Rocket.Chat.ReactNative/ios/Pods/boost-for-react-native/boost/graph/subgraph.hpp

1071 lines
39 KiB
C++

//=======================================================================
// Copyright 2001 University of Notre Dame.
// Authors: Jeremy G. Siek and Lie-Quan Lee
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_SUBGRAPH_HPP
#define BOOST_SUBGRAPH_HPP
// UNDER CONSTRUCTION
#include <boost/config.hpp>
#include <list>
#include <vector>
#include <map>
#include <boost/assert.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/graph_mutability_traits.hpp>
#include <boost/graph/properties.hpp>
#include <boost/iterator/indirect_iterator.hpp>
#include <boost/static_assert.hpp>
#include <boost/assert.hpp>
#include <boost/type_traits.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/or.hpp>
namespace boost {
struct subgraph_tag { };
/** @name Property Lookup
* The local_property and global_property functions are used to create
* structures that determine the lookup strategy for properties in subgraphs.
* Note that the nested kind member is used to help interoperate with actual
* Property types.
*/
//@{
template <typename T>
struct local_property
{
typedef T kind;
local_property(T x) : value(x) { }
T value;
};
template <typename T>
inline local_property<T> local(T x)
{ return local_property<T>(x); }
template <typename T>
struct global_property
{
typedef T kind;
global_property(T x) : value(x) { }
T value;
};
template <typename T>
inline global_property<T> global(T x)
{ return global_property<T>(x); }
//@}
// Invariants of an induced subgraph:
// - If vertex u is in subgraph g, then u must be in g.parent().
// - If edge e is in subgraph g, then e must be in g.parent().
// - If edge e=(u,v) is in the root graph, then edge e
// is also in any subgraph that contains both vertex u and v.
// The Graph template parameter must have a vertex_index and edge_index
// internal property. It is assumed that the vertex indices are assigned
// automatically by the graph during a call to add_vertex(). It is not
// assumed that the edge vertices are assigned automatically, they are
// explicitly assigned here.
template <typename Graph>
class subgraph {
typedef graph_traits<Graph> Traits;
typedef std::list<subgraph<Graph>*> ChildrenList;
public:
// Graph requirements
typedef typename Traits::vertex_descriptor vertex_descriptor;
typedef typename Traits::edge_descriptor edge_descriptor;
typedef typename Traits::directed_category directed_category;
typedef typename Traits::edge_parallel_category edge_parallel_category;
typedef typename Traits::traversal_category traversal_category;
// IncidenceGraph requirements
typedef typename Traits::out_edge_iterator out_edge_iterator;
typedef typename Traits::degree_size_type degree_size_type;
// AdjacencyGraph requirements
typedef typename Traits::adjacency_iterator adjacency_iterator;
// VertexListGraph requirements
typedef typename Traits::vertex_iterator vertex_iterator;
typedef typename Traits::vertices_size_type vertices_size_type;
// EdgeListGraph requirements
typedef typename Traits::edge_iterator edge_iterator;
typedef typename Traits::edges_size_type edges_size_type;
typedef typename Traits::in_edge_iterator in_edge_iterator;
typedef typename edge_property_type<Graph>::type edge_property_type;
typedef typename vertex_property_type<Graph>::type vertex_property_type;
typedef subgraph_tag graph_tag;
typedef Graph graph_type;
typedef typename graph_property_type<Graph>::type graph_property_type;
// Create the main graph, the root of the subgraph tree
subgraph()
: m_parent(0), m_edge_counter(0)
{ }
subgraph(const graph_property_type& p)
: m_graph(p), m_parent(0), m_edge_counter(0)
{ }
subgraph(vertices_size_type n, const graph_property_type& p = graph_property_type())
: m_graph(n, p), m_parent(0), m_edge_counter(0), m_global_vertex(n)
{
typename Graph::vertex_iterator v, v_end;
vertices_size_type i = 0;
for(boost::tie(v, v_end) = vertices(m_graph); v != v_end; ++v)
m_global_vertex[i++] = *v;
}
// copy constructor
subgraph(const subgraph& x)
: m_parent(x.m_parent), m_edge_counter(x.m_edge_counter)
, m_global_vertex(x.m_global_vertex), m_global_edge(x.m_global_edge)
{
if(x.is_root())
{
m_graph = x.m_graph;
}
// Do a deep copy (recursive).
// Only the root graph is copied, the subgraphs contain
// only references to the global vertices they own.
typename subgraph<Graph>::children_iterator i,i_end;
boost::tie(i,i_end) = x.children();
for(; i != i_end; ++i)
{
subgraph<Graph> child = this->create_subgraph();
child = *i;
vertex_iterator vi,vi_end;
boost::tie(vi,vi_end) = vertices(*i);
for (;vi!=vi_end;++vi)
{
add_vertex(*vi,child);
}
}
}
~subgraph() {
for(typename ChildrenList::iterator i = m_children.begin();
i != m_children.end(); ++i)
{
delete *i;
}
}
// Return a null vertex descriptor for the graph.
static vertex_descriptor null_vertex()
{ return Traits::null_vertex(); }
// Create a subgraph
subgraph<Graph>& create_subgraph() {
m_children.push_back(new subgraph<Graph>());
m_children.back()->m_parent = this;
return *m_children.back();
}
// Create a subgraph with the specified vertex set.
template <typename VertexIterator>
subgraph<Graph>& create_subgraph(VertexIterator first, VertexIterator last) {
m_children.push_back(new subgraph<Graph>());
m_children.back()->m_parent = this;
for(; first != last; ++first) {
add_vertex(*first, *m_children.back());
}
return *m_children.back();
}
// local <-> global descriptor conversion functions
vertex_descriptor local_to_global(vertex_descriptor u_local) const
{ return is_root() ? u_local : m_global_vertex[u_local]; }
vertex_descriptor global_to_local(vertex_descriptor u_global) const {
vertex_descriptor u_local; bool in_subgraph;
if (is_root()) return u_global;
boost::tie(u_local, in_subgraph) = this->find_vertex(u_global);
BOOST_ASSERT(in_subgraph == true);
return u_local;
}
edge_descriptor local_to_global(edge_descriptor e_local) const
{ return is_root() ? e_local : m_global_edge[get(get(edge_index, m_graph), e_local)]; }
edge_descriptor global_to_local(edge_descriptor e_global) const
{ return is_root() ? e_global : (*m_local_edge.find(get(get(edge_index, root().m_graph), e_global))).second; }
// Is vertex u (of the root graph) contained in this subgraph?
// If so, return the matching local vertex.
std::pair<vertex_descriptor, bool>
find_vertex(vertex_descriptor u_global) const {
if (is_root()) return std::make_pair(u_global, true);
typename LocalVertexMap::const_iterator i = m_local_vertex.find(u_global);
bool valid = i != m_local_vertex.end();
return std::make_pair((valid ? (*i).second : null_vertex()), valid);
}
// Is edge e (of the root graph) contained in this subgraph?
// If so, return the matching local edge.
std::pair<edge_descriptor, bool>
find_edge(edge_descriptor e_global) const {
if (is_root()) return std::make_pair(e_global, true);
typename LocalEdgeMap::const_iterator i =
m_local_edge.find(get(get(edge_index, root().m_graph), e_global));
bool valid = i != m_local_edge.end();
return std::make_pair((valid ? (*i).second : edge_descriptor()), valid);
}
// Return the parent graph.
subgraph& parent() { return *m_parent; }
const subgraph& parent() const { return *m_parent; }
// Return true if this is the root subgraph
bool is_root() const { return m_parent == 0; }
// Return the root graph of the subgraph tree.
subgraph& root()
{ return is_root() ? *this : m_parent->root(); }
const subgraph& root() const
{ return is_root() ? *this : m_parent->root(); }
// Return the children subgraphs of this graph/subgraph.
// Use a list of pointers because the VC++ std::list doesn't like
// storing incomplete type.
typedef indirect_iterator<
typename ChildrenList::const_iterator
, subgraph<Graph>
, std::bidirectional_iterator_tag
>
children_iterator;
typedef indirect_iterator<
typename ChildrenList::const_iterator
, subgraph<Graph> const
, std::bidirectional_iterator_tag
>
const_children_iterator;
std::pair<const_children_iterator, const_children_iterator> children() const {
return std::make_pair(const_children_iterator(m_children.begin()),
const_children_iterator(m_children.end()));
}
std::pair<children_iterator, children_iterator> children() {
return std::make_pair(children_iterator(m_children.begin()),
children_iterator(m_children.end()));
}
std::size_t num_children() const { return m_children.size(); }
#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
// Defualt property access delegates the lookup to global properties.
template <typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type&
operator[](Descriptor x)
{ return is_root() ? m_graph[x] : root().m_graph[local_to_global(x)]; }
template <typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type const&
operator[](Descriptor x) const
{ return is_root() ? m_graph[x] : root().m_graph[local_to_global(x)]; }
// Local property access returns the local property of the given descripor.
template <typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type&
operator[](local_property<Descriptor> x)
{ return m_graph[x.value]; }
template <typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type const&
operator[](local_property<Descriptor> x) const
{ return m_graph[x.value]; }
// Global property access returns the global property associated with the
// given descriptor. This is an alias for the default bundled property
// access operations.
template <typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type&
operator[](global_property<Descriptor> x)
{ return (*this)[x.value]; }
template <typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type const&
operator[](global_property<Descriptor> x) const
{ return (*this)[x.value]; }
#endif // BOOST_GRAPH_NO_BUNDLED_PROPERTIES
// private:
typedef typename property_map<Graph, edge_index_t>::type EdgeIndexMap;
typedef typename property_traits<EdgeIndexMap>::value_type edge_index_type;
BOOST_STATIC_ASSERT((!is_same<edge_index_type,
boost::detail::error_property_not_found>::value));
private:
typedef std::vector<vertex_descriptor> GlobalVertexList;
typedef std::vector<edge_descriptor> GlobalEdgeList;
typedef std::map<vertex_descriptor, vertex_descriptor> LocalVertexMap;
typedef std::map<edge_index_type, edge_descriptor> LocalEdgeMap;
// TODO: Should the LocalVertexMap be: map<index_type, descriptor>?
// TODO: Can we relax the indexing requirement if both descriptors are
// LessThanComparable?
// TODO: Should we really be using unorderd_map for improved lookup times?
public: // Probably shouldn't be public....
Graph m_graph;
subgraph<Graph>* m_parent;
edge_index_type m_edge_counter; // for generating unique edge indices
ChildrenList m_children;
GlobalVertexList m_global_vertex; // local -> global
LocalVertexMap m_local_vertex; // global -> local
GlobalEdgeList m_global_edge; // local -> global
LocalEdgeMap m_local_edge; // global -> local
edge_descriptor local_add_edge(vertex_descriptor u_local,
vertex_descriptor v_local,
edge_descriptor e_global)
{
edge_descriptor e_local;
bool inserted;
boost::tie(e_local, inserted) = add_edge(u_local, v_local, m_graph);
put(edge_index, m_graph, e_local, m_edge_counter++);
m_global_edge.push_back(e_global);
m_local_edge[get(get(edge_index, this->root()), e_global)] = e_local;
return e_local;
}
};
template <typename Graph>
struct vertex_bundle_type<subgraph<Graph> >
: vertex_bundle_type<Graph>
{ };
template<typename Graph>
struct edge_bundle_type<subgraph<Graph> >
: edge_bundle_type<Graph>
{ };
template<typename Graph>
struct graph_bundle_type<subgraph<Graph> >
: graph_bundle_type<Graph>
{ };
//===========================================================================
// Functions special to the Subgraph Class
template <typename G>
typename subgraph<G>::vertex_descriptor
add_vertex(typename subgraph<G>::vertex_descriptor u_global,
subgraph<G>& g)
{
BOOST_ASSERT(!g.is_root());
typename subgraph<G>::vertex_descriptor u_local, v_global;
typename subgraph<G>::edge_descriptor e_global;
u_local = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
g.m_local_vertex[u_global] = u_local;
subgraph<G>& r = g.root();
// remember edge global and local maps
{
typename subgraph<G>::out_edge_iterator ei, ei_end;
for (boost::tie(ei, ei_end) = out_edges(u_global, r);
ei != ei_end; ++ei) {
e_global = *ei;
v_global = target(e_global, r);
if (g.find_vertex(v_global).second == true)
g.local_add_edge(u_local, g.global_to_local(v_global), e_global);
}
}
if (is_directed(g)) { // not necessary for undirected graph
typename subgraph<G>::vertex_iterator vi, vi_end;
typename subgraph<G>::out_edge_iterator ei, ei_end;
for(boost::tie(vi, vi_end) = vertices(r); vi != vi_end; ++vi) {
v_global = *vi;
if (v_global == u_global)
continue; // don't insert self loops twice!
if (!g.find_vertex(v_global).second)
continue; // not a subgraph vertex => try next one
for(boost::tie(ei, ei_end) = out_edges(*vi, r); ei != ei_end; ++ei) {
e_global = *ei;
if(target(e_global, r) == u_global) {
g.local_add_edge(g.global_to_local(v_global), u_local, e_global);
}
}
}
}
return u_local;
}
// NOTE: Descriptors are local unless otherwise noted.
//===========================================================================
// Functions required by the IncidenceGraph concept
template <typename G>
std::pair<typename graph_traits<G>::out_edge_iterator,
typename graph_traits<G>::out_edge_iterator>
out_edges(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return out_edges(v, g.m_graph); }
template <typename G>
typename graph_traits<G>::degree_size_type
out_degree(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return out_degree(v, g.m_graph); }
template <typename G>
typename graph_traits<G>::vertex_descriptor
source(typename graph_traits<G>::edge_descriptor e, const subgraph<G>& g)
{ return source(e, g.m_graph); }
template <typename G>
typename graph_traits<G>::vertex_descriptor
target(typename graph_traits<G>::edge_descriptor e, const subgraph<G>& g)
{ return target(e, g.m_graph); }
//===========================================================================
// Functions required by the BidirectionalGraph concept
template <typename G>
std::pair<typename graph_traits<G>::in_edge_iterator,
typename graph_traits<G>::in_edge_iterator>
in_edges(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return in_edges(v, g.m_graph); }
template <typename G>
typename graph_traits<G>::degree_size_type
in_degree(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return in_degree(v, g.m_graph); }
template <typename G>
typename graph_traits<G>::degree_size_type
degree(typename graph_traits<G>::vertex_descriptor v, const subgraph<G>& g)
{ return degree(v, g.m_graph); }
//===========================================================================
// Functions required by the AdjacencyGraph concept
template <typename G>
std::pair<typename subgraph<G>::adjacency_iterator,
typename subgraph<G>::adjacency_iterator>
adjacent_vertices(typename subgraph<G>::vertex_descriptor v, const subgraph<G>& g)
{ return adjacent_vertices(v, g.m_graph); }
//===========================================================================
// Functions required by the VertexListGraph concept
template <typename G>
std::pair<typename subgraph<G>::vertex_iterator,
typename subgraph<G>::vertex_iterator>
vertices(const subgraph<G>& g)
{ return vertices(g.m_graph); }
template <typename G>
typename subgraph<G>::vertices_size_type
num_vertices(const subgraph<G>& g)
{ return num_vertices(g.m_graph); }
//===========================================================================
// Functions required by the EdgeListGraph concept
template <typename G>
std::pair<typename subgraph<G>::edge_iterator,
typename subgraph<G>::edge_iterator>
edges(const subgraph<G>& g)
{ return edges(g.m_graph); }
template <typename G>
typename subgraph<G>::edges_size_type
num_edges(const subgraph<G>& g)
{ return num_edges(g.m_graph); }
//===========================================================================
// Functions required by the AdjacencyMatrix concept
template <typename G>
std::pair<typename subgraph<G>::edge_descriptor, bool>
edge(typename subgraph<G>::vertex_descriptor u,
typename subgraph<G>::vertex_descriptor v,
const subgraph<G>& g)
{ return edge(u, v, g.m_graph); }
//===========================================================================
// Functions required by the MutableGraph concept
namespace detail {
template <typename Vertex, typename Edge, typename Graph>
void add_edge_recur_down(Vertex u_global, Vertex v_global, Edge e_global,
subgraph<Graph>& g);
template <typename Vertex, typename Edge, typename Children, typename G>
void children_add_edge(Vertex u_global, Vertex v_global, Edge e_global,
Children& c, subgraph<G>* orig)
{
for(typename Children::iterator i = c.begin(); i != c.end(); ++i) {
if ((*i)->find_vertex(u_global).second &&
(*i)->find_vertex(v_global).second)
{
add_edge_recur_down(u_global, v_global, e_global, **i, orig);
}
}
}
template <typename Vertex, typename Edge, typename Graph>
void add_edge_recur_down(Vertex u_global, Vertex v_global, Edge e_global,
subgraph<Graph>& g, subgraph<Graph>* orig)
{
if(&g != orig ) {
// add local edge only if u_global and v_global are in subgraph g
Vertex u_local, v_local;
bool u_in_subgraph, v_in_subgraph;
boost::tie(u_local, u_in_subgraph) = g.find_vertex(u_global);
boost::tie(v_local, v_in_subgraph) = g.find_vertex(v_global);
if(u_in_subgraph && v_in_subgraph) {
g.local_add_edge(u_local, v_local, e_global);
}
}
children_add_edge(u_global, v_global, e_global, g.m_children, orig);
}
template <typename Vertex, typename Graph>
std::pair<typename subgraph<Graph>::edge_descriptor, bool>
add_edge_recur_up(Vertex u_global, Vertex v_global,
const typename Graph::edge_property_type& ep,
subgraph<Graph>& g, subgraph<Graph>* orig)
{
if(g.is_root()) {
typename subgraph<Graph>::edge_descriptor e_global;
bool inserted;
boost::tie(e_global, inserted) = add_edge(u_global, v_global, ep, g.m_graph);
put(edge_index, g.m_graph, e_global, g.m_edge_counter++);
g.m_global_edge.push_back(e_global);
children_add_edge(u_global, v_global, e_global, g.m_children, orig);
return std::make_pair(e_global, inserted);
} else {
return add_edge_recur_up(u_global, v_global, ep, *g.m_parent, orig);
}
}
} // namespace detail
// Add an edge to the subgraph g, specified by the local vertex descriptors u
// and v. In addition, the edge will be added to any (all) other subgraphs that
// contain vertex descriptors u and v.
template <typename G>
std::pair<typename subgraph<G>::edge_descriptor, bool>
add_edge(typename subgraph<G>::vertex_descriptor u,
typename subgraph<G>::vertex_descriptor v,
const typename G::edge_property_type& ep,
subgraph<G>& g)
{
if (g.is_root()) {
// u and v are really global
return detail::add_edge_recur_up(u, v, ep, g, &g);
} else {
typename subgraph<G>::edge_descriptor e_local, e_global;
bool inserted;
boost::tie(e_global, inserted) =
detail::add_edge_recur_up(g.local_to_global(u),
g.local_to_global(v),
ep, g, &g);
e_local = g.local_add_edge(u, v, e_global);
return std::make_pair(e_local, inserted);
}
}
template <typename G>
std::pair<typename subgraph<G>::edge_descriptor, bool>
add_edge(typename subgraph<G>::vertex_descriptor u,
typename subgraph<G>::vertex_descriptor v,
subgraph<G>& g)
{ return add_edge(u, v, typename G::edge_property_type(), g); }
namespace detail {
//-------------------------------------------------------------------------
// implementation of remove_edge(u,v,g)
template <typename Vertex, typename Graph>
void remove_edge_recur_down(Vertex u_global, Vertex v_global,
subgraph<Graph>& g);
template <typename Vertex, typename Children>
void children_remove_edge(Vertex u_global, Vertex v_global,
Children& c)
{
for(typename Children::iterator i = c.begin(); i != c.end(); ++i) {
if((*i)->find_vertex(u_global).second &&
(*i)->find_vertex(v_global).second)
{
remove_edge_recur_down(u_global, v_global, **i);
}
}
}
template <typename Vertex, typename Graph>
void remove_edge_recur_down(Vertex u_global, Vertex v_global,
subgraph<Graph>& g)
{
Vertex u_local, v_local;
u_local = g.m_local_vertex[u_global];
v_local = g.m_local_vertex[v_global];
remove_edge(u_local, v_local, g.m_graph);
children_remove_edge(u_global, v_global, g.m_children);
}
template <typename Vertex, typename Graph>
void remove_edge_recur_up(Vertex u_global, Vertex v_global,
subgraph<Graph>& g)
{
if(g.is_root()) {
remove_edge(u_global, v_global, g.m_graph);
children_remove_edge(u_global, v_global, g.m_children);
} else {
remove_edge_recur_up(u_global, v_global, *g.m_parent);
}
}
//-------------------------------------------------------------------------
// implementation of remove_edge(e,g)
template <typename G, typename Edge, typename Children>
void children_remove_edge(Edge e_global, Children& c)
{
for(typename Children::iterator i = c.begin(); i != c.end(); ++i) {
std::pair<typename subgraph<G>::edge_descriptor, bool> found =
(*i)->find_edge(e_global);
if (!found.second) {
continue;
}
children_remove_edge<G>(e_global, (*i)->m_children);
remove_edge(found.first, (*i)->m_graph);
}
}
} // namespace detail
template <typename G>
void
remove_edge(typename subgraph<G>::vertex_descriptor u,
typename subgraph<G>::vertex_descriptor v,
subgraph<G>& g)
{
if(g.is_root()) {
detail::remove_edge_recur_up(u, v, g);
} else {
detail::remove_edge_recur_up(g.local_to_global(u),
g.local_to_global(v), g);
}
}
template <typename G>
void
remove_edge(typename subgraph<G>::edge_descriptor e, subgraph<G>& g)
{
typename subgraph<G>::edge_descriptor e_global = g.local_to_global(e);
#ifndef NDEBUG
std::pair<typename subgraph<G>::edge_descriptor, bool> fe = g.find_edge(e_global);
BOOST_ASSERT(fe.second && fe.first == e);
#endif //NDEBUG
subgraph<G> &root = g.root(); // chase to root
detail::children_remove_edge<G>(e_global, root.m_children);
remove_edge(e_global, root.m_graph); // kick edge from root
}
// This is slow, but there may not be a good way to do it safely otherwise
template <typename Predicate, typename G>
void
remove_edge_if(Predicate p, subgraph<G>& g) {
while (true) {
bool any_removed = false;
typedef typename subgraph<G>::edge_iterator ei_type;
for (std::pair<ei_type, ei_type> ep = edges(g);
ep.first != ep.second; ++ep.first) {
if (p(*ep.first)) {
any_removed = true;
remove_edge(*ep.first, g);
break; /* Since iterators may be invalidated */
}
}
if (!any_removed) break;
}
}
template <typename G>
void
clear_vertex(typename subgraph<G>::vertex_descriptor v, subgraph<G>& g) {
while (true) {
typedef typename subgraph<G>::out_edge_iterator oei_type;
std::pair<oei_type, oei_type> p = out_edges(v, g);
if (p.first == p.second) break;
remove_edge(*p.first, g);
}
}
namespace detail {
template <typename G>
typename subgraph<G>::vertex_descriptor
add_vertex_recur_up(subgraph<G>& g)
{
typename subgraph<G>::vertex_descriptor u_local, u_global;
if (g.is_root()) {
u_global = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
} else {
u_global = add_vertex_recur_up(*g.m_parent);
u_local = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
g.m_local_vertex[u_global] = u_local;
}
return u_global;
}
} // namespace detail
template <typename G>
typename subgraph<G>::vertex_descriptor
add_vertex(subgraph<G>& g)
{
typename subgraph<G>::vertex_descriptor u_local, u_global;
if(g.is_root()) {
u_global = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
u_local = u_global;
} else {
u_global = detail::add_vertex_recur_up(g.parent());
u_local = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
g.m_local_vertex[u_global] = u_local;
}
return u_local;
}
#if 0
// TODO: Under Construction
template <typename G>
void remove_vertex(typename subgraph<G>::vertex_descriptor u, subgraph<G>& g)
{ BOOST_ASSERT(false); }
#endif
//===========================================================================
// Functions required by the PropertyGraph concept
/**
* The global property map returns the global properties associated with local
* descriptors.
*/
template <typename GraphPtr, typename PropertyMap, typename Tag>
class subgraph_global_property_map
: public put_get_helper<
typename property_traits<PropertyMap>::reference,
subgraph_global_property_map<GraphPtr, PropertyMap, Tag>
>
{
typedef property_traits<PropertyMap> Traits;
public:
typedef typename mpl::if_<is_const<typename remove_pointer<GraphPtr>::type>,
readable_property_map_tag,
typename Traits::category>::type
category;
typedef typename Traits::value_type value_type;
typedef typename Traits::key_type key_type;
typedef typename Traits::reference reference;
subgraph_global_property_map()
{ }
subgraph_global_property_map(GraphPtr g, Tag tag)
: m_g(g), m_tag(tag)
{ }
reference operator[](key_type e) const {
PropertyMap pmap = get(m_tag, m_g->root().m_graph);
return m_g->is_root()
? pmap[e]
: pmap[m_g->local_to_global(e)];
}
GraphPtr m_g;
Tag m_tag;
};
/**
* The local property map returns the local property associated with the local
* descriptors.
*/
template <typename GraphPtr, typename PropertyMap, typename Tag>
class subgraph_local_property_map
: public put_get_helper<
typename property_traits<PropertyMap>::reference,
subgraph_local_property_map<GraphPtr, PropertyMap, Tag>
>
{
typedef property_traits<PropertyMap> Traits;
public:
typedef typename mpl::if_<is_const<typename remove_pointer<GraphPtr>::type>,
readable_property_map_tag,
typename Traits::category>::type
category;
typedef typename Traits::value_type value_type;
typedef typename Traits::key_type key_type;
typedef typename Traits::reference reference;
typedef Tag tag;
typedef PropertyMap pmap;
subgraph_local_property_map()
{ }
subgraph_local_property_map(GraphPtr g, Tag tag)
: m_g(g), m_tag(tag)
{ }
reference operator[](key_type e) const {
// Get property map on the underlying graph.
PropertyMap pmap = get(m_tag, m_g->m_graph);
return pmap[e];
}
GraphPtr m_g;
Tag m_tag;
};
namespace detail {
// Extract the actual tags from local or global property maps so we don't
// try to find non-properties.
template <typename P> struct extract_lg_tag { typedef P type; };
template <typename P> struct extract_lg_tag< local_property<P> > {
typedef P type;
};
template <typename P> struct extract_lg_tag< global_property<P> > {
typedef P type;
};
// NOTE: Mysterious Property template parameter unused in both metafunction
// classes.
struct subgraph_global_pmap {
template <class Tag, class SubGraph, class Property>
struct bind_ {
typedef typename SubGraph::graph_type Graph;
typedef SubGraph* SubGraphPtr;
typedef const SubGraph* const_SubGraphPtr;
typedef typename extract_lg_tag<Tag>::type TagType;
typedef typename property_map<Graph, TagType>::type PMap;
typedef typename property_map<Graph, TagType>::const_type const_PMap;
public:
typedef subgraph_global_property_map<SubGraphPtr, PMap, TagType> type;
typedef subgraph_global_property_map<const_SubGraphPtr, const_PMap, TagType>
const_type;
};
};
struct subgraph_local_pmap {
template <class Tag, class SubGraph, class Property>
struct bind_ {
typedef typename SubGraph::graph_type Graph;
typedef SubGraph* SubGraphPtr;
typedef const SubGraph* const_SubGraphPtr;
typedef typename extract_lg_tag<Tag>::type TagType;
typedef typename property_map<Graph, TagType>::type PMap;
typedef typename property_map<Graph, TagType>::const_type const_PMap;
public:
typedef subgraph_local_property_map<SubGraphPtr, PMap, TagType> type;
typedef subgraph_local_property_map<const_SubGraphPtr, const_PMap, TagType>
const_type;
};
};
// These metafunctions select the corresponding metafunctions above, and
// are used by the choose_pmap metafunction below to specialize the choice
// of local/global property map. By default, we defer to the global
// property.
template <class Tag>
struct subgraph_choose_pmap_helper {
typedef subgraph_global_pmap type;
};
template <class Tag>
struct subgraph_choose_pmap_helper< local_property<Tag> > {
typedef subgraph_local_pmap type;
};
template <class Tag>
struct subgraph_choose_pmap_helper< global_property<Tag> > {
typedef subgraph_global_pmap type;
};
// As above, unless we're requesting vertex_index_t. Then it's always a
// local property map. This enables the correct translation of descriptors
// between local and global layers.
template <>
struct subgraph_choose_pmap_helper<vertex_index_t> {
typedef subgraph_local_pmap type;
};
template <>
struct subgraph_choose_pmap_helper< local_property<vertex_index_t> > {
typedef subgraph_local_pmap type;
};
template <>
struct subgraph_choose_pmap_helper< global_property<vertex_index_t> > {
typedef subgraph_local_pmap type;
};
// Determine the kind of property. If SameType<Tag, vertex_index_t>, then
// the property lookup is always local. Otherwise, the lookup is global.
// NOTE: Property parameter is basically unused.
template <class Tag, class Graph, class Property>
struct subgraph_choose_pmap {
typedef typename subgraph_choose_pmap_helper<Tag>::type Helper;
typedef typename Helper::template bind_<Tag, Graph, Property> Bind;
typedef typename Bind::type type;
typedef typename Bind::const_type const_type;
};
// Used by the vertex/edge property selectors to determine the kind(s) of
// property maps used by the property_map type generator.
struct subgraph_property_generator {
template <class SubGraph, class Property, class Tag>
struct bind_ {
typedef subgraph_choose_pmap<Tag, SubGraph, Property> Choice;
typedef typename Choice::type type;
typedef typename Choice::const_type const_type;
};
};
} // namespace detail
template <>
struct vertex_property_selector<subgraph_tag> {
typedef detail::subgraph_property_generator type;
};
template <>
struct edge_property_selector<subgraph_tag> {
typedef detail::subgraph_property_generator type;
};
// ==================================================
// get(p, g), get(p, g, k), and put(p, g, k, v)
// ==================================================
template <typename G, typename Property>
typename property_map<subgraph<G>, Property>::type
get(Property p, subgraph<G>& g) {
typedef typename property_map< subgraph<G>, Property>::type PMap;
return PMap(&g, p);
}
template <typename G, typename Property>
typename property_map<subgraph<G>, Property>::const_type
get(Property p, const subgraph<G>& g) {
typedef typename property_map< subgraph<G>, Property>::const_type PMap;
return PMap(&g, p);
}
template <typename G, typename Property, typename Key>
typename property_traits<
typename property_map<subgraph<G>, Property>::const_type
>::value_type
get(Property p, const subgraph<G>& g, const Key& k) {
typedef typename property_map< subgraph<G>, Property>::const_type PMap;
PMap pmap(&g, p);
return pmap[k];
}
template <typename G, typename Property, typename Key, typename Value>
void put(Property p, subgraph<G>& g, const Key& k, const Value& val) {
typedef typename property_map< subgraph<G>, Property>::type PMap;
PMap pmap(&g, p);
pmap[k] = val;
}
// ==================================================
// get(global(p), g)
// NOTE: get(global(p), g, k) and put(global(p), g, k, v) not supported
// ==================================================
template <typename G, typename Property>
typename property_map<subgraph<G>, global_property<Property> >::type
get(global_property<Property> p, subgraph<G>& g) {
typedef typename property_map<
subgraph<G>, global_property<Property>
>::type Map;
return Map(&g, p.value);
}
template <typename G, typename Property>
typename property_map<subgraph<G>, global_property<Property> >::const_type
get(global_property<Property> p, const subgraph<G>& g) {
typedef typename property_map<
subgraph<G>, global_property<Property>
>::const_type Map;
return Map(&g, p.value);
}
// ==================================================
// get(local(p), g)
// NOTE: get(local(p), g, k) and put(local(p), g, k, v) not supported
// ==================================================
template <typename G, typename Property>
typename property_map<subgraph<G>, local_property<Property> >::type
get(local_property<Property> p, subgraph<G>& g) {
typedef typename property_map<
subgraph<G>, local_property<Property>
>::type Map;
return Map(&g, p.value);
}
template <typename G, typename Property>
typename property_map<subgraph<G>, local_property<Property> >::const_type
get(local_property<Property> p, const subgraph<G>& g) {
typedef typename property_map<
subgraph<G>, local_property<Property>
>::const_type Map;
return Map(&g, p.value);
}
template <typename G, typename Tag>
inline typename graph_property<G, Tag>::type&
get_property(subgraph<G>& g, Tag tag) {
return get_property(g.m_graph, tag);
}
template <typename G, typename Tag>
inline const typename graph_property<G, Tag>::type&
get_property(const subgraph<G>& g, Tag tag) {
return get_property(g.m_graph, tag);
}
//===========================================================================
// Miscellaneous Functions
template <typename G>
typename subgraph<G>::vertex_descriptor
vertex(typename subgraph<G>::vertices_size_type n, const subgraph<G>& g)
{ return vertex(n, g.m_graph); }
//===========================================================================
// Mutability Traits
// Just pull the mutability traits form the underlying graph. Note that this
// will probably fail (badly) for labeled graphs.
template <typename G>
struct graph_mutability_traits< subgraph<G> > {
typedef typename graph_mutability_traits<G>::category category;
};
} // namespace boost
#endif // BOOST_SUBGRAPH_HPP