Rocket.Chat.ReactNative/ios/Pods/boost-for-react-native/boost/multiprecision/integer.hpp

252 lines
6.9 KiB
C++

///////////////////////////////////////////////////////////////
// Copyright 2012 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_
#ifndef BOOST_MP_INTEGER_HPP
#define BOOST_MP_INTEGER_HPP
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/detail/bitscan.hpp>
namespace boost{
namespace multiprecision{
template <class Integer, class I2>
typename enable_if_c<is_integral<Integer>::value && is_integral<I2>::value, Integer&>::type
multiply(Integer& result, const I2& a, const I2& b)
{
return result = static_cast<Integer>(a) * static_cast<Integer>(b);
}
template <class Integer, class I2>
typename enable_if_c<is_integral<Integer>::value && is_integral<I2>::value, Integer&>::type
add(Integer& result, const I2& a, const I2& b)
{
return result = static_cast<Integer>(a) + static_cast<Integer>(b);
}
template <class Integer, class I2>
typename enable_if_c<is_integral<Integer>::value && is_integral<I2>::value, Integer&>::type
subtract(Integer& result, const I2& a, const I2& b)
{
return result = static_cast<Integer>(a) - static_cast<Integer>(b);
}
template <class Integer>
typename enable_if_c<is_integral<Integer>::value>::type divide_qr(const Integer& x, const Integer& y, Integer& q, Integer& r)
{
q = x / y;
r = x % y;
}
template <class I1, class I2>
typename enable_if_c<is_integral<I1>::value && is_integral<I2>::value, I2>::type integer_modulus(const I1& x, I2 val)
{
return static_cast<I2>(x % val);
}
namespace detail{
//
// Figure out the kind of integer that has twice as many bits as some builtin
// integer type I. Use a native type if we can (including types which may not
// be recognised by boost::int_t because they're larger than boost::long_long_type),
// otherwise synthesize a cpp_int to do the job.
//
template <class I>
struct double_integer
{
static const unsigned int_t_digits =
2 * sizeof(I) <= sizeof(boost::long_long_type) ? std::numeric_limits<I>::digits * 2 : 1;
typedef typename mpl::if_c<
2 * sizeof(I) <= sizeof(boost::long_long_type),
typename mpl::if_c<
is_signed<I>::value,
typename boost::int_t<int_t_digits>::least,
typename boost::uint_t<int_t_digits>::least
>::type,
typename mpl::if_c<
2 * sizeof(I) <= sizeof(double_limb_type),
typename mpl::if_c<
is_signed<I>::value,
signed_double_limb_type,
double_limb_type
>::type,
number<cpp_int_backend<sizeof(I)*CHAR_BIT*2, sizeof(I)*CHAR_BIT*2, (is_signed<I>::value ? signed_magnitude : unsigned_magnitude), unchecked, void> >
>::type
>::type type;
};
}
template <class I1, class I2, class I3>
typename enable_if_c<is_integral<I1>::value && is_unsigned<I2>::value && is_integral<I3>::value, I1>::type
powm(const I1& a, I2 b, I3 c)
{
typedef typename detail::double_integer<I1>::type double_type;
I1 x(1), y(a);
double_type result;
while(b > 0)
{
if(b & 1)
{
multiply(result, x, y);
x = integer_modulus(result, c);
}
multiply(result, y, y);
y = integer_modulus(result, c);
b >>= 1;
}
return x % c;
}
template <class I1, class I2, class I3>
inline typename enable_if_c<is_integral<I1>::value && is_signed<I2>::value && is_integral<I3>::value, I1>::type
powm(const I1& a, I2 b, I3 c)
{
if(b < 0)
{
BOOST_THROW_EXCEPTION(std::runtime_error("powm requires a positive exponent."));
}
return powm(a, static_cast<typename make_unsigned<I2>::type>(b), c);
}
template <class Integer>
typename enable_if_c<is_integral<Integer>::value, unsigned>::type lsb(const Integer& val)
{
if(val <= 0)
{
if(val == 0)
{
BOOST_THROW_EXCEPTION(std::range_error("No bits were set in the operand."));
}
else
{
BOOST_THROW_EXCEPTION(std::range_error("Testing individual bits in negative values is not supported - results are undefined."));
}
}
return detail::find_lsb(val);
}
template <class Integer>
typename enable_if_c<is_integral<Integer>::value, unsigned>::type msb(Integer val)
{
if(val <= 0)
{
if(val == 0)
{
BOOST_THROW_EXCEPTION(std::range_error("No bits were set in the operand."));
}
else
{
BOOST_THROW_EXCEPTION(std::range_error("Testing individual bits in negative values is not supported - results are undefined."));
}
}
return detail::find_msb(val);
}
template <class Integer>
typename enable_if_c<is_integral<Integer>::value, bool>::type bit_test(const Integer& val, unsigned index)
{
Integer mask = 1;
if(index >= sizeof(Integer) * CHAR_BIT)
return 0;
if(index)
mask <<= index;
return val & mask ? true : false;
}
template <class Integer>
typename enable_if_c<is_integral<Integer>::value, Integer&>::type bit_set(Integer& val, unsigned index)
{
Integer mask = 1;
if(index >= sizeof(Integer) * CHAR_BIT)
return val;
if(index)
mask <<= index;
val |= mask;
return val;
}
template <class Integer>
typename enable_if_c<is_integral<Integer>::value, Integer&>::type bit_unset(Integer& val, unsigned index)
{
Integer mask = 1;
if(index >= sizeof(Integer) * CHAR_BIT)
return val;
if(index)
mask <<= index;
val &= ~mask;
return val;
}
template <class Integer>
typename enable_if_c<is_integral<Integer>::value, Integer&>::type bit_flip(Integer& val, unsigned index)
{
Integer mask = 1;
if(index >= sizeof(Integer) * CHAR_BIT)
return val;
if(index)
mask <<= index;
val ^= mask;
return val;
}
template <class Integer>
typename enable_if_c<is_integral<Integer>::value, Integer>::type sqrt(const Integer& x, Integer& r)
{
//
// This is slow bit-by-bit integer square root, see for example
// http://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Binary_numeral_system_.28base_2.29
// There are better methods such as http://hal.inria.fr/docs/00/07/28/54/PDF/RR-3805.pdf
// and http://hal.inria.fr/docs/00/07/21/13/PDF/RR-4475.pdf which should be implemented
// at some point.
//
Integer s = 0;
if(x == 0)
{
r = 0;
return s;
}
int g = msb(x);
if(g == 0)
{
r = 1;
return s;
}
Integer t = 0;
r = x;
g /= 2;
bit_set(s, g);
bit_set(t, 2 * g);
r = x - t;
--g;
do
{
t = s;
t <<= g + 1;
bit_set(t, 2 * g);
if(t <= r)
{
bit_set(s, g);
r -= t;
}
--g;
}
while(g >= 0);
return s;
}
template <class Integer>
typename enable_if_c<is_integral<Integer>::value, Integer>::type sqrt(const Integer& x)
{
Integer r;
return sqrt(x, r);
}
}} // namespaces
#endif