564 lines
20 KiB
C++
564 lines
20 KiB
C++
/*
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <atomic>
|
|
#include <cassert>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <mutex>
|
|
#include <string>
|
|
#include <type_traits>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
#include <folly/Indestructible.h>
|
|
#include <folly/Likely.h>
|
|
#include <folly/Memory.h>
|
|
#include <folly/Portability.h>
|
|
#include <folly/hash/Hash.h>
|
|
#include <folly/lang/Align.h>
|
|
#include <folly/lang/Exception.h>
|
|
#include <folly/system/ThreadId.h>
|
|
|
|
#if !FOLLY_MOBILE && defined(FOLLY_TLS)
|
|
#define FOLLY_CL_USE_FOLLY_TLS 1
|
|
#else
|
|
#undef FOLLY_CL_USE_FOLLY_TLS
|
|
#endif
|
|
|
|
namespace folly {
|
|
|
|
// This file contains several classes that might be useful if you are
|
|
// trying to dynamically optimize cache locality: CacheLocality reads
|
|
// cache sharing information from sysfs to determine how CPUs should be
|
|
// grouped to minimize contention, Getcpu provides fast access to the
|
|
// current CPU via __vdso_getcpu, and AccessSpreader uses these two to
|
|
// optimally spread accesses among a predetermined number of stripes.
|
|
//
|
|
// AccessSpreader<>::current(n) microbenchmarks at 22 nanos, which is
|
|
// substantially less than the cost of a cache miss. This means that we
|
|
// can effectively use it to reduce cache line ping-pong on striped data
|
|
// structures such as IndexedMemPool or statistics counters.
|
|
//
|
|
// Because CacheLocality looks at all of the cache levels, it can be
|
|
// used for different levels of optimization. AccessSpreader(2) does
|
|
// per-chip spreading on a dual socket system. AccessSpreader(numCpus)
|
|
// does perfect per-cpu spreading. AccessSpreader(numCpus / 2) does
|
|
// perfect L1 spreading in a system with hyperthreading enabled.
|
|
|
|
struct CacheLocality {
|
|
/// 1 more than the maximum value that can be returned from sched_getcpu
|
|
/// or getcpu. This is the number of hardware thread contexts provided
|
|
/// by the processors
|
|
size_t numCpus;
|
|
|
|
/// Holds the number of caches present at each cache level (0 is
|
|
/// the closest to the cpu). This is the number of AccessSpreader
|
|
/// stripes needed to avoid cross-cache communication at the specified
|
|
/// layer. numCachesByLevel.front() is the number of L1 caches and
|
|
/// numCachesByLevel.back() is the number of last-level caches.
|
|
std::vector<size_t> numCachesByLevel;
|
|
|
|
/// A map from cpu (from sched_getcpu or getcpu) to an index in the
|
|
/// range 0..numCpus-1, where neighboring locality indices are more
|
|
/// likely to share caches then indices far away. All of the members
|
|
/// of a particular cache level be contiguous in their locality index.
|
|
/// For example, if numCpus is 32 and numCachesByLevel.back() is 2,
|
|
/// then cpus with a locality index < 16 will share one last-level
|
|
/// cache and cpus with a locality index >= 16 will share the other.
|
|
std::vector<size_t> localityIndexByCpu;
|
|
|
|
/// Returns the best CacheLocality information available for the current
|
|
/// system, cached for fast access. This will be loaded from sysfs if
|
|
/// possible, otherwise it will be correct in the number of CPUs but
|
|
/// not in their sharing structure.
|
|
///
|
|
/// If you are into yo dawgs, this is a shared cache of the local
|
|
/// locality of the shared caches.
|
|
///
|
|
/// The template parameter here is used to allow injection of a
|
|
/// repeatable CacheLocality structure during testing. Rather than
|
|
/// inject the type of the CacheLocality provider into every data type
|
|
/// that transitively uses it, all components select between the default
|
|
/// sysfs implementation and a deterministic implementation by keying
|
|
/// off the type of the underlying atomic. See DeterministicScheduler.
|
|
template <template <typename> class Atom = std::atomic>
|
|
static const CacheLocality& system();
|
|
|
|
/// Reads CacheLocality information from a tree structured like
|
|
/// the sysfs filesystem. The provided function will be evaluated
|
|
/// for each sysfs file that needs to be queried. The function
|
|
/// should return a string containing the first line of the file
|
|
/// (not including the newline), or an empty string if the file does
|
|
/// not exist. The function will be called with paths of the form
|
|
/// /sys/devices/system/cpu/cpu*/cache/index*/{type,shared_cpu_list} .
|
|
/// Throws an exception if no caches can be parsed at all.
|
|
static CacheLocality readFromSysfsTree(
|
|
const std::function<std::string(std::string)>& mapping);
|
|
|
|
/// Reads CacheLocality information from the real sysfs filesystem.
|
|
/// Throws an exception if no cache information can be loaded.
|
|
static CacheLocality readFromSysfs();
|
|
|
|
/// readFromProcCpuinfo(), except input is taken from memory rather
|
|
/// than the file system.
|
|
static CacheLocality readFromProcCpuinfoLines(
|
|
std::vector<std::string> const& lines);
|
|
|
|
/// Returns an estimate of the CacheLocality information by reading
|
|
/// /proc/cpuinfo. This isn't as accurate as readFromSysfs(), but
|
|
/// is a lot faster because the info isn't scattered across
|
|
/// hundreds of files. Throws an exception if no cache information
|
|
/// can be loaded.
|
|
static CacheLocality readFromProcCpuinfo();
|
|
|
|
/// Returns a usable (but probably not reflective of reality)
|
|
/// CacheLocality structure with the specified number of cpus and a
|
|
/// single cache level that associates one cpu per cache.
|
|
static CacheLocality uniform(size_t numCpus);
|
|
};
|
|
|
|
/// Knows how to derive a function pointer to the VDSO implementation of
|
|
/// getcpu(2), if available
|
|
struct Getcpu {
|
|
/// Function pointer to a function with the same signature as getcpu(2).
|
|
typedef int (*Func)(unsigned* cpu, unsigned* node, void* unused);
|
|
|
|
/// Returns a pointer to the VDSO implementation of getcpu(2), if
|
|
/// available, or nullptr otherwise. This function may be quite
|
|
/// expensive, be sure to cache the result.
|
|
static Func resolveVdsoFunc();
|
|
};
|
|
|
|
#ifdef FOLLY_CL_USE_FOLLY_TLS
|
|
template <template <typename> class Atom>
|
|
struct SequentialThreadId {
|
|
/// Returns the thread id assigned to the current thread
|
|
static unsigned get() {
|
|
auto rv = currentId;
|
|
if (UNLIKELY(rv == 0)) {
|
|
rv = currentId = ++prevId;
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
private:
|
|
static Atom<unsigned> prevId;
|
|
|
|
static FOLLY_TLS unsigned currentId;
|
|
};
|
|
|
|
template <template <typename> class Atom>
|
|
Atom<unsigned> SequentialThreadId<Atom>::prevId(0);
|
|
|
|
template <template <typename> class Atom>
|
|
FOLLY_TLS unsigned SequentialThreadId<Atom>::currentId(0);
|
|
|
|
// Suppress this instantiation in other translation units. It is
|
|
// instantiated in CacheLocality.cpp
|
|
extern template struct SequentialThreadId<std::atomic>;
|
|
#endif
|
|
|
|
struct HashingThreadId {
|
|
static unsigned get() {
|
|
return hash::twang_32from64(getCurrentThreadID());
|
|
}
|
|
};
|
|
|
|
/// A class that lazily binds a unique (for each implementation of Atom)
|
|
/// identifier to a thread. This is a fallback mechanism for the access
|
|
/// spreader if __vdso_getcpu can't be loaded
|
|
template <typename ThreadId>
|
|
struct FallbackGetcpu {
|
|
/// Fills the thread id into the cpu and node out params (if they
|
|
/// are non-null). This method is intended to act like getcpu when a
|
|
/// fast-enough form of getcpu isn't available or isn't desired
|
|
static int getcpu(unsigned* cpu, unsigned* node, void* /* unused */) {
|
|
auto id = ThreadId::get();
|
|
if (cpu) {
|
|
*cpu = id;
|
|
}
|
|
if (node) {
|
|
*node = id;
|
|
}
|
|
return 0;
|
|
}
|
|
};
|
|
|
|
#ifdef FOLLY_CL_USE_FOLLY_TLS
|
|
typedef FallbackGetcpu<SequentialThreadId<std::atomic>> FallbackGetcpuType;
|
|
#else
|
|
typedef FallbackGetcpu<HashingThreadId> FallbackGetcpuType;
|
|
#endif
|
|
|
|
/// AccessSpreader arranges access to a striped data structure in such a
|
|
/// way that concurrently executing threads are likely to be accessing
|
|
/// different stripes. It does NOT guarantee uncontended access.
|
|
/// Your underlying algorithm must be thread-safe without spreading, this
|
|
/// is merely an optimization. AccessSpreader::current(n) is typically
|
|
/// much faster than a cache miss (12 nanos on my dev box, tested fast
|
|
/// in both 2.6 and 3.2 kernels).
|
|
///
|
|
/// If available (and not using the deterministic testing implementation)
|
|
/// AccessSpreader uses the getcpu system call via VDSO and the
|
|
/// precise locality information retrieved from sysfs by CacheLocality.
|
|
/// This provides optimal anti-sharing at a fraction of the cost of a
|
|
/// cache miss.
|
|
///
|
|
/// When there are not as many stripes as processors, we try to optimally
|
|
/// place the cache sharing boundaries. This means that if you have 2
|
|
/// stripes and run on a dual-socket system, your 2 stripes will each get
|
|
/// all of the cores from a single socket. If you have 16 stripes on a
|
|
/// 16 core system plus hyperthreading (32 cpus), each core will get its
|
|
/// own stripe and there will be no cache sharing at all.
|
|
///
|
|
/// AccessSpreader has a fallback mechanism for when __vdso_getcpu can't be
|
|
/// loaded, or for use during deterministic testing. Using sched_getcpu
|
|
/// or the getcpu syscall would negate the performance advantages of
|
|
/// access spreading, so we use a thread-local value and a shared atomic
|
|
/// counter to spread access out. On systems lacking both a fast getcpu()
|
|
/// and TLS, we hash the thread id to spread accesses.
|
|
///
|
|
/// AccessSpreader is templated on the template type that is used
|
|
/// to implement atomics, as a way to instantiate the underlying
|
|
/// heuristics differently for production use and deterministic unit
|
|
/// testing. See DeterministicScheduler for more. If you aren't using
|
|
/// DeterministicScheduler, you can just use the default template parameter
|
|
/// all of the time.
|
|
template <template <typename> class Atom = std::atomic>
|
|
struct AccessSpreader {
|
|
/// Returns the stripe associated with the current CPU. The returned
|
|
/// value will be < numStripes.
|
|
static size_t current(size_t numStripes) {
|
|
// widthAndCpuToStripe[0] will actually work okay (all zeros), but
|
|
// something's wrong with the caller
|
|
assert(numStripes > 0);
|
|
|
|
unsigned cpu;
|
|
getcpuFunc(&cpu, nullptr, nullptr);
|
|
return widthAndCpuToStripe[std::min(size_t(kMaxCpus), numStripes)]
|
|
[cpu % kMaxCpus];
|
|
}
|
|
|
|
#ifdef FOLLY_CL_USE_FOLLY_TLS
|
|
/// Returns the stripe associated with the current CPU. The returned
|
|
/// value will be < numStripes.
|
|
/// This function caches the current cpu in a thread-local variable for a
|
|
/// certain small number of calls, which can make the result imprecise, but
|
|
/// it is more efficient (amortized 2 ns on my dev box, compared to 12 ns for
|
|
/// current()).
|
|
static size_t cachedCurrent(size_t numStripes) {
|
|
return widthAndCpuToStripe[std::min(size_t(kMaxCpus), numStripes)]
|
|
[cpuCache.cpu()];
|
|
}
|
|
#else
|
|
/// Fallback implementation when thread-local storage isn't available.
|
|
static size_t cachedCurrent(size_t numStripes) {
|
|
return current(numStripes);
|
|
}
|
|
#endif
|
|
|
|
/// Returns the maximum stripe value that can be returned under any
|
|
/// dynamic configuration, based on the current compile-time platform
|
|
static constexpr size_t maxStripeValue() {
|
|
return kMaxCpus;
|
|
}
|
|
|
|
private:
|
|
/// If there are more cpus than this nothing will crash, but there
|
|
/// might be unnecessary sharing
|
|
enum {
|
|
// Android phones with 8 cores exist today; 16 for future-proofing.
|
|
kMaxCpus = kIsMobile ? 16 : 256,
|
|
};
|
|
|
|
typedef uint8_t CompactStripe;
|
|
|
|
static_assert(
|
|
(kMaxCpus & (kMaxCpus - 1)) == 0,
|
|
"kMaxCpus should be a power of two so modulo is fast");
|
|
static_assert(
|
|
kMaxCpus - 1 <= std::numeric_limits<CompactStripe>::max(),
|
|
"stripeByCpu element type isn't wide enough");
|
|
|
|
/// Points to the getcpu-like function we are using to obtain the
|
|
/// current cpu. It should not be assumed that the returned cpu value
|
|
/// is in range. We use a static for this so that we can prearrange a
|
|
/// valid value in the pre-constructed state and avoid the need for a
|
|
/// conditional on every subsequent invocation (not normally a big win,
|
|
/// but 20% on some inner loops here).
|
|
static Getcpu::Func getcpuFunc;
|
|
|
|
/// For each level of splitting up to kMaxCpus, maps the cpu (mod
|
|
/// kMaxCpus) to the stripe. Rather than performing any inequalities
|
|
/// or modulo on the actual number of cpus, we just fill in the entire
|
|
/// array.
|
|
static CompactStripe widthAndCpuToStripe[kMaxCpus + 1][kMaxCpus];
|
|
|
|
/// Caches the current CPU and refreshes the cache every so often.
|
|
class CpuCache {
|
|
public:
|
|
unsigned cpu() {
|
|
if (UNLIKELY(cachedCpuUses_-- == 0)) {
|
|
unsigned cpu;
|
|
AccessSpreader::getcpuFunc(&cpu, nullptr, nullptr);
|
|
cachedCpu_ = cpu % kMaxCpus;
|
|
cachedCpuUses_ = kMaxCachedCpuUses - 1;
|
|
}
|
|
return cachedCpu_;
|
|
}
|
|
|
|
private:
|
|
static constexpr unsigned kMaxCachedCpuUses = 32;
|
|
|
|
unsigned cachedCpu_{0};
|
|
unsigned cachedCpuUses_{0};
|
|
};
|
|
|
|
#ifdef FOLLY_CL_USE_FOLLY_TLS
|
|
static FOLLY_TLS CpuCache cpuCache;
|
|
#endif
|
|
|
|
static bool initialized;
|
|
|
|
/// Returns the best getcpu implementation for Atom
|
|
static Getcpu::Func pickGetcpuFunc() {
|
|
auto best = Getcpu::resolveVdsoFunc();
|
|
return best ? best : &FallbackGetcpuType::getcpu;
|
|
}
|
|
|
|
/// Always claims to be on CPU zero, node zero
|
|
static int degenerateGetcpu(unsigned* cpu, unsigned* node, void*) {
|
|
if (cpu != nullptr) {
|
|
*cpu = 0;
|
|
}
|
|
if (node != nullptr) {
|
|
*node = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// The function to call for fast lookup of getcpu is a singleton, as
|
|
// is the precomputed table of locality information. AccessSpreader
|
|
// is used in very tight loops, however (we're trying to race an L1
|
|
// cache miss!), so the normal singleton mechanisms are noticeably
|
|
// expensive. Even a not-taken branch guarding access to getcpuFunc
|
|
// slows AccessSpreader::current from 12 nanos to 14. As a result, we
|
|
// populate the static members with simple (but valid) values that can
|
|
// be filled in by the linker, and then follow up with a normal static
|
|
// initializer call that puts in the proper version. This means that
|
|
// when there are initialization order issues we will just observe a
|
|
// zero stripe. Once a sanitizer gets smart enough to detect this as
|
|
// a race or undefined behavior, we can annotate it.
|
|
|
|
static bool initialize() {
|
|
getcpuFunc = pickGetcpuFunc();
|
|
|
|
auto& cacheLocality = CacheLocality::system<Atom>();
|
|
auto n = cacheLocality.numCpus;
|
|
for (size_t width = 0; width <= kMaxCpus; ++width) {
|
|
auto& row = widthAndCpuToStripe[width];
|
|
auto numStripes = std::max(size_t{1}, width);
|
|
for (size_t cpu = 0; cpu < kMaxCpus && cpu < n; ++cpu) {
|
|
auto index = cacheLocality.localityIndexByCpu[cpu];
|
|
assert(index < n);
|
|
// as index goes from 0..n, post-transform value goes from
|
|
// 0..numStripes
|
|
row[cpu] = static_cast<CompactStripe>((index * numStripes) / n);
|
|
assert(row[cpu] < numStripes);
|
|
}
|
|
size_t filled = n;
|
|
while (filled < kMaxCpus) {
|
|
size_t len = std::min(filled, kMaxCpus - filled);
|
|
std::memcpy(&row[filled], &row[0], len);
|
|
filled += len;
|
|
}
|
|
for (size_t cpu = n; cpu < kMaxCpus; ++cpu) {
|
|
assert(row[cpu] == row[cpu - n]);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template <template <typename> class Atom>
|
|
Getcpu::Func AccessSpreader<Atom>::getcpuFunc =
|
|
AccessSpreader<Atom>::degenerateGetcpu;
|
|
|
|
template <template <typename> class Atom>
|
|
typename AccessSpreader<Atom>::CompactStripe
|
|
AccessSpreader<Atom>::widthAndCpuToStripe[kMaxCpus + 1][kMaxCpus] = {};
|
|
|
|
#ifdef FOLLY_CL_USE_FOLLY_TLS
|
|
template <template <typename> class Atom>
|
|
FOLLY_TLS
|
|
typename AccessSpreader<Atom>::CpuCache AccessSpreader<Atom>::cpuCache;
|
|
#endif
|
|
|
|
template <template <typename> class Atom>
|
|
bool AccessSpreader<Atom>::initialized = AccessSpreader<Atom>::initialize();
|
|
|
|
// Suppress this instantiation in other translation units. It is
|
|
// instantiated in CacheLocality.cpp
|
|
extern template struct AccessSpreader<std::atomic>;
|
|
|
|
/**
|
|
* A simple freelist allocator. Allocates things of size sz, from
|
|
* slabs of size allocSize. Takes a lock on each
|
|
* allocation/deallocation.
|
|
*/
|
|
class SimpleAllocator {
|
|
std::mutex m_;
|
|
uint8_t* mem_{nullptr};
|
|
uint8_t* end_{nullptr};
|
|
void* freelist_{nullptr};
|
|
size_t allocSize_;
|
|
size_t sz_;
|
|
std::vector<void*> blocks_;
|
|
|
|
public:
|
|
SimpleAllocator(size_t allocSize, size_t sz);
|
|
~SimpleAllocator();
|
|
void* allocateHard();
|
|
|
|
// Inline fast-paths.
|
|
void* allocate() {
|
|
std::lock_guard<std::mutex> g(m_);
|
|
// Freelist allocation.
|
|
if (freelist_) {
|
|
auto mem = freelist_;
|
|
freelist_ = *static_cast<void**>(freelist_);
|
|
return mem;
|
|
}
|
|
|
|
// Bump-ptr allocation.
|
|
if (intptr_t(mem_) % 128 == 0) {
|
|
// Avoid allocating pointers that may look like malloc
|
|
// pointers.
|
|
mem_ += std::min(sz_, max_align_v);
|
|
}
|
|
if (mem_ && (mem_ + sz_ <= end_)) {
|
|
auto mem = mem_;
|
|
mem_ += sz_;
|
|
|
|
assert(intptr_t(mem) % 128 != 0);
|
|
return mem;
|
|
}
|
|
|
|
return allocateHard();
|
|
}
|
|
void deallocate(void* mem) {
|
|
std::lock_guard<std::mutex> g(m_);
|
|
*static_cast<void**>(mem) = freelist_;
|
|
freelist_ = mem;
|
|
}
|
|
};
|
|
|
|
/**
|
|
* An allocator that can be used with CacheLocality to allocate
|
|
* core-local memory.
|
|
*
|
|
* There is actually nothing special about the memory itself (it is
|
|
* not bound to numa nodes or anything), but the allocator guarantees
|
|
* that memory allocatd from the same stripe will only come from cache
|
|
* lines also allocated to the same stripe. This means multiple
|
|
* things using CacheLocality can allocate memory in smaller-than
|
|
* cacheline increments, and be assured that it won't cause more false
|
|
* sharing than it otherwise would.
|
|
*
|
|
* Note that allocation and deallocation takes a per-sizeclass lock.
|
|
*/
|
|
template <size_t Stripes>
|
|
class CoreRawAllocator {
|
|
public:
|
|
class Allocator {
|
|
static constexpr size_t AllocSize{4096};
|
|
|
|
uint8_t sizeClass(size_t size) {
|
|
if (size <= 8) {
|
|
return 0;
|
|
} else if (size <= 16) {
|
|
return 1;
|
|
} else if (size <= 32) {
|
|
return 2;
|
|
} else if (size <= 64) {
|
|
return 3;
|
|
} else { // punt to malloc.
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
std::array<SimpleAllocator, 4> allocators_{
|
|
{{AllocSize, 8}, {AllocSize, 16}, {AllocSize, 32}, {AllocSize, 64}}};
|
|
|
|
public:
|
|
void* allocate(size_t size) {
|
|
auto cl = sizeClass(size);
|
|
if (cl == 4) {
|
|
// Align to a cacheline
|
|
size = size + (hardware_destructive_interference_size - 1);
|
|
size &= ~size_t(hardware_destructive_interference_size - 1);
|
|
void* mem =
|
|
aligned_malloc(size, hardware_destructive_interference_size);
|
|
if (!mem) {
|
|
throw_exception<std::bad_alloc>();
|
|
}
|
|
return mem;
|
|
}
|
|
return allocators_[cl].allocate();
|
|
}
|
|
void deallocate(void* mem, size_t = 0) {
|
|
if (!mem) {
|
|
return;
|
|
}
|
|
|
|
// See if it came from this allocator or malloc.
|
|
if (intptr_t(mem) % 128 != 0) {
|
|
auto addr =
|
|
reinterpret_cast<void*>(intptr_t(mem) & ~intptr_t(AllocSize - 1));
|
|
auto allocator = *static_cast<SimpleAllocator**>(addr);
|
|
allocator->deallocate(mem);
|
|
} else {
|
|
aligned_free(mem);
|
|
}
|
|
}
|
|
};
|
|
|
|
Allocator* get(size_t stripe) {
|
|
assert(stripe < Stripes);
|
|
return &allocators_[stripe];
|
|
}
|
|
|
|
private:
|
|
Allocator allocators_[Stripes];
|
|
};
|
|
|
|
template <typename T, size_t Stripes>
|
|
CxxAllocatorAdaptor<T, typename CoreRawAllocator<Stripes>::Allocator>
|
|
getCoreAllocator(size_t stripe) {
|
|
// We cannot make sure that the allocator will be destroyed after
|
|
// all the objects allocated with it, so we leak it.
|
|
static Indestructible<CoreRawAllocator<Stripes>> allocator;
|
|
return CxxAllocatorAdaptor<T, typename CoreRawAllocator<Stripes>::Allocator>(
|
|
*allocator->get(stripe));
|
|
}
|
|
|
|
} // namespace folly
|