Rocket.Chat.ReactNative/ios/Pods/Folly/folly/container/Foreach-inl.h

332 lines
11 KiB
C++

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cassert>
#include <cstdint>
#include <initializer_list>
#include <iterator>
#include <tuple>
#include <type_traits>
#include <utility>
#include <folly/Portability.h>
#include <folly/Traits.h>
#include <folly/Utility.h>
#include <folly/functional/Invoke.h>
namespace folly {
namespace for_each_detail {
namespace adl {
/* using override */
using std::begin;
/* using override */
using std::end;
/* using override */
using std::get;
/**
* The adl_ functions below lookup the function name in the namespace of the
* type of the object being passed into the function. If no function with that
* name exists for the passed object then the default std:: versions are going
* to be called
*/
template <std::size_t Index, typename Type>
auto adl_get(Type&& instance) -> decltype(get<Index>(std::declval<Type>())) {
return get<Index>(std::forward<Type>(instance));
}
template <typename Type>
auto adl_begin(Type&& instance) -> decltype(begin(instance)) {
return begin(instance);
}
template <typename Type>
auto adl_end(Type&& instance) -> decltype(end(instance)) {
return end(instance);
}
} // namespace adl
/**
* Enable if the tuple supports fetching via a member get<>()
*/
template <typename T>
using EnableIfMemberGetFound =
void_t<decltype(std::declval<T>().template get<0>())>;
template <typename, typename T>
struct IsMemberGetFound : std::false_type {};
template <typename T>
struct IsMemberGetFound<EnableIfMemberGetFound<T>, T> : std::true_type {};
/**
* A get that tries member get<> first and if that is not found tries ADL get<>.
* This mechanism is as found in the structured bindings proposal here 11.5.3.
* http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
*/
template <
std::size_t Index,
typename Type,
std::enable_if_t<!IsMemberGetFound<void, Type>::value, int> = 0>
auto get_impl(Type&& instance)
-> decltype(adl::adl_get<Index>(static_cast<Type&&>(instance))) {
return adl::adl_get<Index>(static_cast<Type&&>(instance));
}
template <
std::size_t Index,
typename Type,
std::enable_if_t<IsMemberGetFound<void, Type>::value, int> = 0>
auto get_impl(Type&& instance)
-> decltype(static_cast<Type&&>(instance).template get<Index>()) {
return static_cast<Type&&>(instance).template get<Index>();
}
/**
* Check if the sequence is a tuple
*/
template <typename Type, typename T = typename std::decay<Type>::type>
using EnableIfTuple = void_t<
decltype(get_impl<0>(std::declval<T>())),
decltype(std::tuple_size<T>::value)>;
template <typename, typename T>
struct IsTuple : std::false_type {};
template <typename T>
struct IsTuple<EnableIfTuple<T>, T> : std::true_type {};
/**
* Check if the sequence is a range
*/
template <typename Type, typename T = typename std::decay<Type>::type>
using EnableIfRange = void_t<
decltype(adl::adl_begin(std::declval<T>())),
decltype(adl::adl_end(std::declval<T>()))>;
template <typename, typename T>
struct IsRange : std::false_type {};
template <typename T>
struct IsRange<EnableIfRange<T>, T> : std::true_type {};
struct TupleTag {};
struct RangeTag {};
/**
* Should ideally check if it is a tuple and if not return void, but msvc fails
*/
template <typename Sequence>
using SequenceTag =
std::conditional_t<IsRange<void, Sequence>::value, RangeTag, TupleTag>;
struct BeginAddTag {};
struct IndexingTag {};
template <typename Func, typename Item, typename Iter>
using ForEachImplTag = std::conditional_t<
is_invocable<Func, Item, index_constant<0>, Iter>::value,
index_constant<3>,
std::conditional_t<
is_invocable<Func, Item, index_constant<0>>::value,
index_constant<2>,
std::conditional_t<
is_invocable<Func, Item>::value,
index_constant<1>,
void>>>;
template <
typename Func,
typename... Args,
std::enable_if_t<is_invocable_r<LoopControl, Func, Args...>::value, int> =
0>
LoopControl invoke_returning_loop_control(Func&& f, Args&&... a) {
return static_cast<Func&&>(f)(static_cast<Args&&>(a)...);
}
template <
typename Func,
typename... Args,
std::enable_if_t<!is_invocable_r<LoopControl, Func, Args...>::value, int> =
0>
LoopControl invoke_returning_loop_control(Func&& f, Args&&... a) {
static_assert(
std::is_void<invoke_result_t<Func, Args...>>::value,
"return either LoopControl or void");
return static_cast<Func&&>(f)(static_cast<Args&&>(a)...), loop_continue;
}
/**
* Implementations for the runtime function
*/
template <typename Sequence, typename Func>
void for_each_range_impl(index_constant<3>, Sequence&& range, Func& func) {
auto first = adl::adl_begin(range);
auto last = adl::adl_end(range);
for (auto index = std::size_t{0}; first != last; ++index) {
auto next = std::next(first);
auto control = invoke_returning_loop_control(func, *first, index, first);
if (loop_break == control) {
break;
}
first = next;
}
}
template <typename Sequence, typename Func>
void for_each_range_impl(index_constant<2>, Sequence&& range, Func& func) {
// make a three arg adaptor for the function passed in so that the main
// implementation function can be used
auto three_arg_adaptor = [&func](
auto&& ele, auto index, auto) -> decltype(auto) {
return func(std::forward<decltype(ele)>(ele), index);
};
for_each_range_impl(
index_constant<3>{}, std::forward<Sequence>(range), three_arg_adaptor);
}
template <typename Sequence, typename Func>
void for_each_range_impl(index_constant<1>, Sequence&& range, Func& func) {
// make a three argument adaptor for the function passed in that just ignores
// the second and third argument
auto three_arg_adaptor = [&func](auto&& ele, auto, auto) -> decltype(auto) {
return func(std::forward<decltype(ele)>(ele));
};
for_each_range_impl(
index_constant<3>{}, std::forward<Sequence>(range), three_arg_adaptor);
}
/**
* Handlers for iteration
*/
template <typename Sequence, typename Func, std::size_t... Indices>
void for_each_tuple_impl(
std::index_sequence<Indices...>,
Sequence&& seq,
Func& func) {
using _ = int[];
// unroll the loop in an initializer list construction parameter expansion
// pack
auto control = loop_continue;
// cast to void to ignore the result; use the int[] initialization to do the
// loop execution, the ternary conditional will decide whether or not to
// evaluate the result
//
// if func does not return loop-control, expect the optimizer to see through
// invoke_returning_loop_control always returning loop_continue
void(
_{(((control == loop_continue)
? (control = invoke_returning_loop_control(
func,
get_impl<Indices>(std::forward<Sequence>(seq)),
index_constant<Indices>{}))
: (loop_continue)),
0)...});
}
/**
* The two top level compile time loop iteration functions handle the dispatch
* based on the number of arguments the passed in function can be passed, if 2
* arguments can be passed then the implementation dispatches work further to
* the implementation classes above. If not then an adaptor is constructed
* which is passed on to the 2 argument specialization, which then in turn
* forwards implementation to the implementation classes above
*/
template <typename Sequence, typename Func>
void for_each_tuple_impl(index_constant<2>, Sequence&& seq, Func& func) {
// pass the length as an index sequence to the implementation as an
// optimization over manual template "tail recursion" unrolling
using size = std::tuple_size<typename std::decay<Sequence>::type>;
for_each_tuple_impl(
std::make_index_sequence<size::value>{},
std::forward<Sequence>(seq),
func);
}
template <typename Sequence, typename Func>
void for_each_tuple_impl(index_constant<1>, Sequence&& seq, Func& func) {
// make an adaptor for the function passed in, in case it can only be passed
// on argument
auto two_arg_adaptor = [&func](auto&& ele, auto) -> decltype(auto) {
return func(std::forward<decltype(ele)>(ele));
};
for_each_tuple_impl(
index_constant<2>{}, std::forward<Sequence>(seq), two_arg_adaptor);
}
/**
* Top level handlers for the for_each loop, with one overload for tuples and
* one overload for ranges
*
* This implies that if type is both a range and a tuple, it is treated as a
* range rather than as a tuple
*/
template <typename Sequence, typename Func>
void for_each_impl(TupleTag, Sequence&& range, Func& func) {
using type = decltype(get_impl<0>(std::declval<Sequence>()));
using tag = ForEachImplTag<Func, type, void>;
static_assert(!std::is_same<tag, void>::value, "unknown invocability");
for_each_tuple_impl(tag{}, std::forward<Sequence>(range), func);
}
template <typename Sequence, typename Func>
void for_each_impl(RangeTag, Sequence&& range, Func& func) {
using iter = decltype(adl::adl_begin(std::declval<Sequence>()));
using type = decltype(*std::declval<iter>());
using tag = ForEachImplTag<Func, type, iter>;
static_assert(!std::is_same<tag, void>::value, "unknown invocability");
for_each_range_impl(tag{}, std::forward<Sequence>(range), func);
}
template <typename Sequence, typename Index>
decltype(auto) fetch_impl(IndexingTag, Sequence&& sequence, Index&& index) {
return std::forward<Sequence>(sequence)[std::forward<Index>(index)];
}
template <typename Sequence, typename Index>
decltype(auto) fetch_impl(BeginAddTag, Sequence&& sequence, Index index) {
return *(adl::adl_begin(std::forward<Sequence>(sequence)) + index);
}
template <typename Sequence, typename Index>
decltype(auto) fetch_impl(TupleTag, Sequence&& sequence, Index index) {
return get_impl<index>(std::forward<Sequence>(sequence));
}
template <typename Sequence, typename Index>
decltype(auto) fetch_impl(RangeTag, Sequence&& sequence, Index&& index) {
using iter = decltype(adl::adl_begin(std::declval<Sequence>()));
using iter_traits = std::iterator_traits<remove_cvref_t<iter>>;
using iter_cat = typename iter_traits::iterator_category;
using tag = std::conditional_t<
std::is_same<iter_cat, std::random_access_iterator_tag>::value,
BeginAddTag,
IndexingTag>;
return fetch_impl(
tag{}, std::forward<Sequence>(sequence), std::forward<Index>(index));
}
} // namespace for_each_detail
template <typename Sequence, typename Func>
constexpr Func for_each(Sequence&& sequence, Func func) {
namespace fed = for_each_detail;
using tag = fed::SequenceTag<Sequence>;
fed::for_each_impl(tag{}, std::forward<Sequence>(sequence), func);
return func;
}
template <typename Sequence, typename Index>
constexpr decltype(auto) fetch(Sequence&& sequence, Index&& index) {
namespace fed = for_each_detail;
using tag = fed::SequenceTag<Sequence>;
return for_each_detail::fetch_impl(
tag{}, std::forward<Sequence>(sequence), std::forward<Index>(index));
}
} // namespace folly