/*
 * Copyright (c) Facebook, Inc. and its affiliates.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/**
 * Various low-level, bit-manipulation routines.
 *
 * findFirstSet(x)  [constexpr]
 *    find first (least significant) bit set in a value of an integral type,
 *    1-based (like ffs()).  0 = no bits are set (x == 0)
 *
 * findLastSet(x)  [constexpr]
 *    find last (most significant) bit set in a value of an integral type,
 *    1-based.  0 = no bits are set (x == 0)
 *    for x != 0, findLastSet(x) == 1 + floor(log2(x))
 *
 * extractFirstSet(x)  [constexpr]
 *    extract first (least significant) bit set in a value of an integral
 *    type, 0 = no bits are set (x == 0)
 *
 * nextPowTwo(x)  [constexpr]
 *    Finds the next power of two >= x.
 *
 * isPowTwo(x)  [constexpr]
 *    return true iff x is a power of two
 *
 * popcount(x)
 *    return the number of 1 bits in x
 *
 * Endian
 *    convert between native, big, and little endian representation
 *    Endian::big(x)      big <-> native
 *    Endian::little(x)   little <-> native
 *    Endian::swap(x)     big <-> little
 *
 * @author Tudor Bosman (tudorb@fb.com)
 */

#pragma once

#include <cassert>
#include <cinttypes>
#include <cstdint>
#include <cstring>
#include <limits>
#include <type_traits>

#include <folly/ConstexprMath.h>
#include <folly/Portability.h>
#include <folly/Traits.h>
#include <folly/Utility.h>
#include <folly/lang/Assume.h>
#include <folly/portability/Builtins.h>

namespace folly {

#if __cpp_lib_bit_cast

using std::bit_cast;

#else

//  mimic: std::bit_cast, C++20
template <
    typename To,
    typename From,
    std::enable_if_t<
        sizeof(From) == sizeof(To) && is_trivially_copyable<To>::value &&
            is_trivially_copyable<From>::value,
        int> = 0>
To bit_cast(const From& src) noexcept {
  aligned_storage_for_t<To> storage;
  std::memcpy(&storage, &src, sizeof(From));
  return reinterpret_cast<To&>(storage);
}

#endif

namespace detail {
template <typename Dst, typename Src>
constexpr std::make_signed_t<Dst> bits_to_signed(Src const s) {
  static_assert(std::is_signed<Dst>::value, "unsigned type");
  return to_signed(static_cast<std::make_unsigned_t<Dst>>(to_unsigned(s)));
}
template <typename Dst, typename Src>
constexpr std::make_unsigned_t<Dst> bits_to_unsigned(Src const s) {
  static_assert(std::is_unsigned<Dst>::value, "signed type");
  return static_cast<Dst>(to_unsigned(s));
}
} // namespace detail

/// findFirstSet
///
/// Return the 1-based index of the least significant bit which is set.
/// For x > 0, the exponent in the largest power of two which does not divide x.
template <typename T>
inline constexpr unsigned int findFirstSet(T const v) {
  using S0 = int;
  using S1 = long int;
  using S2 = long long int;
  using detail::bits_to_signed;
  static_assert(sizeof(T) <= sizeof(S2), "over-sized type");
  static_assert(std::is_integral<T>::value, "non-integral type");
  static_assert(!std::is_same<T, bool>::value, "bool type");

  // clang-format off
  return static_cast<unsigned int>(
      sizeof(T) <= sizeof(S0) ? __builtin_ffs(bits_to_signed<S0>(v)) :
      sizeof(T) <= sizeof(S1) ? __builtin_ffsl(bits_to_signed<S1>(v)) :
      sizeof(T) <= sizeof(S2) ? __builtin_ffsll(bits_to_signed<S2>(v)) :
      0);
  // clang-format on
}

/// findLastSet
///
/// Return the 1-based index of the most significant bit which is set.
/// For x > 0, findLastSet(x) == 1 + floor(log2(x)).
template <typename T>
inline constexpr unsigned int findLastSet(T const v) {
  using U0 = unsigned int;
  using U1 = unsigned long int;
  using U2 = unsigned long long int;
  using detail::bits_to_unsigned;
  static_assert(sizeof(T) <= sizeof(U2), "over-sized type");
  static_assert(std::is_integral<T>::value, "non-integral type");
  static_assert(!std::is_same<T, bool>::value, "bool type");

  // If X is a power of two X - Y = 1 + ((X - 1) ^ Y). Doing this transformation
  // allows GCC to remove its own xor that it adds to implement clz using bsr.
  // clang-format off
  using size = index_constant<constexpr_max(sizeof(T), sizeof(U0))>;
  return v ? 1u + static_cast<unsigned int>((8u * size{} - 1u) ^ (
      sizeof(T) <= sizeof(U0) ? __builtin_clz(bits_to_unsigned<U0>(v)) :
      sizeof(T) <= sizeof(U1) ? __builtin_clzl(bits_to_unsigned<U1>(v)) :
      sizeof(T) <= sizeof(U2) ? __builtin_clzll(bits_to_unsigned<U2>(v)) :
      0)) : 0u;
  // clang-format on
}

/// extractFirstSet
///
/// Return a value where all the bits but the least significant are cleared.
template <typename T>
inline constexpr T extractFirstSet(T const v) {
  static_assert(std::is_integral<T>::value, "non-integral type");
  static_assert(std::is_unsigned<T>::value, "signed type");
  static_assert(!std::is_same<T, bool>::value, "bool type");

  return v & -v;
}

/// popcount
///
/// Returns the number of bits which are set.
template <typename T>
inline constexpr unsigned int popcount(T const v) {
  using U0 = unsigned int;
  using U1 = unsigned long int;
  using U2 = unsigned long long int;
  using detail::bits_to_unsigned;
  static_assert(sizeof(T) <= sizeof(U2), "over-sized type");
  static_assert(std::is_integral<T>::value, "non-integral type");
  static_assert(!std::is_same<T, bool>::value, "bool type");

  // clang-format off
  return static_cast<unsigned int>(
      sizeof(T) <= sizeof(U0) ? __builtin_popcount(bits_to_unsigned<U0>(v)) :
      sizeof(T) <= sizeof(U1) ? __builtin_popcountl(bits_to_unsigned<U1>(v)) :
      sizeof(T) <= sizeof(U2) ? __builtin_popcountll(bits_to_unsigned<U2>(v)) :
      0);
  // clang-format on
}

template <class T>
inline constexpr T nextPowTwo(T const v) {
  static_assert(std::is_unsigned<T>::value, "signed type");
  return v ? (T(1) << findLastSet(v - 1)) : T(1);
}

template <class T>
inline constexpr T prevPowTwo(T const v) {
  static_assert(std::is_unsigned<T>::value, "signed type");
  return v ? (T(1) << (findLastSet(v) - 1)) : T(0);
}

template <class T>
inline constexpr bool isPowTwo(T const v) {
  static_assert(std::is_integral<T>::value, "non-integral type");
  static_assert(std::is_unsigned<T>::value, "signed type");
  static_assert(!std::is_same<T, bool>::value, "bool type");
  return (v != 0) && !(v & (v - 1));
}

/**
 * Endianness detection and manipulation primitives.
 */
namespace detail {

template <size_t Size>
struct uint_types_by_size;

#define FB_GEN(sz, fn)                                      \
  static inline uint##sz##_t byteswap_gen(uint##sz##_t v) { \
    return fn(v);                                           \
  }                                                         \
  template <>                                               \
  struct uint_types_by_size<sz / 8> {                       \
    using type = uint##sz##_t;                              \
  };

FB_GEN(8, uint8_t)
#ifdef _MSC_VER
FB_GEN(64, _byteswap_uint64)
FB_GEN(32, _byteswap_ulong)
FB_GEN(16, _byteswap_ushort)
#else
FB_GEN(64, __builtin_bswap64)
FB_GEN(32, __builtin_bswap32)
FB_GEN(16, __builtin_bswap16)
#endif

#undef FB_GEN

template <class T>
struct EndianInt {
  static_assert(
      (std::is_integral<T>::value && !std::is_same<T, bool>::value) ||
          std::is_floating_point<T>::value,
      "template type parameter must be non-bool integral or floating point");
  static T swap(T x) {
    // we implement this with bit_cast because that is defined behavior in C++
    // we rely on compilers to optimize away the bit_cast calls
    constexpr auto s = sizeof(T);
    using B = typename uint_types_by_size<s>::type;
    return bit_cast<T>(byteswap_gen(bit_cast<B>(x)));
  }
  static T big(T x) {
    return kIsLittleEndian ? EndianInt::swap(x) : x;
  }
  static T little(T x) {
    return kIsBigEndian ? EndianInt::swap(x) : x;
  }
};

} // namespace detail

// big* convert between native and big-endian representations
// little* convert between native and little-endian representations
// swap* convert between big-endian and little-endian representations
//
// ntohs, htons == big16
// ntohl, htonl == big32
#define FB_GEN1(fn, t, sz) \
  static t fn##sz(t x) {   \
    return fn<t>(x);       \
  }

#define FB_GEN2(t, sz) \
  FB_GEN1(swap, t, sz) \
  FB_GEN1(big, t, sz)  \
  FB_GEN1(little, t, sz)

#define FB_GEN(sz)          \
  FB_GEN2(uint##sz##_t, sz) \
  FB_GEN2(int##sz##_t, sz)

class Endian {
 public:
  enum class Order : uint8_t {
    LITTLE,
    BIG,
  };

  static constexpr Order order = kIsLittleEndian ? Order::LITTLE : Order::BIG;

  template <class T>
  static T swap(T x) {
    return folly::detail::EndianInt<T>::swap(x);
  }
  template <class T>
  static T big(T x) {
    return folly::detail::EndianInt<T>::big(x);
  }
  template <class T>
  static T little(T x) {
    return folly::detail::EndianInt<T>::little(x);
  }

#if !defined(__ANDROID__)
  FB_GEN(64)
  FB_GEN(32)
  FB_GEN(16)
  FB_GEN(8)
#endif
};

#undef FB_GEN
#undef FB_GEN2
#undef FB_GEN1

template <class T, class Enable = void>
struct Unaligned;

/**
 * Representation of an unaligned value of a POD type.
 */
FOLLY_PACK_PUSH
template <class T>
struct Unaligned<T, typename std::enable_if<std::is_pod<T>::value>::type> {
  Unaligned() = default; // uninitialized
  /* implicit */ Unaligned(T v) : value(v) {}
  T value;
} FOLLY_PACK_ATTR;
FOLLY_PACK_POP

/**
 * Read an unaligned value of type T and return it.
 */
template <class T>
inline T loadUnaligned(const void* p) {
  static_assert(sizeof(Unaligned<T>) == sizeof(T), "Invalid unaligned size");
  static_assert(alignof(Unaligned<T>) == 1, "Invalid alignment");
  if (kHasUnalignedAccess) {
    return static_cast<const Unaligned<T>*>(p)->value;
  } else {
    T value;
    memcpy(&value, p, sizeof(T));
    return value;
  }
}

/**
 * Read l bytes into the low bits of a value of an unsigned integral
 * type T, where l < sizeof(T).
 *
 * This is intended as a complement to loadUnaligned to read the tail
 * of a buffer when it is processed one word at a time.
 */
template <class T>
inline T partialLoadUnaligned(const void* p, size_t l) {
  static_assert(
      std::is_integral<T>::value && std::is_unsigned<T>::value &&
          sizeof(T) <= 8,
      "Invalid type");
  assume(l < sizeof(T));

  auto cp = static_cast<const char*>(p);
  T value = 0;
  if (!kHasUnalignedAccess || !kIsLittleEndian) {
    // Unsupported, use memcpy.
    memcpy(&value, cp, l);
    return value;
  }

  auto avail = l;
  if (l & 4) {
    avail -= 4;
    value = static_cast<T>(loadUnaligned<uint32_t>(cp + avail)) << (avail * 8);
  }
  if (l & 2) {
    avail -= 2;
    value |= static_cast<T>(loadUnaligned<uint16_t>(cp + avail)) << (avail * 8);
  }
  if (l & 1) {
    value |= loadUnaligned<uint8_t>(cp);
  }
  return value;
}

/**
 * Write an unaligned value of type T.
 */
template <class T>
inline void storeUnaligned(void* p, T value) {
  static_assert(sizeof(Unaligned<T>) == sizeof(T), "Invalid unaligned size");
  static_assert(alignof(Unaligned<T>) == 1, "Invalid alignment");
  if (kHasUnalignedAccess) {
    // Prior to C++14, the spec says that a placement new like this
    // is required to check that p is not nullptr, and to do nothing
    // if p is a nullptr. By assuming it's not a nullptr, we get a
    // nice loud segfault in optimized builds if p is nullptr, rather
    // than just silently doing nothing.
    assume(p != nullptr);
    new (p) Unaligned<T>(value);
  } else {
    memcpy(p, &value, sizeof(T));
  }
}

template <typename T>
T bitReverse(T n) {
  auto m = static_cast<typename std::make_unsigned<T>::type>(n);
  m = ((m & 0xAAAAAAAAAAAAAAAA) >> 1) | ((m & 0x5555555555555555) << 1);
  m = ((m & 0xCCCCCCCCCCCCCCCC) >> 2) | ((m & 0x3333333333333333) << 2);
  m = ((m & 0xF0F0F0F0F0F0F0F0) >> 4) | ((m & 0x0F0F0F0F0F0F0F0F) << 4);
  return static_cast<T>(Endian::swap(m));
}

} // namespace folly