//======================================================================= // Copyright 2002 Indiana University. // Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= #ifndef BOOST_GRAPH_TEST_HPP #define BOOST_GRAPH_TEST_HPP #include <vector> #include <boost/test/minimal.hpp> #include <boost/graph/filtered_graph.hpp> #include <boost/graph/iteration_macros.hpp> #include <boost/graph/isomorphism.hpp> #include <boost/graph/copy.hpp> #include <boost/graph/graph_utility.hpp> // for connects #include <boost/range.hpp> #include <boost/range/algorithm/find_if.hpp> // UNDER CONSTRUCTION namespace boost { template <typename Graph> struct graph_test { typedef typename graph_traits<Graph>::vertex_descriptor vertex_t; typedef typename graph_traits<Graph>::edge_descriptor edge_t; typedef typename graph_traits<Graph>::vertices_size_type v_size_t; typedef typename graph_traits<Graph>::degree_size_type deg_size_t; typedef typename graph_traits<Graph>::edges_size_type e_size_t; typedef typename graph_traits<Graph>::out_edge_iterator out_edge_iter; typedef typename property_map<Graph, vertex_index_t>::type index_map_t; typedef iterator_property_map<typename std::vector<vertex_t>::iterator, index_map_t,vertex_t,vertex_t&> IsoMap; struct ignore_vertex { ignore_vertex() { } ignore_vertex(vertex_t v) : v(v) { } bool operator()(vertex_t x) const { return x != v; } vertex_t v; }; struct ignore_edge { ignore_edge() { } ignore_edge(edge_t e) : e(e) { } bool operator()(edge_t x) const { return x != e; } edge_t e; }; struct ignore_edges { ignore_edges(vertex_t s, vertex_t t, const Graph& g) : s(s), t(t), g(g) { } bool operator()(edge_t x) const { return !(source(x, g) == s && target(x, g) == t); } vertex_t s; vertex_t t; const Graph& g; }; //========================================================================= // Traversal Operations void test_incidence_graph (const std::vector<vertex_t>& vertex_set, const std::vector< std::pair<vertex_t, vertex_t> >& edge_set, const Graph& g) { typedef typename std::vector<vertex_t>::const_iterator vertex_iter; typedef typename std::vector< std::pair<vertex_t, vertex_t> > ::const_iterator edge_iter; typedef typename graph_traits<Graph>::out_edge_iterator out_edge_iter; for (vertex_iter ui = vertex_set.begin(); ui != vertex_set.end(); ++ui) { vertex_t u = *ui; std::vector<vertex_t> adj; for (edge_iter e = edge_set.begin(); e != edge_set.end(); ++e) if (e->first == u) adj.push_back(e->second); std::pair<out_edge_iter, out_edge_iter> p = out_edges(u, g); BOOST_CHECK(out_degree(u, g) == adj.size()); BOOST_CHECK(deg_size_t(std::distance(p.first, p.second)) == out_degree(u, g)); for (; p.first != p.second; ++p.first) { edge_t e = *p.first; BOOST_CHECK(source(e, g) == u); BOOST_CHECK(container_contains(adj, target(e, g)) == true); } } } void test_bidirectional_graph (const std::vector<vertex_t>& vertex_set, const std::vector< std::pair<vertex_t, vertex_t> >& edge_set, const Graph& g) { typedef typename std::vector<vertex_t>::const_iterator vertex_iter; typedef typename std::vector< std::pair<vertex_t, vertex_t> > ::const_iterator edge_iter; typedef typename graph_traits<Graph>::in_edge_iterator in_edge_iter; for (vertex_iter vi = vertex_set.begin(); vi != vertex_set.end(); ++vi) { vertex_t v = *vi; std::vector<vertex_t> inv_adj; for (edge_iter e = edge_set.begin(); e != edge_set.end(); ++e) if (e->second == v) inv_adj.push_back(e->first); std::pair<in_edge_iter, in_edge_iter> p = in_edges(v, g); BOOST_CHECK(in_degree(v, g) == inv_adj.size()); BOOST_CHECK(deg_size_t(std::distance(p.first, p.second)) == in_degree(v, g)); for (; p.first != p.second; ++p.first) { edge_t e = *p.first; BOOST_CHECK(target(e, g) == v); BOOST_CHECK(container_contains(inv_adj, source(e, g)) == true); } } } void test_adjacency_graph (const std::vector<vertex_t>& vertex_set, const std::vector< std::pair<vertex_t,vertex_t> >& edge_set, const Graph& g) { typedef typename std::vector<vertex_t>::const_iterator vertex_iter; typedef typename std::vector<std::pair<vertex_t,vertex_t> > ::const_iterator edge_iter; typedef typename graph_traits<Graph>::adjacency_iterator adj_iter; for (vertex_iter ui = vertex_set.begin(); ui != vertex_set.end(); ++ui) { vertex_t u = *ui; std::vector<vertex_t> adj; for (edge_iter e = edge_set.begin(); e != edge_set.end(); ++e) if (e->first == u) adj.push_back(e->second); std::pair<adj_iter, adj_iter> p = adjacent_vertices(u, g); BOOST_CHECK(deg_size_t(std::distance(p.first, p.second)) == adj.size()); for (; p.first != p.second; ++p.first) { vertex_t v = *p.first; BOOST_CHECK(container_contains(adj, v) == true); } } } void test_vertex_list_graph (const std::vector<vertex_t>& vertex_set, const Graph& g) { typedef typename graph_traits<Graph>::vertex_iterator v_iter; std::pair<v_iter, v_iter> p = vertices(g); BOOST_CHECK(num_vertices(g) == vertex_set.size()); v_size_t n = (size_t)std::distance(p.first, p.second); BOOST_CHECK(n == num_vertices(g)); for (; p.first != p.second; ++p.first) { vertex_t v = *p.first; BOOST_CHECK(container_contains(vertex_set, v) == true); } } void test_edge_list_graph (const std::vector<vertex_t>& vertex_set, const std::vector< std::pair<vertex_t, vertex_t> >& edge_set, const Graph& g) { typedef typename graph_traits<Graph>::edge_iterator e_iter; std::pair<e_iter, e_iter> p = edges(g); BOOST_CHECK(num_edges(g) == edge_set.size()); e_size_t m = std::distance(p.first, p.second); BOOST_CHECK(m == num_edges(g)); for (; p.first != p.second; ++p.first) { edge_t e = *p.first; BOOST_CHECK(find_if(edge_set, connects(source(e, g), target(e, g), g)) != boost::end(edge_set)); BOOST_CHECK(container_contains(vertex_set, source(e, g)) == true); BOOST_CHECK(container_contains(vertex_set, target(e, g)) == true); } } void test_adjacency_matrix (const std::vector<vertex_t>& vertex_set, const std::vector< std::pair<vertex_t, vertex_t> >& edge_set, const Graph& g) { std::pair<edge_t, bool> p; for (typename std::vector<std::pair<vertex_t, vertex_t> > ::const_iterator i = edge_set.begin(); i != edge_set.end(); ++i) { p = edge(i->first, i->second, g); BOOST_CHECK(p.second == true); BOOST_CHECK(source(p.first, g) == i->first); BOOST_CHECK(target(p.first, g) == i->second); } typename std::vector<vertex_t>::const_iterator j, k; for (j = vertex_set.begin(); j != vertex_set.end(); ++j) for (k = vertex_set.begin(); k != vertex_set.end(); ++k) { p = edge(*j, *k, g); if (p.second == true) BOOST_CHECK(find_if(edge_set, connects(source(p.first, g), target(p.first, g), g)) != boost::end(edge_set)); } } //========================================================================= // Mutating Operations void test_add_vertex(Graph& g) { Graph cpy; std::vector<vertex_t> iso_vec(num_vertices(g)); IsoMap iso_map(iso_vec.begin(), get(vertex_index, g)); copy_graph(g, cpy, orig_to_copy(iso_map)); BOOST_CHECK((verify_isomorphism(g, cpy, iso_map))); vertex_t v = add_vertex(g); BOOST_CHECK(num_vertices(g) == num_vertices(cpy) + 1); BOOST_CHECK(out_degree(v, g) == 0); // Make sure the rest of the graph stayed the same BOOST_CHECK((verify_isomorphism (make_filtered_graph(g, keep_all(), ignore_vertex(v)), cpy, iso_map))); } void test_add_edge(vertex_t u, vertex_t v, Graph& g) { Graph cpy; std::vector<vertex_t> iso_vec(num_vertices(g)); IsoMap iso_map(iso_vec.begin(), get(vertex_index, g)); copy_graph(g, cpy, orig_to_copy(iso_map)); bool parallel_edge_exists = container_contains(adjacent_vertices(u, g), v); std::pair<edge_t, bool> p = add_edge(u, v, g); edge_t e = p.first; bool added = p.second; if (is_undirected(g) && u == v) // self edge BOOST_CHECK(added == false); else if (parallel_edge_exists) BOOST_CHECK(allows_parallel_edges(g) && added == true || !allows_parallel_edges(g) && added == false); else BOOST_CHECK(added == true); if (p.second == true) { // edge added BOOST_CHECK(num_edges(g) == num_edges(cpy) + 1); BOOST_CHECK(container_contains(out_edges(u, g), e) == true); BOOST_CHECK((verify_isomorphism (make_filtered_graph(g, ignore_edge(e)), cpy, iso_map))); } else { // edge not added if (! (is_undirected(g) && u == v)) { // e should be a parallel edge BOOST_CHECK(source(e, g) == u); BOOST_CHECK(target(e, g) == v); } // The graph should not be changed. BOOST_CHECK((verify_isomorphism(g, cpy, iso_map))); } } // test_add_edge() void test_remove_edge(vertex_t u, vertex_t v, Graph& g) { Graph cpy; std::vector<vertex_t> iso_vec(num_vertices(g)); IsoMap iso_map(iso_vec.begin(), get(vertex_index, g)); copy_graph(g, cpy, orig_to_copy(iso_map)); deg_size_t occurances = count(adjacent_vertices(u, g), v); remove_edge(u, v, g); BOOST_CHECK(num_edges(g) + occurances == num_edges(cpy)); BOOST_CHECK((verify_isomorphism (g, make_filtered_graph(cpy, ignore_edges(u,v,cpy)), iso_map))); } void test_remove_edge(edge_t e, Graph& g) { Graph cpy; std::vector<vertex_t> iso_vec(num_vertices(g)); IsoMap iso_map(iso_vec.begin(), get(vertex_index, g)); copy_graph(g, cpy, orig_to_copy(iso_map)); vertex_t u = source(e, g), v = target(e, g); deg_size_t occurances = count(adjacent_vertices(u, g), v); remove_edge(e, g); BOOST_CHECK(num_edges(g) + 1 == num_edges(cpy)); BOOST_CHECK(count(adjacent_vertices(u, g), v) + 1 == occurances); BOOST_CHECK((verify_isomorphism (g, make_filtered_graph(cpy, ignore_edge(e)), iso_map))); } void test_clear_vertex(vertex_t v, Graph& g) { Graph cpy; std::vector<vertex_t> iso_vec(num_vertices(g)); IsoMap iso_map(iso_vec.begin(), get(vertex_index, g)); copy_graph(g, cpy, orig_to_copy(iso_map)); clear_vertex(v, g); BOOST_CHECK(out_degree(v, g) == 0); BOOST_CHECK(num_vertices(g) == num_vertices(cpy)); BOOST_CHECK((verify_isomorphism (g, make_filtered_graph(cpy, keep_all(), ignore_vertex(v)), iso_map))); } //========================================================================= // Property Map template <typename PropVal, typename PropertyTag> void test_readable_vertex_property_graph (const std::vector<PropVal>& vertex_prop, PropertyTag tag, const Graph& g) { typedef typename property_map<Graph, PropertyTag>::const_type const_Map; const_Map pmap = get(tag, g); typename std::vector<PropVal>::const_iterator i = vertex_prop.begin(); for (typename boost::graph_traits<Graph>::vertex_iterator bgl_first_9 = vertices(g).first, bgl_last_9 = vertices(g).second; bgl_first_9 != bgl_last_9; bgl_first_9 = bgl_last_9) for (typename boost::graph_traits<Graph>::vertex_descriptor v; bgl_first_9 != bgl_last_9 ? (v = *bgl_first_9, true) : false; ++bgl_first_9) { //BGL_FORALL_VERTICES_T(v, g, Graph) { typename property_traits<const_Map>::value_type pval1 = get(pmap, v), pval2 = get(tag, g, v); BOOST_CHECK(pval1 == pval2); BOOST_CHECK(pval1 == *i++); } } template <typename PropVal, typename PropertyTag> void test_vertex_property_graph (const std::vector<PropVal>& vertex_prop, PropertyTag tag, Graph& g) { typedef typename property_map<Graph, PropertyTag>::type PMap; PMap pmap = get(tag, g); typename std::vector<PropVal>::const_iterator i = vertex_prop.begin(); for (typename boost::graph_traits<Graph>::vertex_iterator bgl_first_9 = vertices(g).first, bgl_last_9 = vertices(g).second; bgl_first_9 != bgl_last_9; bgl_first_9 = bgl_last_9) for (typename boost::graph_traits<Graph>::vertex_descriptor v; bgl_first_9 != bgl_last_9 ? (v = *bgl_first_9, true) : false; ++bgl_first_9) // BGL_FORALL_VERTICES_T(v, g, Graph) put(pmap, v, *i++); test_readable_vertex_property_graph(vertex_prop, tag, g); BGL_FORALL_VERTICES_T(v, g, Graph) put(pmap, v, vertex_prop[0]); typename std::vector<PropVal>::const_iterator j = vertex_prop.begin(); BGL_FORALL_VERTICES_T(v, g, Graph) put(tag, g, v, *j++); test_readable_vertex_property_graph(vertex_prop, tag, g); } }; } // namespace boost #include <boost/graph/iteration_macros_undef.hpp> #endif // BOOST_GRAPH_TEST_HPP