy) { boost::ignore_unused(policy); if (a == b) { return true; } if (boost::math::isfinite(a) && boost::math::isfinite(b)) { // If a is INF and b is e.g. 0, the expression below returns true // but the values are obviously not equal, hence the condition return abs::apply(a - b) <= std::numeric_limits::epsilon() * policy.apply(a, b); } else { return a == b; } } }; template inline bool equals_by_policy(T1 const& a, T2 const& b, Policy const& policy) { return detail::equals < typename select_most_precise::type >::apply(a, b, policy); } template ::value> struct smaller { static inline bool apply(Type const& a, Type const& b) { return a < b; } }; template struct smaller { static inline bool apply(Type const& a, Type const& b) { if (!(a < b)) // a >= b { return false; } return ! equals::apply(b, a, equals_default_policy()); } }; template ::value> struct smaller_or_equals { static inline bool apply(Type const& a, Type const& b) { return a <= b; } }; template struct smaller_or_equals { static inline bool apply(Type const& a, Type const& b) { if (a <= b) { return true; } return equals::apply(a, b, equals_default_policy()); } }; template ::value> struct equals_with_epsilon : public equals {}; template < typename T, bool IsFundemantal = boost::is_fundamental::value /* false */ > struct square_root { typedef T return_type; static inline T apply(T const& value) { // for non-fundamental number types assume that sqrt is // defined either: // 1) at T's scope, or // 2) at global scope, or // 3) in namespace std using ::sqrt; using std::sqrt; return sqrt(value); } }; template struct square_root_for_fundamental_fp { typedef FundamentalFP return_type; static inline FundamentalFP apply(FundamentalFP const& value) { #ifdef BOOST_GEOMETRY_SQRT_CHECK_FINITENESS // This is a workaround for some 32-bit platforms. // For some of those platforms it has been reported that // std::sqrt(nan) and/or std::sqrt(-nan) returns a finite value. // For those platforms we need to define the macro // BOOST_GEOMETRY_SQRT_CHECK_FINITENESS so that the argument // to std::sqrt is checked appropriately before passed to std::sqrt if (boost::math::isfinite(value)) { return std::sqrt(value); } else if (boost::math::isinf(value) && value < 0) { return -std::numeric_limits::quiet_NaN(); } return value; #else // for fundamental floating point numbers use std::sqrt return std::sqrt(value); #endif // BOOST_GEOMETRY_SQRT_CHECK_FINITENESS } }; template <> struct square_root : square_root_for_fundamental_fp { }; template <> struct square_root : square_root_for_fundamental_fp { }; template <> struct square_root : square_root_for_fundamental_fp { }; template struct square_root { typedef double return_type; static inline double apply(T const& value) { // for all other fundamental number types use also std::sqrt // // Note: in C++98 the only other possibility is double; // in C++11 there are also overloads for integral types; // this specialization works for those as well. return square_root_for_fundamental_fp < double >::apply(boost::numeric_cast(value)); } }; template < typename T, bool IsFundemantal = boost::is_fundamental::value /* false */ > struct modulo { typedef T return_type; static inline T apply(T const& value1, T const& value2) { // for non-fundamental number types assume that a free // function mod() is defined either: // 1) at T's scope, or // 2) at global scope return mod(value1, value2); } }; template < typename Fundamental, bool IsIntegral = boost::is_integral::value > struct modulo_for_fundamental { typedef Fundamental return_type; static inline Fundamental apply(Fundamental const& value1, Fundamental const& value2) { return value1 % value2; } }; // specialization for floating-point numbers template struct modulo_for_fundamental { typedef Fundamental return_type; static inline Fundamental apply(Fundamental const& value1, Fundamental const& value2) { return std::fmod(value1, value2); } }; // specialization for fundamental number type template struct modulo : modulo_for_fundamental {}; /*! \brief Short constructs to enable partial specialization for PI, 2*PI and PI/2, currently not possible in Math. */ template struct define_pi { static inline T apply() { // Default calls Boost.Math return boost::math::constants::pi(); } }; template struct define_two_pi { static inline T apply() { // Default calls Boost.Math return boost::math::constants::two_pi(); } }; template struct define_half_pi { static inline T apply() { // Default calls Boost.Math return boost::math::constants::half_pi(); } }; template struct relaxed_epsilon { static inline T apply(const T& factor) { return factor * std::numeric_limits::epsilon(); } }; // This must be consistent with math::equals. // By default math::equals() scales the error by epsilon using the greater of // compared values but here is only one value, though it should work the same way. // (a-a) <= max(a, a) * EPS -> 0 <= a*EPS // (a+da-a) <= max(a+da, a) * EPS -> da <= (a+da)*EPS template ::value> struct scaled_epsilon { static inline T apply(T const& val) { return (std::max)(abs::apply(val), T(1)) * std::numeric_limits::epsilon(); } }; template struct scaled_epsilon { static inline T apply(T const&) { return T(0); } }; // ItoF ItoI FtoF template ::is_integer, bool SourceIsInteger = std::numeric_limits::is_integer> struct rounding_cast { static inline Result apply(Source const& v) { return boost::numeric_cast(v); } }; // TtoT template struct rounding_cast { static inline Source apply(Source const& v) { return v; } }; // FtoI template struct rounding_cast { static inline Result apply(Source const& v) { return boost::numeric_cast(v < Source(0) ? v - Source(0.5) : v + Source(0.5)); } }; } // namespace detail #endif template inline T pi() { return detail::define_pi::apply(); } template inline T two_pi() { return detail::define_two_pi::apply(); } template inline T half_pi() { return detail::define_half_pi::apply(); } template inline T relaxed_epsilon(T const& factor) { return detail::relaxed_epsilon::apply(factor); } template inline T scaled_epsilon(T const& value) { return detail::scaled_epsilon::apply(value); } // Maybe replace this by boost equals or boost ublas numeric equals or so /*! \brief returns true if both arguments are equal. \ingroup utility \param a first argument \param b second argument \return true if a == b \note If both a and b are of an integral type, comparison is done by ==. If one of the types is floating point, comparison is done by abs and comparing with epsilon. If one of the types is non-fundamental, it might be a high-precision number and comparison is done using the == operator of that class. */ template inline bool equals(T1 const& a, T2 const& b) { return detail::equals < typename select_most_precise::type >::apply(a, b, detail::equals_default_policy()); } template inline bool equals_with_epsilon(T1 const& a, T2 const& b) { return detail::equals_with_epsilon < typename select_most_precise::type >::apply(a, b, detail::equals_default_policy()); } template inline bool smaller(T1 const& a, T2 const& b) { return detail::smaller < typename select_most_precise::type >::apply(a, b); } template inline bool larger(T1 const& a, T2 const& b) { return detail::smaller < typename select_most_precise::type >::apply(b, a); } template inline bool smaller_or_equals(T1 const& a, T2 const& b) { return detail::smaller_or_equals < typename select_most_precise::type >::apply(a, b); } template inline bool larger_or_equals(T1 const& a, T2 const& b) { return detail::smaller_or_equals < typename select_most_precise::type >::apply(b, a); } template inline T d2r() { static T const conversion_coefficient = geometry::math::pi() / T(180.0); return conversion_coefficient; } template inline T r2d() { static T const conversion_coefficient = T(180.0) / geometry::math::pi(); return conversion_coefficient; } #ifndef DOXYGEN_NO_DETAIL namespace detail { template struct as_radian { template static inline T apply(T const& value) { return value; } }; template <> struct as_radian { template static inline T apply(T const& value) { return value * d2r(); } }; template struct from_radian { template static inline T apply(T const& value) { return value; } }; template <> struct from_radian { template static inline T apply(T const& value) { return value * r2d(); } }; } // namespace detail #endif template inline T as_radian(T const& value) { return detail::as_radian::apply(value); } template inline T from_radian(T const& value) { return detail::from_radian::apply(value); } /*! \brief Calculates the haversine of an angle \ingroup utility \note See http://en.wikipedia.org/wiki/Haversine_formula haversin(alpha) = sin2(alpha/2) */ template inline T hav(T const& theta) { T const half = T(0.5); T const sn = sin(half * theta); return sn * sn; } /*! \brief Short utility to return the square \ingroup utility \param value Value to calculate the square from \return The squared value */ template inline T sqr(T const& value) { return value * value; } /*! \brief Short utility to return the square root \ingroup utility \param value Value to calculate the square root from \return The square root value */ template inline typename detail::square_root::return_type sqrt(T const& value) { return detail::square_root < T, boost::is_fundamental::value >::apply(value); } /*! \brief Short utility to return the modulo of two values \ingroup utility \param value1 First value \param value2 Second value \return The result of the modulo operation on the (ordered) pair (value1, value2) */ template inline typename detail::modulo::return_type mod(T const& value1, T const& value2) { return detail::modulo < T, boost::is_fundamental::value >::apply(value1, value2); } /*! \brief Short utility to workaround gcc/clang problem that abs is converting to integer and that older versions of MSVC does not support abs of long long... \ingroup utility */ template inline T abs(T const& value) { return detail::abs::apply(value); } /*! \brief Short utility to calculate the sign of a number: -1 (negative), 0 (zero), 1 (positive) \ingroup utility */ template inline int sign(T const& value) { T const zero = T(); return value > zero ? 1 : value < zero ? -1 : 0; } /*! \brief Short utility to cast a value possibly rounding it to the nearest integral value. \ingroup utility \note If the source T is NOT an integral type and Result is an integral type the value is rounded towards the closest integral value. Otherwise it's casted without rounding. */ template inline Result rounding_cast(T const& v) { return detail::rounding_cast::apply(v); } } // namespace math }} // namespace boost::geometry #endif // BOOST_GEOMETRY_UTIL_MATH_HPP