Rocket.Chat.ReactNative/ios/Pods/boost-for-react-native/boost/graph/topology.hpp

599 lines
18 KiB
C++

// Copyright 2009 The Trustees of Indiana University.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Jeremiah Willcock
// Douglas Gregor
// Andrew Lumsdaine
#ifndef BOOST_GRAPH_TOPOLOGY_HPP
#define BOOST_GRAPH_TOPOLOGY_HPP
#include <boost/config/no_tr1/cmath.hpp>
#include <cmath>
#include <boost/random/uniform_01.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/math/constants/constants.hpp> // For root_two
#include <boost/algorithm/minmax.hpp>
#include <boost/config.hpp> // For BOOST_STATIC_CONSTANT
#include <boost/math/special_functions/hypot.hpp>
// Classes and concepts to represent points in a space, with distance and move
// operations (used for Gurson-Atun layout), plus other things like bounding
// boxes used for other layout algorithms.
namespace boost {
/***********************************************************
* Topologies *
***********************************************************/
template<std::size_t Dims>
class convex_topology
{
public: // For VisualAge C++
struct point
{
BOOST_STATIC_CONSTANT(std::size_t, dimensions = Dims);
point() { }
double& operator[](std::size_t i) {return values[i];}
const double& operator[](std::size_t i) const {return values[i];}
private:
double values[Dims];
};
public: // For VisualAge C++
struct point_difference
{
BOOST_STATIC_CONSTANT(std::size_t, dimensions = Dims);
point_difference() {
for (std::size_t i = 0; i < Dims; ++i) values[i] = 0.;
}
double& operator[](std::size_t i) {return values[i];}
const double& operator[](std::size_t i) const {return values[i];}
friend point_difference operator+(const point_difference& a, const point_difference& b) {
point_difference result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = a[i] + b[i];
return result;
}
friend point_difference& operator+=(point_difference& a, const point_difference& b) {
for (std::size_t i = 0; i < Dims; ++i)
a[i] += b[i];
return a;
}
friend point_difference operator-(const point_difference& a) {
point_difference result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = -a[i];
return result;
}
friend point_difference operator-(const point_difference& a, const point_difference& b) {
point_difference result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = a[i] - b[i];
return result;
}
friend point_difference& operator-=(point_difference& a, const point_difference& b) {
for (std::size_t i = 0; i < Dims; ++i)
a[i] -= b[i];
return a;
}
friend point_difference operator*(const point_difference& a, const point_difference& b) {
point_difference result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = a[i] * b[i];
return result;
}
friend point_difference operator*(const point_difference& a, double b) {
point_difference result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = a[i] * b;
return result;
}
friend point_difference operator*(double a, const point_difference& b) {
point_difference result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = a * b[i];
return result;
}
friend point_difference operator/(const point_difference& a, const point_difference& b) {
point_difference result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = (b[i] == 0.) ? 0. : a[i] / b[i];
return result;
}
friend double dot(const point_difference& a, const point_difference& b) {
double result = 0;
for (std::size_t i = 0; i < Dims; ++i)
result += a[i] * b[i];
return result;
}
private:
double values[Dims];
};
public:
typedef point point_type;
typedef point_difference point_difference_type;
double distance(point a, point b) const
{
double dist = 0.;
for (std::size_t i = 0; i < Dims; ++i) {
double diff = b[i] - a[i];
dist = boost::math::hypot(dist, diff);
}
// Exact properties of the distance are not important, as long as
// < on what this returns matches real distances; l_2 is used because
// Fruchterman-Reingold also uses this code and it relies on l_2.
return dist;
}
point move_position_toward(point a, double fraction, point b) const
{
point result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = a[i] + (b[i] - a[i]) * fraction;
return result;
}
point_difference difference(point a, point b) const {
point_difference result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = a[i] - b[i];
return result;
}
point adjust(point a, point_difference delta) const {
point result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = a[i] + delta[i];
return result;
}
point pointwise_min(point a, point b) const {
BOOST_USING_STD_MIN();
point result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = min BOOST_PREVENT_MACRO_SUBSTITUTION (a[i], b[i]);
return result;
}
point pointwise_max(point a, point b) const {
BOOST_USING_STD_MAX();
point result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = max BOOST_PREVENT_MACRO_SUBSTITUTION (a[i], b[i]);
return result;
}
double norm(point_difference delta) const {
double n = 0.;
for (std::size_t i = 0; i < Dims; ++i)
n = boost::math::hypot(n, delta[i]);
return n;
}
double volume(point_difference delta) const {
double n = 1.;
for (std::size_t i = 0; i < Dims; ++i)
n *= delta[i];
return n;
}
};
template<std::size_t Dims,
typename RandomNumberGenerator = minstd_rand>
class hypercube_topology : public convex_topology<Dims>
{
typedef uniform_01<RandomNumberGenerator, double> rand_t;
public:
typedef typename convex_topology<Dims>::point_type point_type;
typedef typename convex_topology<Dims>::point_difference_type point_difference_type;
explicit hypercube_topology(double scaling = 1.0)
: gen_ptr(new RandomNumberGenerator), rand(new rand_t(*gen_ptr)),
scaling(scaling)
{ }
hypercube_topology(RandomNumberGenerator& gen, double scaling = 1.0)
: gen_ptr(), rand(new rand_t(gen)), scaling(scaling) { }
point_type random_point() const
{
point_type p;
for (std::size_t i = 0; i < Dims; ++i)
p[i] = (*rand)() * scaling;
return p;
}
point_type bound(point_type a) const
{
BOOST_USING_STD_MIN();
BOOST_USING_STD_MAX();
point_type p;
for (std::size_t i = 0; i < Dims; ++i)
p[i] = min BOOST_PREVENT_MACRO_SUBSTITUTION (scaling, max BOOST_PREVENT_MACRO_SUBSTITUTION (-scaling, a[i]));
return p;
}
double distance_from_boundary(point_type a) const
{
BOOST_USING_STD_MIN();
BOOST_USING_STD_MAX();
#ifndef BOOST_NO_STDC_NAMESPACE
using std::abs;
#endif
BOOST_STATIC_ASSERT (Dims >= 1);
double dist = abs(scaling - a[0]);
for (std::size_t i = 1; i < Dims; ++i)
dist = min BOOST_PREVENT_MACRO_SUBSTITUTION (dist, abs(scaling - a[i]));
return dist;
}
point_type center() const {
point_type result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = scaling * .5;
return result;
}
point_type origin() const {
point_type result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = 0;
return result;
}
point_difference_type extent() const {
point_difference_type result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = scaling;
return result;
}
private:
shared_ptr<RandomNumberGenerator> gen_ptr;
shared_ptr<rand_t> rand;
double scaling;
};
template<typename RandomNumberGenerator = minstd_rand>
class square_topology : public hypercube_topology<2, RandomNumberGenerator>
{
typedef hypercube_topology<2, RandomNumberGenerator> inherited;
public:
explicit square_topology(double scaling = 1.0) : inherited(scaling) { }
square_topology(RandomNumberGenerator& gen, double scaling = 1.0)
: inherited(gen, scaling) { }
};
template<typename RandomNumberGenerator = minstd_rand>
class rectangle_topology : public convex_topology<2>
{
typedef uniform_01<RandomNumberGenerator, double> rand_t;
public:
rectangle_topology(double left, double top, double right, double bottom)
: gen_ptr(new RandomNumberGenerator), rand(new rand_t(*gen_ptr)),
left(std::min BOOST_PREVENT_MACRO_SUBSTITUTION (left, right)),
top(std::min BOOST_PREVENT_MACRO_SUBSTITUTION (top, bottom)),
right(std::max BOOST_PREVENT_MACRO_SUBSTITUTION (left, right)),
bottom(std::max BOOST_PREVENT_MACRO_SUBSTITUTION (top, bottom)) { }
rectangle_topology(RandomNumberGenerator& gen, double left, double top, double right, double bottom)
: gen_ptr(), rand(new rand_t(gen)),
left(std::min BOOST_PREVENT_MACRO_SUBSTITUTION (left, right)),
top(std::min BOOST_PREVENT_MACRO_SUBSTITUTION (top, bottom)),
right(std::max BOOST_PREVENT_MACRO_SUBSTITUTION (left, right)),
bottom(std::max BOOST_PREVENT_MACRO_SUBSTITUTION (top, bottom)) { }
typedef typename convex_topology<2>::point_type point_type;
typedef typename convex_topology<2>::point_difference_type point_difference_type;
point_type random_point() const
{
point_type p;
p[0] = (*rand)() * (right - left) + left;
p[1] = (*rand)() * (bottom - top) + top;
return p;
}
point_type bound(point_type a) const
{
BOOST_USING_STD_MIN();
BOOST_USING_STD_MAX();
point_type p;
p[0] = min BOOST_PREVENT_MACRO_SUBSTITUTION (right, max BOOST_PREVENT_MACRO_SUBSTITUTION (left, a[0]));
p[1] = min BOOST_PREVENT_MACRO_SUBSTITUTION (bottom, max BOOST_PREVENT_MACRO_SUBSTITUTION (top, a[1]));
return p;
}
double distance_from_boundary(point_type a) const
{
BOOST_USING_STD_MIN();
BOOST_USING_STD_MAX();
#ifndef BOOST_NO_STDC_NAMESPACE
using std::abs;
#endif
double dist = abs(left - a[0]);
dist = min BOOST_PREVENT_MACRO_SUBSTITUTION (dist, abs(right - a[0]));
dist = min BOOST_PREVENT_MACRO_SUBSTITUTION (dist, abs(top - a[1]));
dist = min BOOST_PREVENT_MACRO_SUBSTITUTION (dist, abs(bottom - a[1]));
return dist;
}
point_type center() const {
point_type result;
result[0] = (left + right) / 2.;
result[1] = (top + bottom) / 2.;
return result;
}
point_type origin() const {
point_type result;
result[0] = left;
result[1] = top;
return result;
}
point_difference_type extent() const {
point_difference_type result;
result[0] = right - left;
result[1] = bottom - top;
return result;
}
private:
shared_ptr<RandomNumberGenerator> gen_ptr;
shared_ptr<rand_t> rand;
double left, top, right, bottom;
};
template<typename RandomNumberGenerator = minstd_rand>
class cube_topology : public hypercube_topology<3, RandomNumberGenerator>
{
typedef hypercube_topology<3, RandomNumberGenerator> inherited;
public:
explicit cube_topology(double scaling = 1.0) : inherited(scaling) { }
cube_topology(RandomNumberGenerator& gen, double scaling = 1.0)
: inherited(gen, scaling) { }
};
template<std::size_t Dims,
typename RandomNumberGenerator = minstd_rand>
class ball_topology : public convex_topology<Dims>
{
typedef uniform_01<RandomNumberGenerator, double> rand_t;
public:
typedef typename convex_topology<Dims>::point_type point_type;
typedef typename convex_topology<Dims>::point_difference_type point_difference_type;
explicit ball_topology(double radius = 1.0)
: gen_ptr(new RandomNumberGenerator), rand(new rand_t(*gen_ptr)),
radius(radius)
{ }
ball_topology(RandomNumberGenerator& gen, double radius = 1.0)
: gen_ptr(), rand(new rand_t(gen)), radius(radius) { }
point_type random_point() const
{
point_type p;
double dist_sum;
do {
dist_sum = 0.0;
for (std::size_t i = 0; i < Dims; ++i) {
double x = (*rand)() * 2*radius - radius;
p[i] = x;
dist_sum += x * x;
}
} while (dist_sum > radius*radius);
return p;
}
point_type bound(point_type a) const
{
BOOST_USING_STD_MIN();
BOOST_USING_STD_MAX();
double r = 0.;
for (std::size_t i = 0; i < Dims; ++i)
r = boost::math::hypot(r, a[i]);
if (r <= radius) return a;
double scaling_factor = radius / r;
point_type p;
for (std::size_t i = 0; i < Dims; ++i)
p[i] = a[i] * scaling_factor;
return p;
}
double distance_from_boundary(point_type a) const
{
double r = 0.;
for (std::size_t i = 0; i < Dims; ++i)
r = boost::math::hypot(r, a[i]);
return radius - r;
}
point_type center() const {
point_type result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = 0;
return result;
}
point_type origin() const {
point_type result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = -radius;
return result;
}
point_difference_type extent() const {
point_difference_type result;
for (std::size_t i = 0; i < Dims; ++i)
result[i] = 2. * radius;
return result;
}
private:
shared_ptr<RandomNumberGenerator> gen_ptr;
shared_ptr<rand_t> rand;
double radius;
};
template<typename RandomNumberGenerator = minstd_rand>
class circle_topology : public ball_topology<2, RandomNumberGenerator>
{
typedef ball_topology<2, RandomNumberGenerator> inherited;
public:
explicit circle_topology(double radius = 1.0) : inherited(radius) { }
circle_topology(RandomNumberGenerator& gen, double radius = 1.0)
: inherited(gen, radius) { }
};
template<typename RandomNumberGenerator = minstd_rand>
class sphere_topology : public ball_topology<3, RandomNumberGenerator>
{
typedef ball_topology<3, RandomNumberGenerator> inherited;
public:
explicit sphere_topology(double radius = 1.0) : inherited(radius) { }
sphere_topology(RandomNumberGenerator& gen, double radius = 1.0)
: inherited(gen, radius) { }
};
template<typename RandomNumberGenerator = minstd_rand>
class heart_topology
{
// Heart is defined as the union of three shapes:
// Square w/ corners (+-1000, -1000), (0, 0), (0, -2000)
// Circle centered at (-500, -500) radius 500*sqrt(2)
// Circle centered at (500, -500) radius 500*sqrt(2)
// Bounding box (-1000, -2000) - (1000, 500*(sqrt(2) - 1))
struct point
{
point() { values[0] = 0.0; values[1] = 0.0; }
point(double x, double y) { values[0] = x; values[1] = y; }
double& operator[](std::size_t i) { return values[i]; }
double operator[](std::size_t i) const { return values[i]; }
private:
double values[2];
};
bool in_heart(point p) const
{
#ifndef BOOST_NO_STDC_NAMESPACE
using std::abs;
#endif
if (p[1] < abs(p[0]) - 2000) return false; // Bottom
if (p[1] <= -1000) return true; // Diagonal of square
if (boost::math::hypot(p[0] - -500, p[1] - -500) <= 500. * boost::math::constants::root_two<double>())
return true; // Left circle
if (boost::math::hypot(p[0] - 500, p[1] - -500) <= 500. * boost::math::constants::root_two<double>())
return true; // Right circle
return false;
}
bool segment_within_heart(point p1, point p2) const
{
// Assumes that p1 and p2 are within the heart
if ((p1[0] < 0) == (p2[0] < 0)) return true; // Same side of symmetry line
if (p1[0] == p2[0]) return true; // Vertical
double slope = (p2[1] - p1[1]) / (p2[0] - p1[0]);
double intercept = p1[1] - p1[0] * slope;
if (intercept > 0) return false; // Crosses between circles
return true;
}
typedef uniform_01<RandomNumberGenerator, double> rand_t;
public:
typedef point point_type;
heart_topology()
: gen_ptr(new RandomNumberGenerator), rand(new rand_t(*gen_ptr)) { }
heart_topology(RandomNumberGenerator& gen)
: gen_ptr(), rand(new rand_t(gen)) { }
point random_point() const
{
point result;
do {
result[0] = (*rand)() * (1000 + 1000 * boost::math::constants::root_two<double>()) - (500 + 500 * boost::math::constants::root_two<double>());
result[1] = (*rand)() * (2000 + 500 * (boost::math::constants::root_two<double>() - 1)) - 2000;
} while (!in_heart(result));
return result;
}
// Not going to provide clipping to bounding region or distance from boundary
double distance(point a, point b) const
{
if (segment_within_heart(a, b)) {
// Straight line
return boost::math::hypot(b[0] - a[0], b[1] - a[1]);
} else {
// Straight line bending around (0, 0)
return boost::math::hypot(a[0], a[1]) + boost::math::hypot(b[0], b[1]);
}
}
point move_position_toward(point a, double fraction, point b) const
{
if (segment_within_heart(a, b)) {
// Straight line
return point(a[0] + (b[0] - a[0]) * fraction,
a[1] + (b[1] - a[1]) * fraction);
} else {
double distance_to_point_a = boost::math::hypot(a[0], a[1]);
double distance_to_point_b = boost::math::hypot(b[0], b[1]);
double location_of_point = distance_to_point_a /
(distance_to_point_a + distance_to_point_b);
if (fraction < location_of_point)
return point(a[0] * (1 - fraction / location_of_point),
a[1] * (1 - fraction / location_of_point));
else
return point(
b[0] * ((fraction - location_of_point) / (1 - location_of_point)),
b[1] * ((fraction - location_of_point) / (1 - location_of_point)));
}
}
private:
shared_ptr<RandomNumberGenerator> gen_ptr;
shared_ptr<rand_t> rand;
};
} // namespace boost
#endif // BOOST_GRAPH_TOPOLOGY_HPP